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Chapter 3: Nazaret Bello González, Julián Blanco Rodrı́guez, Nilda Oklay, Bruno
Sánchez-Andrade Nuno, Thorsten Stahn, Danica Tothova, Esa Villenius,
Jean-Baptiste Vincent

Chapter 4: Khalil Daiffallah, Kristian Hallgren, Emre Isik, Christian Koch, Cornelia
Martinecz, Martin Meling, Silvia Protopapa, Pedro Russo, Jean Santos,
Clementina Sasso, Sofi Spjuth, Julia Thalmann, Cecilia Tubiana, Lotfi
Yelles

Chapter 5: Christian Koch

For further information, additional material, and useful links you may visit the following
website: Helioseismology lecture

http://www.mps.mpg.de/seismo/helioseismology-lecture


Contents

1 Survey of helioseismology and asteroseismology aims and results 2

2 Observed properties of stars 3
2.1 Isolated spherical stars . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Factors influencing observed properties of stars . . . . . . . . . . 3
2.3 Radiation from the star . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Mass Ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Stellar radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Dynamical structure of stars 6
3.1 Hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Validity of this approximation . . . . . . . . . . . . . . . . . . . 6
3.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 The virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Another derivation . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Linear Stellar Oscillations 14
4.1 Eulerian and Lagrangian perturbations . . . . . . . . . . . . . . . 14

4.1.1 Equations of the fluid . . . . . . . . . . . . . . . . . . . 15
4.1.2 Equations of linear oscillations : . . . . . . . . . . . . . . 15

4.2 Eigenvalue problem of linear oscillations . . . . . . . . . . . . . . 16
4.2.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . 16
4.2.3 Orthogonality of eigenfunctions . . . . . . . . . . . . . . 18
4.2.4 Variational principle . . . . . . . . . . . . . . . . . . . . 19

4.3 Linear perturbation theory . . . . . . . . . . . . . . . . . . . . . 20
4.4 Asymptotic description of p-mode frequencies . . . . . . . . . . . 20

4.4.1 Duvall’s law . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 More rigorous analysis . . . . . . . . . . . . . . . . . . . 21

5 Inversion of p-mode frequencies 24
5.1 Abel inversion of Duvall’s law . . . . . . . . . . . . . . . . . . . 24
5.2 Regularized least-squares & optimally localized averages inversions 26

1



Chapter 1

Short survey of helioseismology and
asteroseismology aims and results

Here is a list of some topics in solar (and stellar) physics which may be investi-
gated with the tool of helioseismology:

• What is the mechanism of the solar cycle?

• Dynamo theory: How does motions in the sun generate the magnetic field
of the sun

• Large scale flows (e.g. meridional flows), convective flows

• The internal magnetic field of the sun

• Active regions: (detailed) structure, emergence, evolution

• Space weather

• Basic physics: neutrinos, G, micro physics (equation of state), etc.

For a more detailed overview about the aims of helio- and asteroseimology
as well as some of its results including some nice pictures and movies, have a
look at the Power Point Presentation “Introduction” on the website of the lecture
(http://www.mps.mpg.de/projects/seismo/Helioseismology.html).
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Chapter 2

Observed properties of stars

2.1 Isolated spherical stars
In this section we assume an isolated, non magnetic, non rotating star. In that
case it has a perfect spherical shape. If this star has a companion, forming a
binary system, or any other massive body around, this could create deformations,
and tidal forces, which we won’t take into consideration. We will also assume
that there is no interstellar medium in the surroundings, so that our line of sight
is unperturbed. The assumption of neglecting rotation and magnetic fiels means
neglecting flattening of the polar regions due to the centrifugal forces, and stresses
inside the star due to magnetic fields.

2.2 Factors influencing observed properties of stars
Many characteristic properties of a star (such as structure, evolution and lifetime)
are determined by its initial conditions, that is basically its initial mass, Ms, and
its initial chemical composition.
During its evolution, a star passes significant changes in some of its properties
(e.g. Radius, Luminosity, Temperature, rotational speed), so that the stellar age
becomes another important factor influencing the observed properties.
Finally, what we observe from a star, will be influenced by the distance between
the star and the observer and the interstellar medium that may be block or emit in
some spectral regions

2.3 Radiation from the star
The radiation which is emitted by a star can be analyzed quantitatively, as the
integrated flux over a given spectral region, or qualitatively studying the shape of
the spectral lines.
Since, usually, most of the light comes from the region where we almost have ther-
modynamic equilibrium, the energy distribution of the star can be approximated
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Figure 2.1: Black body spectra for different temperatures.

by a black body, which follows the Planck law:

Iν = Bν(Ts) =
2hν3

c2

[
exp

(
hν

kBTs

)
− 1

]−1

(2.1)

In the prior equation, h, c and kB denote, respectively, the Planck’s constant,
the speed of light and the Boltzmann constant. By considering a star as a black
body, one may describe the Intensity Iν of the emitted light of a star at a certain
frequency ν by a Planck function, Bν(Ts), which solely depends on the surface
temperature Ts. Figure 2.1 shows Intensity spectra for black bodies with different
temperatures.
In reality, the black body spectrum of star is superimposed by spectral lines from
photons with higher or lower energy than the ones of the black body background
approximation. Those photons come from regions where we might not have such
equilibrium, or a different temperature, leading to abortions or emission lines.
Those lines will be mostly seen as absorption lines, due to the temperature gradi-
ent. They not only reveal the chemical composition of the star, but may also be
used to measure stellar oscillations trough their periodic doppler shifts.

The Luminosity of a star is the total amount of energy radiated at any direction
per unit time (measured in W or J/s) and it is given by

Ls = 4πR2
sσT 4

s , (2.2)
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where Rs is the stellar radius and σ is the Stefan-Boltzmann constant. Since a star
is not strictly a black body, one cannot express the luminosity in terms of a surface
temperature. Therefore, one may introduce an effective Temperature, Teff, which
is the temperature of a black body which has the same luminosity as the star and
is defined according to the Stefan-Boltzmann law, F = σT 4

eff
. Thus, equation (2.2)

becomes
Ls = 4πR2

sσT 4
eff. (2.3)

2.4 Mass Ms

There are just few different ways to determine the mass of a star, of which a few
examples could be:

1. Apply Kepler’s law to binary systems, or for example in the case of the solar
system, the sun and planets.

2. With asteroseismology we have an independent method to determine stel-
lar masses even of single stars, using the best fit model that matches the
observations.

2.5 Stellar radius
Stellar radii may be measured

• by occultation of a star with an object without atmosphere, e.g. the moon,

• by direct imaging, until now only possible trough interferometry,

• by means of asteroseismology which provides the most precise radii mea-
surements.
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Chapter 3

Dynamical structure of stars

3.1 Hydrostatic equilibrium
Consider a thin spherical mass element with thickness δr and surface δs at a radius
r in the star. The gravitational force

FG =
G[ρ(r)δsδr]M(r)

r2 (3.1)

acts on the mass element towards the stellar center. This gravitational force has
to be compensated by the difference of pressure force acting acting at radii r and
r + δr:

[P(r + δr) − P(r)]δs = −FG (3.2)

Regarding that P(r + δr)− P(r) = ∂P
∂r δr, equation (3.2) finally becomes the hydro-

static equation describing the solar structure:

∂P
∂r

= −
Gρ(r)M(r)

r2 (3.3)

Note that in the equation above, ρ(r) donotes the local density at radius r while
M(r) denotes an integral measure of the mass from the center up to the radius r.

3.2 Validity of this approximation
In order to proof the validity of the hydrostatic equilibrium, we may write the
equation of motion (including only forces acting in radial direction) as

ρ

(
∂vr

∂t
+ vr∂rvr

)
= −

∂P
∂r

+ ρ
∂φ

∂r
, (3.4)

where the momentum of a mass element on left hand side of is generated by pres-
sure forces and the gravitational force on right hand side.
In general, the gravitational field inside the star can be described in terms of a
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gravitational potential φwhich is the solution of a Poisson equation (here in spher-
ical symmetry):

∇2φ =
1
r2∂r

(
r2∂φ

∂r

)
= −4πGρ (3.5)

Integration of equation (3.5) leads to an expression for ∂φ

∂r :∫ r

0
∂r′

(
r′2
∂φ

∂r′

)
dr′ = −

∫ r

0
4πGρr′2dr (3.6)

r2∂φ

∂r
= −GM(r) (3.7)

∂φ

∂r
=
−GM(r)

r2 = g(r) (3.8)

Thus, equation (3.4) becomes

ρ

(
∂vr

∂t
+ vr∂rvr

)
= −

∂P
∂r

+
ρGM(r)

r2 (3.9)

To proof the validity of the hydrostatic equilibrium, let us suppose

ρ
dvr

dt
= −ε

ρGM(r)
r2 , with: ε � 1 (3.10)

As the most simple approximation, we can say the time for a substantial collapse
of the star is given by the kinematic equation of the free fall in a gravitation field:

r = 1
2g(r)t2 = 1

2ε
GM(r)

r2 t2 (3.11)

⇒ t =

√
1
ε

2r3

GM(r) (3.12)

For the sun, we use r = R� and M(r) = M(R�) = M� and obtain a collapse time
of t = 2 · 103 · ε−1/2sec. Assuming a minimal solar age of t > 4.4 · 109yr (accord-
ing to the age of the oldest rocks on earth), one gets ε ∼ 10−28, showing that te
assumption of hydrostatic equilibrium is very good.

Finally, we can summarise the first two equations describing the inner structure of
a star:

1. Mass conservation:
dM(r)

dr
= 4πρ(r)r2 (3.13)

2. Hydrostatic equilibrium:

∂P
∂r

= −
Gρ(r)M(r)

r2 (3.14)
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3.3 Equation of state
With an assumption of a star is an ideal gas:

P = Pgas + Pradiation (3.15)

Pgas = nkT =
ρ(r)
m̄

kT (3.16)

Mean molecular weight: m̄ = µmH

Pgas = nkT =
ρ(r)
m

kT (3.17)

Pgas = ρ(r)
µmH

kT
(3.18)

(3.19)

Gas constant R = k/mH

Pgas = ρ(r)
µ

R
T Prad = 1/3aT 4 (3.20)

Equation of State:

P =
ρRT
µ

+
1
3

aT 4 (3.21)

3.4 The virial Theorem

−Ω = 3
∫ V

0
PdV (3.22)

Ω is the negative gravitational energy of the star; V volume of a sphere of
radius r

3
∫ V

0
PdV = 3[PV]s

c − 3
∫ s

c
VdP (3.23)

= −3
∫ s

c
VdP (3.24)

= 4π
∫ s

c

GM(r)r3ρ(r)
r2 dr (3.25)

3
∫ s

c
PdV =

∫ s

c

GM(r)
r

dM (3.26)

(3.27)

δΩ is the work required to bring δM from infinity to the sphere of radius r.

8



δΩ =

∫ r

∞

GM(r)δM
x2 dx = −

GM(r)δM
r

(3.28)

Ω = −

∫ s

c

GM(r)dM
r

(3.29)

−Ω =

∫ s

c

GM(r)dM
r

= 3
∫ s

c
PdV (3.30)

Theorem:

−Ω =

∫ s

c

GM(r)dM
r

>

∫ s

c

GM(r)dM
rs

(3.31)∫ s

c

GM(r)dM
rs

=
GM2

s

2rs
(3.32)

−Ω >
GM2

s

2rs
(3.33)

(3.34)

Internal energy per unit volume is u = 1
γ−1 P

γ is the ratio of specific heat: γ =
cp

cv

P = (γ − 1)U (3.35)

−Ω = 3
∫

(γ − 1)UdV = 3(γ − 1)U (3.36)

−Ω = 3(γ − 1)U (3.37)
(3.38)

The total energy of a star would be

E = Ω + U = (4 − 3γ)U (3.39)

With this equation we can see where the star is stable or unstable:
E < 0 stable→ γ > 4/3

E > 0 unstable→ γ < 4/3

For monoatomic gas, γ = 5/3

γ = 5/3→ Ω + U = −U (3.40)
γ + 2U = 0 (3.41)
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3.5 Another derivation
We can also derivate this theorem from Euler’s equation of fluid dynamics.

~̈r = −
1
ρ

−−−→
gradP + ~Fgrav (3.42)

Then we multiply by ~r and integrate on the whole mass M∫
M
~r.~̈rdm = −

∫
M

1
ρ
~r.
−−−→
gradPdm +

∫
M
~r. ~fgravdm (3.43)

We will now express separately the three components of this equation

(i)

∫
M
~r.~̈rdm =

∫
M

(
d
dt

(~r.~̇r) − ~̇r2
)

dm

=

∫
M

(
1
2

d2

dt2~r
2 − ~̇r2

)
dm

Here one can recognize the formulas of kinetic energy and momentum of in-
ertia defined by

I =

∫
M

r2dm

KE =
1
2

∫
M

ṙ2dm

Finally, ∫
M
~r.~̈rdm =

1
2

d2I
dt2 − 2KE (3.44)

(ii)

∫
M

1
ρ
~r.
−−−→
gradPdm =

∫
V
~r.
−−−→
gradPdV

=

∫
V

div(~rP)dV −
∫

V
Pdiv(~r)dV

=

∫
V

div(~rP)dV − 3
∫

V
PdV

=

∫
S

P~rdS − 3
∫

V
PdV

We assume P = 0 at the surface of the star, so finally
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∫
M

1
ρ
~r.
−−−→
gradPdm = −3

∫
V

PdV (3.45)

(iii) ∫
M
~r. ~fgravdm = Ω = Potential Energy of Gravitation (3.46)

At the end, we can now use 3.44, 3.45, 3.46 in 3.43, which brings us to another
expression of the virial theorem.

1
2

d2I
dt2 − 2KE = 3

∫
V

PdV + Ω (3.47)

1
2

Ï = 2KE + 3 (3γ − 1) U + Ω (3.48)

The gravitational energy of an isolated star is

−Ω =

∫
GM (r)

r
dM. (3.49)

If the structure of the star is homologous, fixed functions M
(

r
rs

)
and ρ

(
r
rs

)
can be

applied. In other words, the functional form remains the same when the size of a
star is scaled. Making the following change of variables

M (r) = Ms f1

(
r
rs

)
(3.50)

dM
dr

dr = dM =
Ms

rs
f ′1

(
r
rs

)
dr (3.51)

gives

−Ω =
GM2

s

rs
q, (3.52)

where q is the constant number

q =

∫ 1

0

f1 (x) f ′1 (x)
x

dx. (3.53)

Now

I =

∫
star

r2dM (3.54)

I = sMsr2
s , (3.55)
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where s is a constant.

rs = r0 + ε∆r (t) (3.56)

1
2

Ï = (3γ − 1) E + (4 − 3γ) Ω (3.57)

For a static case, when a star is in equilibrium, this becomes

0 = (3γ − 1) E + (4 − 3γ) Ω0. (3.58)

1
2

Ï =
1
2

sMs∂
2
t (r0 + ε∆r)2 (3.59)

=
1
2

sMs∂t

[
(r0 + ε∆r) 2ε∆̇r

]
(3.60)

=
1
2

sMs2r0ε∆̈r (3.61)

(3.62)

Ω = −q
GM2

s

rs
(3.63)

= −q
GM2

s

r0

(
1 + ε

∆r
r0

)−1

(3.64)

= Ω0 + q
GM2

s

r2
0

∆rε (3.65)

= Ω0

(
1 − ε

∆r
r0

)
(3.66)

⇒ sMr0ε∆̈r = (3γ − 4) Ω0 + (4 − 3γ) Ω0

(
1 − ε

∆r
r0

)
(3.67)

sMsr0∆̈r = − (4 − 3γ) Ω0
∆r
r0

(3.68)

Case γ > 4
3 , stable oscillations

∆̈r = C∆r, (3.69)

where C > 0 is a constant:

C = −
Ω0 (4 − 3γ)

sr2
0 Ms

. (3.70)

Case γ < 4
3

C = −
Ω0 (4 − 3γ)

Iq
. (3.71)
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Thus, ∆r = A exp iωt, where −ω2 = − (3γ − 4) −Ω0
I0

, where ω = 2π
T , T is the

pulsation period. Substituting ω and solving for T gives(
2π
T

)2

= (3γ − 4)
−Ω0

I0
(3.72)

T =
2π√

(3γ − 4)
(
−Ω0

I0

) (3.73)

T = 2π

√
sr3

s

(3γ − 4) qGMs
, (3.74)

where s and q are constant for all stars. It may be observed that the mean density is
proportional to Ms

r3
s

and the period to 1
√
ρ
. For the Sun the period of the fundamental

radial oscillation mode is of the magnitude of hours.
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Chapter 4

Linear Stellar Oscillations

4.1 Eulerian and Lagrangian perturbations
The choice of independant variables differentiates the Eulerian and Lagrangian
fluid descriptions. The position vector r and time t are the independent variables in
an Eulerian fluid and any perturbation of the quantity Q is writen as Q′ = Q′(r, t) .
This description is completly general since we suppose that the value of a variable
at any point is uncorrelated with the value at a neighboring point. In contraste, the
Lagrangian description divides a fluid into tiny parcels. The independent variables
are the time t and the displacement vector ξ = r − r0 which are associated with
parcels fluid, not points in space. The Lagrangian perturbation is denoted δQ(ξ, t).
In terms of time derivatives in the case of Eulerian description, we write:

∂/∂t ≡ (∂/∂t)r (4.1)

derivative at fixed r.

In the case of Lagrangian description, we can write :

D0/Dt = (∂/∂t)r + (v0 · ∇) (4.2)

derivative at fixed r0 and comoving with to the backround flow v0.

Velocity perturbation:
The displacement vector is defined as ξ = r − r0. The first order Lagrangian

variation of the vector v can writen as :

δv = v(r + ξ, t) − v0(r, t) = v(r, t) + (ξ · ∇)v − v0(r, t) (4.3)

we have also v(r, t) = v0(r, t)+v′(r, t) where v′(r, t) is the Eulerien perturbation
of the velocity. The equation 4.3 become :

δv = v′(r, t) + (ξ · ∇)v0 (4.4)
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From the definition of ξ we have also:

δv =
D0ξ

Dt
=
∂ξ

∂t
+ (v0 · ∇)ξ (4.5)

then we obtain :

v′ = δv − (ξ · ∇)v0 =
D0ξ

Dt
− (ξ · ∇)v0 (4.6)

4.1.1 Equations of the fluid
Mass conservation equation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.7)

Momentum equation:

ρDtv = −∇p − ρ∇φ (4.8)

where φ is the gravitational potential
Poisson equation:

4φ = 4πGρ (4.9)

where G is the constant of gravity
Energy equation:

ρT DtS = ρε − ∇ · F (4.10)

where S is the specific entropy, ρε is the internal energy density, F is the
energy flux and T is the temperature.

4.1.2 Equations of linear oscillations :
At the equilibrium state, we have ∂t = 0 and the partial derivative in space vanishes
also, we have also v0 = 0 , we can write the fluid equations in this case as :

0 = −∇p0 − ρ0∇φ0 (4.11)

4φ0 = 4πGρ0 (4.12)

0 = ρ0ε0 − ∇ · F0 (4.13)

Perturbed state: Now we perturbe the pressure, the potential of the gravity,
the density and the velocity with Eulerian perturbations, we replace all theses
quantities in the fluid equations. After the linearisation we obtain the equations of
linear oscillations:
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ρ0
∂2ξ

∂t2 = −∇p′ − ρ0∇φ
′ − ρ′∇φ0 (4.14)

∂t(ρ′ + ∇ · (ρ0ξ)) = 0 (4.15)

4φ′ = 4πGρ′ (4.16)

ρ0T0∂t(δS ) = (ρ0ε)′ − ∇ · F′ (4.17)

4.2 Eigenvalue problem of linear oscillations

4.2.1 Eigenvalue problem
The basic equations of linear stellar oscillations (see previous section), describe
linear adiabatic oscillations and can be solved for particular boundary conditions.
Of course, these boundary conditions are satisfied for a set of special values of the
frequency ω – the eingenvalues.

4.2.2 Boundary conditions
Sun center: As r → 0, c and ρ→ to a constant value, so one can write

g =
GMr

r2 ≈
4π
3

r3G
ρc

r2 → 0.

being ρc the value of the density at the Suns center. Furthermore, for the
Schwarzschild discriminant A:

A→ 0 and L2
l →

1
r2 . (4.18)

After this assumptions, the simplified eigenvalue problem appears as

d
dr

(
r2ξr

)
−

l(l + 1)
ω2

(
φ′ +

p′

ρ

)
' 0, (4.19)

1
ρ

dp′

dr
− ω2ξr +

dφ′

dr
' 0, (4.20)

d
dr

(
r2 dφ′

dr

)
− l(l + 1)φ′ ' 0. (4.21)
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Equating the different forms of the Poisson equation, one obtains

(
r

d
dr
− l

) (
r

d
dr

+ l + 1
)
φ′ ' 0. (4.22)

This form of the Poisson equation now has two solutions, which are

r
d
dr
− l = 0 → φ′ ∼ rl, (4.23)

r
d
dr

+ l + 1 = 0 → φ′ ∼ r−(l+1), (4.24)

where the latter is not a regular solution, since it goes to infinity for r → 0.
Thus, we have (corresponding to 4.23)

r
dφ′

dr
= lφ′, (4.25)

and, combining 4.19, 4.20, and 4.23, one obtains for the radial component
of the displacement

ξr '
1

ω2r2

(
p′

ρ
+ φ′

)
for r→ 0. (4.26)

Solar surface: At the solar surface r → R� the boundary conditions develop as
follows (Free surface boundary condition). From δp = 0:

p′ + ξ · ∇p = p′ − ρgξr = 0,
p′ = ρgξr, (4.27)

As a second surface boundary condition, which only lasts in the Cowling
approximation, we have ρ→ 0, resulting in

ξr =
ω2R�

g
ξh =

ω2R3
�

GM�
ξh = (ωτdyn)2ξh, (4.28)

where τdyn denotes the dynamical time scale.

Our problem is still degenerate in m, since we assumed not to have effects of
the magnetic field, rotation, and so on. This means, that if we evaluate the same
eigenfunctions for different m, we will obtain the same eigenvalues.
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4.2.3 Orthogonality of eigenfunctions
Now, the eigenvalue problem can be written as

L[~ξ] = ω2ρ~ξ, (4.29)

which is the vector form of it and where L denotes the linear, second-order
differential operator. The solution of the problem is of the form

L[~ξnlm] = ω2
nlm ρ ~ξnlm, (4.30)

i.e. that for each (l,m) one can find a number of solutions labeled with n. Then,
n gives the number of modes of ξr in the radial direction. Now, one searches
functions which satisfy the boundary conditions at the center and the surface of
the Sun, at the same time. One finds,

∫
dV~ξ∗ · L(~ξ′) =∫

dV
[
− ξ∗ · ∇(ρc2∇ · ξ′) − ξ∗ · ∇(∇ρ · ξ′) +

∇p · ξ∗

ρ
∇ · (ρξ′)

+ρξ∗ · ∇

[
G

∫
dV ′
∇′[ρ(r′)ξ′(r′)]
|r − r′|

] ]
. (4.31)

This is then simplified by the ’integration by parts’, obtaining

∫
dV

[
ρc2(∇ · ξ∗)(∇ · ξ′) + (∇ · ξ∗)(∇p · ξ′)

]
+

∫
dV

[
(∇p · ξ∗)(∇ · ξ′) +

(∇p · ξ∗)(∇ρ · ξ′)
ρ

]
− G

∫
dV

∫
dV ′
∇[ρ(r)ξ∗(r)]∇′[ρ(r′)ξ′(r)]

|r − r′|
. (4.32)

The main advantage of the form of 4.32 is that one can show now the invariant
behaviour of this equation. It also holds, if one swaps ξ and ξ′. Thus, it is

∫
dVξ∗ · L(ξ′) =

∫
dVξ′∗ · L(ξ) =

∫
dV[L(ξ)]∗ · ξ′, (4.33)

then L is self-adjoint. Furthermore, one obtains for (n, l,m), after using 4.29
the relation

ω2
n′l′m′

∫
dVξ∗nlm · ξn′l′m′ρ = ω∗2nlm

∫
dVξ∗nlm · ξn′l′m′ρ. (4.34)
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It can be shown that if (n, l,m) = (n′, l′,m′) then since the two integrals in 4.34
are equal:

ω2
n′l′m′ = ω∗2nlm, (4.35)

frequencies are real.
This means, that unless some modes are degenerate, a given mode corresponds

to a given frequency. Last, the orthogonality of the eigenvectors ~ξnlm is given by

∫
dVξnlm · ξn′l′m′ρ = δnn′δll′δmm′

∫
dV ||ξnlm||

2ρ. (4.36)

4.2.4 Variational principle
Note, that in the following the displacement vector will simply be denoted by writ-
ing ξ instead of ~ξ. To obtain a very good estimate of frequencies when one is not
able to solve the eigenvalue problem, one makes use of the variational principle,
which can be written as

∫
dVξ∗ · L(ξ) = ω2

∫
dV ||ξ||2ρ. (4.37)

Effects of change of the displacement vector are represented by the substitu-
tion ξ → ξ + ∆ξ. Now, one looks at the corresponding changes of the frequency
ω2 → ω2 + (∆ω)2 and checks if 4.37 holds,

∫
dV

[
∆ξ∗ · L(ξ) + ξ∗ · L(∆ξ)

]
=

(∆ω)2
∫

dV ||ξ||2ρ + ω2
∫

dV(ξ∗ · ∆ξ + ξ · ∆ξ∗)ρ, (4.38)

which represent the first-order changes that remain. Furthermore, since L is
self-adjoint:

(∆ω)2
∫

dV ||ξ||2ρ =∫
dV

[
∆ξ∗ · L(ξ) + (L(ξ∗))∗ · ∆ξ − ω2ρξ∗ · ∆ξ − ω2ρξ · ∆ξ∗

]
=

2<
∫

dV∆ξ∗ ·
[
L(ξ) − ω2ρξ

]
. (4.39)

This implies, that (∆ω)2 → 0, i.e. ω2 is stationary with respect to a change ∆ξ
in ξ. In other words, this means that
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(∆ω)2 = 0 (for an arbritrary ∆ξ) ⇐⇒ L(ξ) = ω2ρξ.

We show the implication⇐=.
This forms the basis of the so-called ’Rayleigh-Ritz formula’ which is

ω2 =

∫
dV(ξ + ∆ξ)∗ · L[ξ + ∆ξ]∫

dV ||ξ + ∆ξ||2ρ
+ o(|∆ξ|2). (4.40)

So, the important thing concerning the variational principle is, that if one
makes a small variation inside the system one is still able to get a good approxi-
mation of the frequency. In other words, if one assumes a small change ξ + ∆ξ in
ξ, one will still get the right ω.

4.3 Linear perturbation theory

4.4 Asymptotic description of p-mode frequencies

4.4.1 Duvall’s law
If the wavelength is smaller than the variations in the local medium, the accoustic-
wave dipersion relation takes in an important role:

ω2 = c2 | k |2= c2(k2
r + k2

h) = c2
(
k2

r +
l(l + 1)

r2

)
, (4.41)

where

kr =

[
ω2

c2 −
l(l + 1)

r2

]
. (4.42)

kr has to fit the standing wave condition. Further a surface- induced phase shift α
is introduced:∫ R

rt

krdr = (n + α)π, with
c(rt)

rt
=

ω

(l(l + 1))1/2 . (4.43)

This results in Duvall law (Duvall 1982; Nature 300, 242):

F(
ω

L
) =

∫ R

rt

(
1 −

L2c2

ω2r2

)1/2 dr
c

=
[n + α(ω)]π

ω
,

L = l +
1
2
. (4.44)

c is a function of r. Fig. 4.1 shows the results of Duvall’s law for a frequency
where α is taken as 1.5.
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4.4.2 More rigorous analysis
Gough generalized the Duvall’s law. It is completely given in Deubner & Gough,
1989 of an analysis by Lamb (1909). They assume:

• Cowling’s approximation,

• no derivatives of the gravitational acceleration, a quasiplane-parallel ap-
proximation, and

• allow thermosdynamic variations, including γ1.

They define:
X = c2ρ1/2∇ξ (4.45)

and retrieve:

d2X
dr2 +

X
c2

[
S 2

l

(
N2

ω2 − 1
)

+ ω2 − ω2
c

]
= 0, (4.46)

where

H = −

(
d(ln ρ)

dr

)−1

: density scale height,

ωc =
c2

4H2

(
1 − 2

dH
dr

)
: accoustic cut-off frequency.

On transforming eq. (4.46) and taking a factor of ω2 from the brakets, the equation
changes to:

d2X
dr2 = −

X
c2ω2

[
S 2

l

(
N2 − ω2

)
+ ω4 − ω2

cω
2
]
, (4.47)

the equation has 2 roots at (a2 −ω2) and (b2 −ω2) which can be retrieved through
standard algebra. On introducing the roots in eq. (4.47) the equation can be written
to:

d2X
dr2 = −

X
c2ω2 (ω2 − ω2

+)(ω2 − ω2
−), (4.48)

where ω+ is a modified Lamb frequency and ω− is a modified Bouyancy fre-
quency. Fig. 4.2 shows a frequency plotted vs. the normalized radius of the Sun.
The solid line shows the modified Lamb frequency for different degree l, while
the broken line the modified Bouyancy frequency for different degrees l shows.
Travelling waves have to have a frequency of ω ≥ ωc ' 5.3mHz. The condition
for a standing wave can be written as:

ω

∫ r2

r1

[
1 −

ω2
c

ω2 −
S 2

l

ω2

(
1 −

N2

ω2

)]1/2
dr
c
' π(n − 1/2). (4.49)

For the standing wave the factor N2

ω2 can be neglected. Then ω2
c

ω2 ' (n − 1/2).

21



Figure 4.1: Observed Duvall law where α is chosen to 1.5.
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Figure 4.2: The frequency is plotted vs. the normalized Solar radius. The frequencies of a
p-mode and the g-mode are inserted for comarison. Additionally the modified Lamb and
Bouyancy frequency are plotted for different degrees l.
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Chapter 5

Inversion of p-mode frequencies

First Abel inversion will be shown for Duvall’s law. Afterwards two methods will
be described how to solve singularities in the inversion matrix.

5.1 Abel inversion of Duvall’s law
Remembering eq. (4.49) with a surface phase shift α Duvall’s law can be written
to: ∫ r2

r1

(
1 −

L2c2

ω2r2

)1/2 dr
c

=
[n + α]π

ω
, (5.1)

where
L = l +

1
2
. (5.2)

On introducing $ = ω
L and a =

c(r)
r , eq. (5.1) can be transformed to:

F($) =

∫ R

rt

(
1 −

a2

$2

)1/2 dr
c
. (5.3)

F are the observations and a(r) has to be found. After a change of variables,
eq. (5.3) is:

F($) = −

∫ ω

as

(
ā−2 −$−2

)1/2 d(ln r)
dā

dā, (5.4)

where:
as = a(R⊙);

c(rt)
rt

= $ = at; r = rt. (5.5)

On using (5.5) eq. (5.4) gets to:

dF
d$

= −

∫ $

as

(
ā−2 −$−2

)1/2
$−3 d(ln r)

dā
dā. (5.6)
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This results in and will be solved in the following:∫ a

as

(
$−2 − ā−2

)1/2 dF
d$

d$

= −

∫ a

as

∫ $

as

(
$−2 − a−2

)−1/2 (
ā−2 −$−2

)−1/2
$−3 d(ln r)

dā
dād$

= −

∫ a

as

∫ a

ā

(
$−2 − a−2

)−1/2 (
ā−2 −$−2

)−1/2
$−3 d(ln r)

dā
d$dā

= − −

∫ a

as

∫ π
2

0

d(ln r)
dā

dθdā

= −
π

2

∫ a

as

d(ln r)
dā

dā

= −
π

2
ln

( r
R

)
. (5.7)

A change of integrations is used to get from line 2 to 3. Fig. 5.1 shows how the

Figure 5.1: Representation for changing the order of integration for getting from line 2 to
line 3.

orders of integration are changed. A changing of variables is used$ = a−2 sin2 θ+

ā−2 cos2 θ for transforming from line 3 to line 4. Finally r can be written to:

r = R exp
[
−

2
π

∫ a

as

(
$−2 − ā−2

)−1/2 dF
d$

d$
]
. (5.8)

where:
a =

c(r)
r
. (5.9)
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This gives r as a function of a (fig. 5.2) and hence implicity a =
c(r)

r as a function
of r and hence c as a function of r.

Figure 5.2: Representation for the relation a =
c(r)

r .

5.2 Regularized Least-Squares (RLS) and Optimally
Localized Averages (OLA) inversions

In helioseimology many of the inversion methods which are used are linear. Then
the solution is a linear function of the data. First the 1-D rotation law Ω(r) will be
discussed. Then a possibility for regularization of a singular matrix will be shown.

1-D rotation law ω(r)
Rotation raises the degeneracy of a global mode frequencies and introduces a

dependence on azimuthal order m. The dependence is particularly simple if a
rotation profile Ω(r) is considered depending only on the rasial coordinate:

ωnlm = ωnl0 + m
∫

Knl(r)Ω(r)dr. (5.10)

The kernels Knl(r) are different for different modes. dnl =
(ωnlm−ωnl0)

m are the data.
Then

dnl =

∫
Knl(r)Ω(r)dr + εnl, (5.11)

where εnl are noise in the data, each with a standard deviation σnl. The subscript i
is chosen for simplicity in place of ”nl”.
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Least-squares (LS) fitting
The idea of LS is to approximate the unknown function ω(r) in terms of a

chosen set of basis functions φk(r) : Ω(r) ≈ Ω̄(r) = Σxkφk(r). The coefficientsxk

have to be minimized:

Σi

di −
∫

KiΩ̄dr

σi

2

. (5.12)

This can be written as a matrix equation:

| Ax − b |2→ min. (5.13)

The solution of (5.13) is:
x =

(
AT A

)−1
AT b. (5.14)

Unfortunately, unless we choose a highly restrictive representation for Ω̄, the ma-
trix A is usually ill conditioned in helioseismic inversions and so the LS solution
x and hence Ω̄ also are dominated by data noise and thus useless.

In the following two methods for regularization the matrix A will be shown.

Regularized Least-Squares (RLS) fitting
We can get better-behaved solutions out of LS by adding a ”regularization term”

to the minimization, e.g. to minimize:

Σ

di −
∫

Ki ¯Omegadr

σi

2

= λ2
∫

Ω̄2dr, (5.15)

Σ

di −
∫

Ki ¯Omegadr

σi

2

= λ2
∫ (

d2Ω̄

dr2

)2

dr. (5.16)

where λ2 is a trade-off parameter. This can again be written as a matrix equation:

| Ax − b |2 +λ2 | Lx |2→ min. (5.17)

The solution is:
x =

(
AT A + λ2LT L

)−1
AT b. (5.18)

Optimally localized Averages (OLA) method
Since

di =

∫
Ki(r)Ω(r)dr + εi, i = 1, . . . ,M. (5.19)

The idea is to try to find a linear combination of the Kernels for each radial loca-
tion r0 that it is localiyed there:

K̄(r, r0) = ΣM
i=1ci(r0)Ki(r). (5.20)
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If it is successful, then the same linear combination of the data is a localized
average of the rotation rate near r = r0:

Ω̄(r0) ≡ Σcidi =

∫
(ΣciKi) Ωdr + Σciεi (5.21)

=

∫
K̄Ωdr + Σci”svarepsiloni. (5.22)

In helioseismology the Substractive OLA (SOLA) is mainly used. There the coef-
ficients ci are so chosen to minimize:∫ R

0

(
K̄ − T

)2
+ tan θΣσ2

i c2
i . (5.23)

E.g. T = A exp
(
−(r−r0)2

δ2

)
. This penalizes K for deviating from the target function

T . θ and δ are trade-off parameters.
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