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1. Kinematics of the continuum. Spatial and material descriptions.

1.1. Spatial (eulerian) and material (lagrangian) descriptions of the motion. Material
derivative. Velocity and acceleration. Trajectories and streamlines.

1.2. Deformation and vorticity tensors. Physical interpretation.

1.3. Reynolds’ transport theorem.

2. Fundamental equations in Continuum Mechanics.

2.1. Conservation of mass: continuity equation.

2.2. Long-range (volume) forces and contact (surface) forces. Stress tensor.

2.3. Momentum balance: equation of motion. Mechanical energy balance.

2.4. Angular momentum balance: symmetry of the stress tensor.

2.5. Conservation of energy and first principle of Thermodynamics.

2.6. Constitutive relations.

3. Viscous fluids. Navier-Stokes equation.

3.1. Hydrostatic pressure. Ideal fluid model. Euler’s equation.

3.2. Stress tensor for a linearly viscous fluid. Newtonian fluid model. Coefficients of
viscosity. Derivation of Navier-Stokes’ equation.

3.3. Boundary conditions.

3.4. Scale analysis and dimensionless numbers.

4. Energy equation for a Newtonian fluid.

4.1. Second principle of Thermodynamics. Energy equation in the entropic representa-
tion. Concepts of adiabatic, isentropic and homoentropic motions.

4.2. Heat conduction. Entropy sources.

4.3. Alternative forms of expressing the energy equation.

5. The hydrodynamic equations in conservation form.

5.1. Momentum equation in conservation form. The momentum density flux tensor.

5.2. Energy equation in conservation form. The energy density flux vector.

5.3. Derivation of the jump relations across a discontinuity. Tangential discontinuities
and shock fronts. Rankine-Hugoniot relations.

6. Circulation and vorticity.

6.1. Circulation and vorticity. Vortex tubes. Some kinematic results.

6.2. Theorems of Kelvin and Helmholtz for ideal fluids.

6.3. Navier-Stokes’ equation in terms of the vorticity. 2-D results.

6.4. Crocco’s equation and Bernoulli’s theorems.
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Bulletin of exercises n◦1: Kinematic aspects in Continuum Mechanics. The Jacobian and

its geometrical interpretation. Equation of continuity.

The motion of a fluid is given by a function

x = X(a, t) , (1)

where a is the position vector at t = 0 of the fluid element which is at position x at time t:

X(a, 0) = a .

For each fixed t, (1) defines an invertible transformation of the continuum onto itself. The

Jacobian determinant

J (a, t)
def

= det

(

∂X

∂a

)

t

= det DX(a, t)

is, therefore, always different from zero.

1. Streamlines and trajectories.

Prove that for a time-independent velocity field v(x) the trajectories and the streamlines coin-
cide geometrically.

2. Euler’s identity.

For the proof of Reynolds’ transport theorem use is made of the so-called Euler’s identity,

(

∂J

∂t

)

a

= J div v ,

where J is the Jacobian determinant of the transformation x = X(a, t) and v(x, t) is the

velocity field.

Prove Euler’s identity.

3. Incompressible flows.

A flow is said to be incompressible if the volume of any arbitrary portion of the fluid remains
constant in time; i.e., if for any arbitrary Ω t it holds that

d

dt

∫

Ω t

1 = 0 .

• Prove that a flow is incompressible if and only if the Jacobian J is equal 1 at all times.

• Prove that a flow is incompressible if and only if Dρ/Dt ≡ 0.

4. Continuity equation in the material representation.

Prove that the assumption of mass conservation yiels the following relation,

ρ(a, t) J(a, t) = ρ(a, 0) , (2)

which can be called “the equation of continuity in the material (or Lagrangian) representation.”

Check that you come to the same result if you start from the customary form of the continuity

equation and apply Euler’s identity.



HYDRODYNAMICS

International Research School. Max-Planck-Institut für Sonnensystemforschung (Lindau). 21 – 25 July 2008

Bulletin of exercises n
◦

2: Constitutive relations for a linearly viscous fluid.

In order to obtain the form of the stress tensor for linearly viscous fluids the following assump-
tions are made:

(i) The stress tensor at any point x of the medium depends on the thermodynamic state and
on the gradient-of-velocity tensor at this point.

(ii) When the fluid is at rest (or there are no gradients of velocity), the constitutive relation
for the stress tensor must reduce to that of hydrostatics.

From (i) and (ii) it follows that the constitutive relation for σij must be of the form

σij = −pδij + τij(vr,s, ρ, T ) , with τij(0, ρ, T ) = 0 , (1)

where we have chosen the variables ρ, T to represent the thermodynamic state of the fluid.
The coefficient p which multiplies δij is the thermodynamic pressure, which coincides with the

mechanical pressure when the fluid is at rest (i.e., with the hydrostatic pressure).

In this excercise the form of the nine functions τij is deduced.

1. It is required that the relationship between σ̂̂σ̂σ and ∇v be linear (this is the simplest extension

of the constitutive relation σ̂̂σ̂σ = −pÎ̂ÎI which includes the dependence of σ̂̂σ̂σ with ∇v and is
compatible with “Navier’s hypothesis” for viscosity).

Show that this linear relationship along with the symmetry of σ̂̂σ̂σ imply that (1) can be written
in the form

σij = −pδij + Cijrsvr,s , with Cijrs = Cjirs , (2)

where Ĉ̂ĈC = (Cijrs) is a fourth-order tensor whose components are functions of ρ and T . How

many components has Ĉ̂ĈC?

Newtonian fluids

2. Prove that if, further, isotropy is assumed (i.e., that there are no preferred directions in

space), the number of independent elements of the tensor Ĉ̂ĈC reduces to only two. Write the
general form of Cijrs.

Hint: The most general isotropic fourth-order tensor has the form

Aijrs = λδijδrs + µ(δirδjs + δisδjr) + η(δirδjs − δisδjr) . (3)

3. Prove that Cijrsvr,s = CijrsDrs, where D̂̂D̂D is the symmetric part of ∇v; that is, the an-

tisymmetric part of ∇v is not involved in the constitutive relations. Discuss the physical
interpretation of this fact.

4. Write the resulting constitutive relations (which describe the model called “Newtonian
fluid”). Obtain the relation existing between the thermodynamic and the mechanical pressures.

[NOTE: The mechanical pressure at x is defined as minus the mean value of the normal stresses
at x].
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Bulletin of exercises n◦ 3: Basic equations in conservation form.

1. Interpretation of the continuity equation.

The continuity equation can be written in the form:

∂ρ

∂t
+ div (ρv) = 0 . (1)

Integrate Eq. (1) in a fixed region R in 3-D space with boundary ∂R and apply Gauß’

theorem. Interpret the result and justify the name mass flow vector for the vector quantity ρv.

Note that this interpretation of the continuity equation is equally valid for any other equation that
can be formally written in the form (1), viz.

∂Q

∂t
+ divJQ = 0 , (2)

where Q is the density of a physical quantity (i.e., per cm3) and JQ is its corresponding flux density
(i.e., per cm2).

The momentum equation (Euler’s equation) and the energy equation can also be written in this way.

An evolution equation expressed in the form (2) is said to be written in conservation form. This

form is particularly useful in the numerical integration of hydrodynamic and magnetohydrodynamic

problems. It is also especially appropriate for the interpretation of energy and linear momentum

fluxes in problems of wave propagation and for the derivation of the relations holding across flow

discontinuities (in particular, shock fronts).

2. The momentum equation in conservation form.

Show that if the long-range force per unit volume derives from a scalar potential Φ, then the
equation of motion for a fluid can be written in the form

∂(ρv)

∂t
+ div

(

Π̂̂Π̂Π + Φ Î̂ÎI
)

= 000 , (3)

where Π̂̂Π̂Π
def

= ρv ⊗ v − σ̂̂σ̂σ̂σ̂σ̂σ̂σ̂σ̂σ and Î̂ÎI is the unit tensor.

If the flow is inviscid, then Eq. (3) can be written

∂(ρv)

∂t
+ div

[

Π̂̂Π̂Π + (p + Φ) Î̂ÎI
]

= 000 , (3a)

where now Π̂̂Π̂Π
def

= ρv ⊗ v.

In order to understand the physical meaning of the tensor Π̂̂Π̂Π, integrate Eq. (3) in a fixed region

R bounded by a regular surface ∂R.

3. The energy equation in conservation form.

Under the assumption that the long-range forces per unit mass derive from a time-independent
scalar potential Ψ, show that the energy equation (which is the differential expression of the

principle of energy conservation) can be written in the form

∂E

∂t
+ div JE = 0 , (4)

where E = ρ (ǫ+‖v‖2/2+Ψ) is the total energy density (i.e, per cm3) and JE is its corresponding
flux density (i.e, per cm2).

In order to understand the physical meaning of the flux vector JE , integrate Eq. (4) in a fixed
region R bounded by a regular surface ∂R.

Indication: Employ the original expression of Reynolds’ transport theorem (i.e., without making

use of the continuity equation).
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Bulletin of exercises n◦ 4: Energy equation for a compressible flow.

1. Energy equation in the representation G(p, T ): Assume that the thermodynamic

state of a fluid of constant chemical composition can be specified through the variables (p, T ).
Without assuming any further thermodynamic restriction (such as considering an ideal gas),

show that the differential expression of the first principle of Thermodynamics is given by

ρ cp

D T

D t
− αT

D p

D t
= −p div v + Φv − divFFF , (1)

where Φv is the viscous dissipation function, α is the thermal expansion coefficient and cp is

the specific heat at constant pressure.

In many cases, the thermodynamic behaviour of a gas can be quite well approximated by the

ideal gas model. For instance, air (except when changes of state occur) or the stellar plasma
in most main-sequence stars. Which particular form does equation (1) take if the fluid is

assumed to be an ideal gas? [Note: You may need to refresh your notions of elementary
Thermodynamics. As a suggestion, Thermodynamics and an Introduction to Thermostatistics,

H. B. Callen, Wiley, 2nd edition, 1985].

2. Adiabatic processes: Consider the local expression of the first principle of Thermody-

namics in terms of the variables pressure and temperature [Eq. (1)] and assume that the heat
flux vector satisfies Fourier’s law for heat conduction.

Call L the characteristic length of variation of temperature, τ the characteristic time for the

evolution of T and κT the coefficient of thermal conductivity.

Show that, in orders of magnitude, the ratio between the heat diffusion term and the term

expressing temperature variation is equal to the ratio between the characteristic evolution
time for T and the characteristic time for heat conduction (call it τc).

Justify why if τ ≪ τc we can say that the process is adiabatic.

3. Physical interpretation of the quantity enthalpy: The physical quantity enthalpy

is useful in a variety of situations in compressible Hydrodynamics. It appears in a natural

way, for instance, in studying energy propagation by waves or in the Rankine-Hugoniot jump
relations across a shock front.

In order to better understand its physical meaning, write the first principle of Thermodynam-
ics replacing the specific internal energy ǫ by the specific enthalpy h (defined as h

def

= ǫ + p/ρ)

and show that it is equivalent to

ρ
D h

D t
−

D p

D t
= Φv − divFFF . (2)

From Eq. (2) show that if a mass of fluid is undergoing a process at uniform pressure p, then
the rate of change of the total enthalpy of that mass of fluid satisfies the inequality

Ḣ(Ωt) ≥ Q (∂Ωt) , (3)

where Ωt is the region occupied by the mass of fluid at time t and Q(∂Ωt) is the heat per unit

time being exchanged between the fluid mass and its surrounding through its boundary.

Under which conditions would the equal sign hold in inequality (3)? From this result, explain
the physical meaning of the thermodynamic quantity “enthalpy.”
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Bulletin of exercises n◦ 6: Vorticity.

Circulation and vorticity are two quantities that measure the degree of rotation in a fluid. Circula-

tion, a scalar quantity, is an integral measure of rotation, while vorticity, a vector quantity, yields a

local measure of the degree of rotation in the neighborhood of a fluid element.

1. Kinematic identities.

In many cases it is convenient to describe the flow of a fluid in terms of the vorticity field,
ωωω = rot v. In order to obtain an equation of motion based on vorticity, it is especially useful

to make use of a number of kinematic identities involving the vorticity field.

Prove the following vector identities:

q
def

=
D v

D t
=

∂v

∂t
+ ωωω ∧ v +

1

2
grad ||v||2 , (i)

rot q =
∂ωωω

∂t
+ rot (ωωω ∧ v) , (ii)

rot q =
D ωωω

D t
− (ωωω · ∇)v + ωωω div v . (iii)

Combining identity (iii) with the continuity equation, the so-called Beltrami identity is ob-
tained:

D

D t

(

ωωω

ρ

)

=

(

ωωω

ρ
· ∇

)

v +
1

ρ
rot q . (iv)

2. Transport theorem for a material curve:

Let ααα = ααα(ξ, t) be the parametric expression of the material curve Ct and ξ ∈ [ξ1, ξ2] the
parameter (chosen in such a way that it labels each matter element along the curve in a unique

way. Let Q(x, t) be a vector quantity defined in the flow region and consider the line integral
∫

Ct
Q · d ααα

def

=
∫ b

a
Q[ααα(ξ, t)] · ααα′(ξ, t) d ξ . (1.1)

Show that the time derivative of (1.1) is

d

dt

∫

Ct
Q · d ααα =

∫

Ct

D Q

D t
· d ααα +

∫ b

a
Q · [ (ααα′ · ∇)v ] d ξ , (1.2)

where ααα ′ is the partial derivative of ααα with respect to the parameter ξ.

This result is the one-dimensional version (i.e., for a material curve) of Reynold’s theorem.

3. Circulation of the velocity: The circulation of the velocity along the material circuit
Ct is defined as:

Γ(t) =
∮

Ct
v · d ααα

def

=
∫ ξ2

ξ1

v[ααα(ξ, t)] · ααα′(ξ, t) d ξ , (2.1)

where ααα = ααα(ξ, t) is the parametric expression of the curve and ξ ∈ [ξ1, ξ2] is the parameter.

Show that the time derivative of the circulation is given by

Γ̇(t) =
d

dt

∮

Ct
v · d ααα =

∮

Ct

D v

D t
· d ααα . (2.2)
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Bulletin of exercises n◦ 6 (continuation): Vorticity.

4. Evolution equation for the kinematic helicity density.

Given a velocity field v(x, t), the kinematic helicity density is v · ωωω and the helicity of a
material region Ωt is defined as

H(Ωt) =
∫

Ωt
v · ωωω .

Consider a fluid flow in a barotropic medium (i.e., isopycnic surfaces coincide with isobaric

surfaces) under conservative long-range forces and in a situation in which the effects of vis-
cosity can be neglected.

Prove that, under these conditions, from the equations of continuity and motion the following
equation can be derived, which governs the evolution of the kinematic helicity density, viz.

D

D t

(

v · ωωω

ρ

)

=

(

ωωω

ρ
· ∇

)

(v · v − ϕ) , (3)

where ϕ(x, t) is a scalar funtion that must be determined.

5. Conservation of kinematic helicity.

Under the same conditions for which the theorems of Kelvin and Helmholtz hold, the kine-

matic helicity of a vortex tube is conserved.

• Let Ωt be a vortex tube. Prove that under the conditions of exercise n◦4 the kinematic

helicity of a vortex tube is a constant of motion.

• How does the result depend on the funtion ϕ (previous exercise)? Does this result hold for
any material region Ωt? Why?

• Why do we need to assume a barotropic medium in order to come to the result? Could we
state the assumption “isopycnic surfaces coinciding with isobaric surfaces” in a different way

that does not involve pressure and density?
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Part I. Basic equations and concepts in Fluid Mechanics.

1. Kinematics of the continuum. Spatial and material descriptions.

1.1. Spatial (eulerian) and material (lagrangian) descriptions of the motion. Material
derivative. Velocity and acceleration. Trajectories and streamlines.

1.2. Deformation and vorticity tensors. Physical interpretation.

1.3. Reynolds’ transport theorem.

2. Fundamental equations in Continuum Mechanics.

2.1. Conservation of mass: continuity equation.

2.2. Long-range (volume) forces and contact (surface) forces. Stress tensor.

2.3. Momentum balance: equation of motion. Mechanical energy balance.

2.4. Angular momentum balance: symmetry of the stress tensor.

2.5. Conservation of energy and first principle of Thermodynamics.

2.6. Constitutive relations.

3. Viscous fluids. Navier-Stokes equation.

3.1. Hydrostatic pressure. Ideal fluid model. Euler’s equation.

3.2. Stress tensor for a linearly viscous fluid. Newtonian fluid model. Coefficients of
viscosity. Derivation of Navier-Stokes’ equation.

3.3. Boundary conditions.

3.4. Scale analysis and dimensionless numbers.

4. Energy equation for a Newtonian fluid.

4.1. Second principle of Thermodynamics. Energy equation in the entropic representa-
tion. Concepts of adiabatic, isentropic and homoentropic motions.

4.2. Heat conduction. Entropy sources.

4.3. Alternative forms of expressing the energy equation.

5. Circulation and vorticity.

5.1. Circulation and vorticity. Vortex tubes. Some kinematic results.

5.2. Theorems of Kelvin and Helmholtz for ideal fluids.

5.3. Navier-Stokes’ equation in terms of the vorticity. 2-D results.

5.4. Crocco’s equation and Bernoulli’s theorems.



Part II. Special topics.

6. The hydrodynamic equations in conservation form.

6.1. Momentum equation in conservation form. The momentum density flux tensor.

6.2. Energy equation in conservation form. The energy density flux vector.

6.3. Derivation of the jump relations across a discontinuity. Tangential discontinuities
and shock fronts. Rankine-Hugoniot relations.

7. Chandrasekhar’s adiabatic exponents in compressible hydrodynamics.

7.1. Definition of Chandrasekhar’s adiabatic exponents as material response functions.

7.2. Physical interpretation of the adiabatic exponentsΓ1, Γ2 andΓ3.

7.3. Alternative representations of the energy equation in compressible hydrodynamics in
terms of the material functionsΓ1, Γ2 andΓ3.

8. The virial theorem and astrophysical applications.

8.1. Derivation of the scalar virial theorem in Hydrodynamics. Interpretation of the vari-
ous terms.

8.2. Some astrophysical applications of the virial theorem: Stars in hydrostatic equilib-
rium; restriction on the ratio of specific heatsγ. Quasistatic contraction as possible
energy source. Kelvin-Helmholtz time scale. Free-fall time scale. Derivation of the
relationship between the pulsation period and the mean stellar density for pulsating
stars.


