
Planetary magnetic fields.

Observations, theory, models.

Julien Aubert

1– Intro

• Magnetic field as a signal carrying information about

constitution

dynamics of the interior

thermal history of a planetary system.

• Planetary dynamo modelling aims at

retrieving information by confronting numerical models and ob-

servations

investigating the theoretical difficulties of the dynamo problem.



2– Plan

• The geodynamo: where it all started

• Mars: mysteries of the lost dynamo

• Uranus/Neptune: remote is exotic

• Jupiter/Saturn: zonal flows and dynamos

3– Earth: the most comprehensive dataset

Finlay & Jackson



4– Modelling

• Spherical shell geometry, rotation and magnetic induction are

the 3 essential ingredients. One source of kinetic energy (most

likely convection) is required.

solarviews.com

5– Solving the equations

• Navier Stokes (Boussinesq) equations + Maxwell equations =

magnetohydrodynamic model



6– Success

• explains the large scale space (> 1000 km) and time (>100 yrs)

features of the geodynamo

Model gufm1 for 1990 Glatzmaier-Roberts simulation

7– Invert for innner structure?

Hulot et al.
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• Surface measurement allows to infer inner magnetic structure

and confirm dynamo mechanism.



8– Challenges for future modelling

• Are models wrong or lowpass-filtering reality? Need to have accurate ratio

between viscous, thermal, compositional, magnetic time scales.

local (box) model
global model with 2D approximation
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Stellmach et al.

9– Mars: an ancient, short lived dynamo?

Mars Global Surveyor at 200 km altitude, Purucker et al.



10– Interior of Mars

• Mars has half the Earth’s radius and an iron core which is at least

partially liquid.

solarviews.com

11– Scaling of dynamo constraints: velocity amplitude

• Magnetic Reynolds number Rem = UD/λ has to exceed 100

for a dynamo to work.

• convective velocities U have been scaled with heat flux Q in lab

experiments:

U =

(

αg

ρCpΩD3

)2/5

Q2/5
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• dynamo condition implies Q > 1 GW which is very little above

adiabatic, much less than typical adiabatic heat flux (∼ 1 TW).

• So if there is core convection, a dynamo is extremely likely!



12– Scaling of dynamo constraints: Ohmic losses

• A working dynamo produces a lot of ohmic heat.

• Joule heating power QJ has been scaled in numerical models:

τ =
Em

QJ

∝

1

Rem

An asymptotic regime is reached

(independant of the kine-

matic/magnetic diffusivity ratio):

small-scale eddies dissipate a

large-scale field.
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• QJ = 1 − 10 TW has to be extracted from the energy sources.

The onset of a dynamo is coincident with a sudden “power

hunger” (cf Karlsruhe experiment).

13– Possibilities?

• Why hasn’t Mars a dynamo today while Earth has one?

• Death of convection? Possible if plate tectonics stopped, if inner

core formation was delayed in comparison to the Earth.

• Possible later turn-on of the dynamo, stopped due to a frozen

core.

• In any case the thermal history of the core needs to be clarified.

QJ is a central unknown for this history.

• Scaling will help to better estimate dissipation from surface ob-

servations.

• Present models have a high potential because they show unex-

pected asymptotic convergence, a hint of the closeness with the

physics of real systems.



14– Remote & exotic: Uranus and Neptune

Uranus Neptune

surface radial fields in gauss, Holme and Bloxham, Voyager II.

• Surface fields have a singular equatorial dipole + multipoles con-

tent.

• two instances mean that we are not “catching” a reversal.

15– Interior of Uranus/Neptune
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• Dynamo action could take place in the middle conducting fluid

ice layer.



16– The Elsasser Number mystery

• Planetary dynamos are believed to work in a

Coriolis force ∼ Lorentz force

equilibrium regime.

• The Elsasser number

Λ =
σB2

ρΩ

measures the ratio of the two. This should always be of order

1 and provide a convenient way of scaling planetary magnetic

fields...

• ... but Λ ∼ 1 in the Earth, Λ ∼ 0.01 in Uranus/Neptune. How

can this be? More generally, how does an equatorial dipole dy-

namo work?

17– Equatorial dipole dynamo model

Magnetic tension in the

normal/tangential vector

basis

T =
B2

Rc

en +
∂

∂s

(

B2

2

)

es

In this representation

field line thickness is

weighted with B2.

• Where thickness varies, or where thick lines are curved, work is

done against magnetic tension.



18– Model predictions

• This model can be perturbed to yield either an axial, or an equa-

torial dipole.
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• Dynamo is not efficient when dipole axis and rotation axis

are orthogonal because of field line shear by vortices. Hence

Λe/Λa = 0.05.

19– Constraint on the size of the dynamo region?
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• Exotic dynamos with equatorial dipoles and multipoles show

when the dynamo shell is small. This could be a constraint for

Uranus and Neptune.



20– Zonal flows in the gas giants

• The surface, and probably the deeper dynamo region of gas gi-

ants is swept by strong zonal flows.

21– The origin of zonal flows

Potential vorticity

q =
ω + 2Ω

H

q is materially conserved and

therefore develops regions with

flat profiles. This means nonzero

ω and therefore zonal flow.

• Zonal flows are the result of potential vorticity mixing by turbu-

lence.

• This simply describes exchanges of angular momentum between

the rotating frame and the fluid within.



22– Dynamos with zonal flows

• The magnetic field of Saturn is highly axisymmetric, but Cowling

theorem prevents dynamos producing axisymmetric fields.

• The surface field looks

axisymmetric on surface,

• ...but is not deeper in the

shell where dynamo ac-

tion takes place.

• This dynamo requires

free-slip boundaries and

has a different mecha-

nism from the previous

models.

23– Finally...

• Other magnetic analyses have increased the payload of space

missions, for instance the discovery of liquid water oceans under

the surface of jovian satellites.

• Present numerical modelling has a large potential, especially with

the upcoming planetary magnetic observations.

• The knowledge of the Earth dynamo benefits from this of other

natural dynamos.

• Dynamo processes are intimely connected to surface and mantle

geodynamics.


