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Complex Problems in Solar
System Research.

 Stationary Problems:
Magneto-hydrostatic equilibria to
model magnetic field and plasma
In the solar corona.

* Time-dependent Problems:
Multi-fluid-Maxwell simulation
of plasmas (courtesy Nina Elkina)



Modeling the solar corona

Magnetic fields structure the solar corona.
e But we cannot measure them directly.

Solution: Solve PDEs and use photospheric
magnetic field measurements to prescribe
poundary conditions.

o Let’s start with the simplest approach:
Potential fields: VxB=0.V-B=0

With B = v we have to solve a Laplace equation:

Af =0
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We try to solve this equation by separation of variables:
f(r,0,0) = fi(r)- f2(6,0)
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The solutions of the radial part are:

fulr) <~ fand 7y

We can further separate the angular equation (and get another sepa-
ration constant m) or just look in a text-book or Wikipedia _and find
that this equation is solved by spherical 11&1‘1110111(%:-5‘}}.”1 (0, c:))‘




The 3D-solution of the Laplace equation can be found by superposi-
tion of the pm*ti(*ulﬂr solutions f(r,0.¢) = fi(r) - f2(0., @) as:

f(r 6,0) > > [Afm. r! + B, 'T'_(H_l)] Y1 (0, 9)
[=0 m=—

where Y7, are Spherical Hm*monic:-; and Ay, and By, are coefficient

which we prescribe from boundary conditions.

In the photosphere (r = 1Rs) the radial magnetic field B,.(r = 0)
1s measured and used to prescribe von Neumann B.C. We make a
spherical harmonic decomposition:

x
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Outer radial boundary at source surtace (r; ~ 2.5Rs). We assume
that the field becomes radial here: B = B, e, tor r = ry:
B, _ 121(r.6.9)
r 06

L Of(r,0,0)
r sin(#) O
are supposed to vanish at r = ry.
Together with the photospheric boundary condition we get two equa-
tion to calculate Aj,,, and By,

B, =

(1—1) ; L —(1+2)
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Aim Tyt By, ™ =0

which lead to:
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Solution of Laplace equa.ticnn for potential coronal magnetic fields:

X
F(r0.0) =3 Z [qu; + B, D]y (0.6
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Show example in IDL



Nonlinear Force-Free Fields

 Potential fields give impression about global
topology of the coronal magnetic field.

e But: Approach is to simple to describe magnetic
field and energy In active regions accurately.

* We include field aligned electric currents,
the (nonlinear) force-free approach.

(VxB)xB =
V.B =

VxB = oB




Nonlinear Force-Free Fields
(direct upward integration)

VxB=«oB |Wuetal 1990 proposed to solve these

B.-Vg =0 equations by upward integration:
_ 3B,y 9B,
Compute vertical current juo/.0 = B:} — .}:f”
- ) C
In photosphere (z=0) ; '
z()
Compute alpha =g
gamé)#tge horlzontal Jx0 = &g Bxo,  jyo = ag By
d B, + 0B
Integrate B upwards e
Repeat all steps for z=1,2,... 9By _ 9Bx .
7z dy A
0B 9By 9Byo

Az dx Iy




Nonlinear Force-Free Fields
(direct upward integration)

Straight forward scheme.
Easy to implement.

But: Not useful because
the method 1Is unstable.

Why?
l11-posed problem.
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Why Is the problem ill-posed?

Problem-1: Measured Magnetic field in
photosphere is not force-free consistent.

Cure: We do regularization (or preprocessing)
to prescribe consistent boundary conditions.

Problem-2: Even for ‘ideal consistent’ data
the upward integration is unstable (exponential
growing modes blow up solution).

Cure: Reformulate the equations and
apply a stable (iterative) method.
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Consistency criteria for boundary-data (Aly 1989)

If these relations are NOT fulfilled,
then the boundary data are
Inconsistent with the nonlinear
force-free PDEs.




Preprocessing or Regularization
(Wiegelmann et al. 2006)

Input: Measured ill posed data => Output: Consistent B.C.

Lep = palys + polo + pu3ls + paly

2 2 2
Ly = (Z BXBZ) + (Z BJ,BE) + (Z B; — Bf — Bﬁ)
P P >
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L3 = Z (B KOL‘!S _|_ Z (B VOJ’JS Z zof:r

P

La=> (AB)*+ (AB)* + (AB:) s
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Non-linear Force-Free Fields
Force-free magnetic fields have to obev

(VB =B=0,V -B=»0
We define the functional (Wheatland, Sturrock,
Roumeliotis 2000
L—fmry?][ (V x B) x B> + |V - B|?]

w is a weighting function (Wiegelmann 2004).
We minimize L:

1 dL OB - o / 9B

2 dt v Ot

It all components of B are fixed on the boundaries

.G P

of a computational box we get an evolution equa-
tion for B

— uF
o5 —/




= wkF+ (2, xB)x Vw+ ({2, -B) Vw

F
G =wG

F = Vx(Q,xB)—Q, x(V xDB)
+V(Q,-B)—Q,(V-B)+ (22 +Q7) B

G = i x(Q,xB)—a(Q, - B)

Q, =572 [V x B) x B]
Q, =B [(V-B)B].
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Measure
data

Preprocessing

Consistent
Boundaries

Solve (Force-Free) PDES

Coronal
Magnetic Field
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Flaring Active Region

(Thalmann & Wiegelmann 2008) Quiet Active Region
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Magnetohydrostatics

Model magnetic field and plasma consistently:

(VXB)XB -1 ogVp—1pp V¥ = 0

)

Lorentz pressure gravity
force gradient

V-B =0
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We define the functional

‘_\(?XB)XB—yg'\?’p—yUp?L}’\E iy -B\?‘

L(B.”P) - [

BE

P sinfdrdd do

The magnetohydrostatic equations are fulfilled if L=0

For easier mathematical handling we use

®

a7

m=h —

and rewrite L as

= B™° [(V-B) B].

- B° (VXB)XB —ugVp — ugp V¥|]

’ — - 3 - .
L = [ B*QZ + B*Qj r* sin@dr df dep.
ANV



Taking the derivative of L with respect (o an iteration parameter
t, where B, p. p are assumed to depend upon 7, we obtain

| dL 1B )
—_ — = —f{— F dV + fiﬂﬂv Q dV
vV V

2 dt Ot

f o0 1o Q- V¥ dV — dS

Vo .
oB . Iterative Equations
o N ensure monotonously
op V.0 decreasing functional L
o HO : for vanishing surface
op . Integrals (boundary
o7 G Ho £ - VI conditions).
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Summary

Modeling the solar corona

First one has to find appropriate PDEs which are

adeqguate to model (certain aspects of) the solar corona.

Here: Stationary magnetic fields and plasma.

Use measurements to prescribe boundary conditions.

Regularize (preprocess) data to derive consistent
boundary conditions for the chosen PDE.

Stationary equilibria (solution of our PDES) can be
used as initial condition for time dependent computation

of other PDEs (MHD-simulations, planned).
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Multi-fluid-Maxwell simulation
of plasmas (courtesy Nina Elkina)

The kinetic Vlasov-Maxwell system.

From 6D-Vlasov equation to 3D-fluid
approach.

Generalization of flux-conservative form.
Lax-Wendroff + Slope limiter
Application: Welibel instability



Kinetic approach for collisionless plasma

Vlasov equation for plasma species

o _0fa | Ofa  ta|p, ExB|fa_
dt ot ' Or ' My, | C T

Maxwell equations for EM fields

3D+3V=06
dimensions+time




How to loose information?

Instead of all the details of the distribution of particles
consider only a small number of velocity moments:

Density: n(x,t) = / dv F' = Z oz — x;)
) i=1,N

Momentum

density: n(z, tyu(x,t) = / dvv F = Z v; 0(x — ;)
i=1,N

Kinetic energy m m

density: K (x,1) / dv 5’”2 2 Z E(U’? oz — =)
i=1,N

Kinetic energy

flux Q(x,t) —/ dv Ev F = Z 5’0,,; 6(x — x;)

etc... =1L,N
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The multifluid simulation code

)
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Py

pU,
Pty + Py
Py + P,
pvpv. + P
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PO U0y 4 20, Py vy Py
pv, v, + 20, Py + v, Py,
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PV + Ve Py + vy P + 0. Py
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p(E, +v,B, —v.B,)
p(E, +v,B, —v,B,)
p(E. +v,B, —v,B,)
200, By + 2(B.Pry — By P
p(veEy + v Ey) + (B.Py, — B,Py. + B. Py + B, P,
plv.Ey +v,Ey) + (B.P). + ByFPpw — ByP.. — B,FP,,)
2pv,Fy +2(B,P,. — B.F,,)

p(v,E. +v.E,) + (ByPyoy — B.P.. + B,P.. — B,P,,)

QJ(JI-‘:E: + 2(B,rpr" - BQ‘R;:) )

...are solved with using high-resolution semi-discrete method.
These equations include also finite Larmor radii effect,
pressure anisotropy, electron inertia, charge separation
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Formally the multi-fluid-equations
can be written In vector form

oU  JF  0G

o, Y
hd Source-
Generalized form of our Ju (')F(U)

flux-conservative equation: )¢ Or
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ou  oOF J0G

or T ar "oy T °

The individual terms
are somewhat more
complex as in our
example advection
equation.

puy

pry vy + FPoy

puyty + Py

Pyt + Py
(Ve oy + vy Prp + v Fyy) + prgugu,
(Ve Pyy + vy Poy + v, Pry) + prgvy, vy,
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v, Py + pryvyvy

(vy Py + vy Py + 1. Pyy) + puyv.vy,

nv, By + 2(q/m)(B. Py + B, P,.)
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PV
pv2 + Py
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pts + Pr.
3y Py + prgv v,
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k\ [:t:rpzz + t:::-"sz + t:::-'szJ + PUz Uz U, j

0 \
n(E; +vyB; — v, By)
n(Ey + v, By — v B.)
n(E, + v.By — v,B;)

\ (v, Py + v, P, +v. P ) 4 pr.v.v, ),

vy, By, + 2(g/m) (B Py, — B.P.y)

n'[:t:g.rEz + U Ey:] — [:Bypa‘y — BzPrz + Berz —

2nv, E, + 2[:9’,.-“';?”:] [:Bypmz - BmPsz
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Multi-Fluid equations are solved

together with Maxwell equations

which are written as wave-equations
(remember the first lecture, here in CGS-system):

5 107 > 1 0%\ - A -
( 2 Ot ) v g ( c* Ot ¢

Formally we combine these equations to:
0P
Ot2
Equations are solved as a system of first order equations:

— —

V2P — § where P= (¢, A), and S = (p. J)

£ — U i _ R where R=V?*P+5S.
ot ot
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We have to solve consistently

ot Ox oy or O
— ) — _/
Y h'd

Multi-Fluid equations

Maxwell equations

Laplace is discretized with 4 order 25-point stencil
(In earlier examples we used a 2t order 9-point stencil)

y

||f|:'1 Co Cg Cz O

Co Oy Cf Oy Co

Lz Cg Cg C5 Ca

Oz C4 Cr Cy4 Co

k_fl Ca O3 Cz O J

+ O(R*)

1
g = —
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Numerical scheme:
Lax-Wendroff + slope limiter

Method based on Lax-
Wendroff scheme

« Additional feature:
Non-oscillatory recons-
truction near gradients.

torn

two-step Lax Wendroff

halfstep [_'H:H.lltS\_ i
!

L g
&
N

X

A

n+1/2

Predictor step: s

I
= i

Corrector step:
A

orj

— —Ftrufa

Slope limiter

n+l

Wit1/2

2

| .
- ( +u1+i) +,,i

(i fi—w” z+L)

N

Ffa'l{ n+1/ Em_F n+l 2+

i+1
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Test problems: Weibel instability

« The Weibel instability is driven in a
collisionless plasma by the
anisotropy of the particle velocity
distribution function of the plasma U,
- Shocks |
— Strong temperature gradient u

» Magnetic fields are generated so
that the distribution function - Uy
becomes isotropic

Initial electron temperature is anisotropy Tzz = 10Txx, ions are
Isotropic. lon mass is Mi = 25Me. The simulation is performed
on a 2D domain (Nx = Ny = 128). Periodic boundary conditions
are adopted in both coordinate directions.
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Comments on Welbel instability
development

« The process of Instability @
development Is accompanied by
creation of localised current sheets,
sustained by self-consistent @ @
magnetic fields. Currents with the @
same direction are attracted because

of their magnetic field.

~ Currents and magnetic fields increase
through merger of currents due to
magnetic field lines reconnection. This
leads to decrease of temperature
anisotropy.



Multi fluid simulations
Summary

o Solve coupled system of fluid and Maxwell equations.
o Uses first 10 moments of 6D-distribution functions.

o Written as first order in time system.

o Flux-conservative part + Source-term.

o Based on Lax-Wendroff scheme.

 Slope-limiter to avoid spurious oscillations
near strong gradients.

o Tested with Welbel instability in anisotropic plasma.
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| am grateful to all people who helped
me to prepare this lecture by providing
material, discussions and checking
lecture notes and exercises:
Nina Elkina

Julia Thalmann
Tilaye Tadesse

Elena Kronberg THAHK VOU

Many unknown authors of
Wikipedia and other online
sources.
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For this lecture | took material from

» Wikipedia and links from Wikipedia
* Numerical recipes in C, Book and

 |ecture notes Computational Methods in Astrophysics

 Presentation/Paper from Nina Elkina
 MHD-equations in conservative form:
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http://www.fizyka.umk.pl/nrbook/bookcpdf.html
http://compschoolsolaire2008.tp1.ruhr-uni-bochum.de/
http://www.lsw.uni-heidelberg.de/users/sbrinkma/seminar051102.pdf
http://www.lsw.uni-heidelberg.de/users/sbrinkma/seminar051102.pdf
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