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Summary

Thanks to helioseismology we know the internal rotation of the Sun as a function of radius
and latitude. The presence of a shear at the base of the solar convection zone is thought
to play a key role in the generation of magnetic fields. So far however, the internal rota-
tion profiles of stars other than the Sun are unknown, and placing constraints on models
of rotation and magnetic dynamos is therefore difficult. The NASA Kepler mission has
provided high-quality photometric data that can be used to study the rotation of stars with
two different techniques; asteroseismology and surface activity.

First, we developed an automated method for measuring the rotation of stars using
surface variability. This was initially applied to ∼12 000 stars across the main sequence in
the Kepler field, providing robust estimates of the surface rotation rates and the associated
errors. We compared these measurements to spectroscopic v sin i values and found good
agreement for F-,G- and K-type stars.

Second, we performed an asteroseismic analysis of six Sun-like stars, where we were
able to measure the rotational splitting as a function of frequency in the p-mode enve-
lope. The measured splittings were all consistent with a constant value, indicating little
differential rotation.

Third, we compared the asteroseismic rotation rates of five Sun-like stars to their
surface rotation rates. We found that the values were in good agreement, indicating little
differential rotation between the regions where the two methods are most sensitive.

Finally, we discuss how the surface rotation rates may be used as a prior on the seismic
envelope rotation rate, allowing us to find upper limits on the radial differential rotation
in Sun-like stars. We find that the rotation rates of the radiative interior and convective
envelope likely do not differ by more than ∼50%.
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Zusammenfassung

Dank Helioseismologie kennen wir die innere Rotation der Sonne als Funktion des Ra-
dius und des Breitengrades. Es wird angenommen, dass die Anwesenheit einer Scherung
an der Basis der Konvektionszone der Sonne eine wichtige Rolle bei der Erzeugung von
Magnetfeldern spielt. Bisher allerdings sind die inneren Rotationsprofile von anderen
Sternen als der Sonne unbekannt. Daher ist es schwierig, Modelle der Rotation und
des magnetischen Dynamos einzugrenzen. Die Kepler Mission der NASA hat qualita-
tiv hochwertige photometrische Daten bereitgestellt, die benutzt werden können um die
Rotation von Sternen mit zwei verschiedenen Methoden zu erforschen: Asteroseismolo-
gie und Oberflächenaktivität.

Zuerst haben wir eine automatische Methode entwickelt um die Rotation von Sternen
über ihre Oberflächenvariabilität zu messen. Diese Methode wurde zunächst auf ∼12 000
Sterne entlang der Hauptreihe im Kepler Feld angewandt. Dies ermöglichte zuverläs-
sige Abschätzungen der Oberflächenrotationen und der dazugehörigen Fehler. Wir haben
diese Messungen mit durch Spektroskopie bestimmten v sin i Werten verglichen und dabei
gute übereinstimmungen für Sterne der Spektraltypen F,G und K gefunden.

Als zweites haben wir sechs sonnenähnliche Sternen mit Asteroseismologie analysiert.
Hier konnten wir die Aufspaltung der Moden aufgrund der Rotation als Funktion der Fre-
quenz für p-Moden messen. Die gemessenen Aufspaltungen waren alle konsistent mit
einem konstanten Wert, was auf nur geringe differentielle Rotation hindeutet.

Als drittes haben wir für fünf sonnenähnliche Sterne die mittels Asteroseismologie
bestimmten Rotationsraten mit den Oberflächenrotationsraten verglichen. Wir haben her-
ausgefunden, dass die Werte gut übereinstimmen, was auf eine nur geringe differentielle
Rotation zwischen den Bereichen hindeutet, wo die beiden Methoden am empfindlichsten
sind.

Schlies̈lich diskutieren wir, wie die Oberflächenrotationsraten als erste Näherung für
die mit Asteroseismologie bestimmten Rotationsraten der konvektiven Hülle verwendet
werden können. Dies ermöglicht es, eine obere Grenze für die radiale differentielle Rota-
tion in sonnenähnlichen Sternen zu finden. Unseren Ergebnissen zur Folge unterscheiden
sich die Rotationsraten der Strahlungszone und der konvektiven Hülle wahrscheinlich um
nicht mehr als ∼50% voneinander.
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1 Introduction

1.1 Evolution of stellar rotation rates

Stars rotate, but the transport of angular momentum (AM) has been a long standing prob-
lem for the study of rotation in stars. The rotation rate of a star can vary on scales of
0.1 − 100 days over the course of their evolution, but the open questions are still how
and why it changes. This section is a brief overview of the rotation of stars on: the pre-
main-sequence (PMS); the main sequence (MS), focusing on the detailed picture of solar
rotation; and finally on what is currently known about radial and latitudinal differential
rotation in other stars. This last section also covers rotation on the post-main-sequence as
these are some of the few stars for which we have clear signs of radial differential rotation.

1.1.1 Rotation on the pre-main-sequence

The rotation of a star on the PMS sets the stage for all further evolution of its rotation
rate on the MS and beyond. The exact nature however, of the AM evolution during these
very early phases of stellar evolution is still poorly understood. This is in part because
the only available indicator of the AM of a star is its surface rotation rate. For PMS
stars this is measured by either spectroscopic v sin i (Vogel and Kuhi 1981, Hartmann
et al. 1986, see also Appendix C) or observation of photometric variability from surface
features (Rydgren and Vrba 1983, Herbst et al. 1987, see also Sect. 1.2.3). Many PMS
stars appear to have strong surface magnetic fields, observed as spots on the stellar surface
which can cover up to ∼ 30% of the star. They are generally considered fast rotators,
making such observations relatively easy compared to older stars like the Sun. However,
during the very early stages of the PMS evolution the star is shrouded in gas and dust,
making direct probes of rotation very difficult (Herbst et al. 2007). The circumstellar
material will eventually either be accreted onto the star, expelled by stellar winds and
photon pressure, or form a disk, at which point the central star becomes visible.

Figure 1.1 shows the general trends of rotation as a function of age for a selection of
open clusters stars available in the literature. The sequence starts with the very young
Orion Nebula Cluster on the PMS, moving toward the zero-age-main sequence (ZAMS),
and then onto the MS where the Sun is located. The ZAMS age for stars with masses in
the range 0.5 − 1.5M⊙ is shown as the shaded region. For the majority of cluster stars
(cool, low-mass stars) this point is reached somewhere between 100− 200 Myr after they
initially reach hydrostatic quasi-equilibrium at the base of the Hayashi track.

During the PMS a star undergoes gravitational contraction, its moment of inertia de-
creases, and so from basic principles one expects the rotation rate to increase. From Fig.
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1 Introduction

Figure 1.1: A compilation of rotation periods from open clusters of various ages, stretch-
ing from the 1 Myr Orion Nebula Cluster to the 2.5 Gyr NGC6811 cluster in the Kepler

field. The medians of the distributions are shown in black, and the zero-age-main se-
quence ages for the mass range 0.5 − 1.5M⊙ are indicated by the shaded region. A list of
clusters and their ages is shown in Table A.1.

1.1 we see that there is indeed a trend of increasing rotation rates from the early PMS
toward the region where the majority of stars hit the ZAMS. However, simple conserva-
tion of AM would lead to stars rotating with . 1day periods at the ZAMS (Bouvier et al.
2014), but as shown by Fig. 1.1 the average rotation rate is much slower than this. To
achieve such a wide distribution of rotation periods the spin-up rate of the star must be
reduced by some additional mechanisms of AM transport. The timescales at which these
mechanisms are important and their exact details are poorly understood (see review by
Bouvier et al. 2014), but they can be broadly attributed to three different phenomena:

Disk interaction: AM transport away from the star is thought to be able to take place
via the so-called ‘disk-locking’ mechanism (Camenzind 1990, Koenigl 1991, Long et al.
2005). In such a scenario the star’s magnetic field is coupled to that of its surrounding
proto-planetary disk, whereby AM is transferred outward into the disk. An uncoupled
disk would tend toward Keplerian motion which is slower than the stellar surface, and
so establishing a coupling leads to the inner disk material being spun-up. Conversely
this leads to a reduction of the spin-up already being experienced by the star from simple
contraction. This picture has been supported by an observed correlation between the
presence of accretion disk indicators (e.g., near infrared excess, Herbst et al. 2007) in the
slowly rotating population, while the fast rotators show less evidence for circumstellar
material.

12



1.1 Evolution of stellar rotation rates

Stellar winds: Stars like the Sun exhibit a stellar wind which consists of charged parti-
cles that are thermally and centrifugally liberated from their coronae (Parker 1958). These
particles are initially locked to the magnetic field lines out to a radius where the field
strength becomes less than the kinetic gas pressure (Weber and Davis 1967, Mestel 1968).
At this point (the Alfvén radius) the stellar wind material is released, taking with it AM
from the stellar surface and corona. Stars on the PMS are also magnetically active, and so
are expected to have stellar winds.

The torque by a stellar wind must be proportional to the rotation rate of the star and the
mass-loss rate through a sphere of radius equivalent to the Alfvén radius. Many models
currently exist that attempt to put this torque in terms of the fundamental stellar properties:
mass M, radius R and rotation rate Ω of the star (Kawaler 1988, Reiners et al. 2012, Matt
et al. 2012), so that they may be related to observations of rotation at various stages of
stellar evolution. This is complicated however, by the fact that the magnetic field strength
and configurations that determine the Alfvén radius are poorly understood. Furthermore,
mass-loss rate estimates are very variable, spanning several orders of magnitude for stars
of similar spectral type (Wood 2004), making a comparison to model predictions difficult.

Internal redistribution of angular momentum: Little is known about the internal ro-
tation profile of stars on the Hayashi track. Barnes et al. (2005) showed that cool, fully
convective MS stars have very weak surface differential rotation. Stars on the Hayashi
track have similar characteristics, and so may also show the same behavior. In addition,
the convective motions inside the star are able to transport AM radially throughout the
star. An angular momentum drain at the surface from, e.g., a stellar wind, which would
otherwise lead to differential rotation, would be felt by the stellar interior on the relatively
short convective time scales.

Once the star reaches the base of the Hayashi track it will start to develop a radiative
interior, at which point convection can no longer transport AM in the stellar core. This
prompts the so-called double-zone model, where the radiative core and convective enve-
lope rotate as solid bodies, but at different rates. This is a rough approximation to the solar
rotation profile, where the convective envelope on average rotates slightly slower than the
core (discussed further in 1.1.3).

Complete decoupling would mean that an AM drain at the surface only has to spin
down the envelope, while complete coupling (solid-body rotation) would mean the AM
drain has to spin down the entire star. Varying degrees of coupling strength between the
two zones could then potentially explain some of the scatter in the rotation rates seen near
the ZAMS. However it is unclear what mechanism facilitates such an exchange of AM.
Potential explanations range from magnetic interaction (Maeder and Meynet 2004), to
transport through internal gravity waves (see, e.g., Marques et al. 2013).

1.1.2 Main-sequence rotation

Once a solar-mass star arrives on the MS it will have initiated hydrogen burning in the
core, and will also have established a radiative interior with a thick convective envelope.
The gravitational collapse will have ceased and the structure of the star will not change
remarkably for the remainder of the MS lifetime (Kippenhahn et al. 2012). This means
that the spin-up seen on the PMS will stop. However, the magnetically driven stellar wind

13



1 Introduction

Figure 1.2: Rotation periods as a function of (B-V) color index for the Pleiades (Hartman
et al. 2010) and M48 (Barnes et al. 2015) clusters.

which has been present during the majority of the PMS lifetime will keep draining AM
from the star, causing the surface rotation rate to slowly decrease. At the ZAMS the stars
are broadly distributed around periods . 15 days, but Fig. 1.1 shows that the rotation
rates begin to converge onto a single decay law only a few hundred Myr after this.

This convergence toward a main rotation sequence can also be seen in Fig. 1.2, which
shows the rotation periods as a function of (B-V) color index1 of the Pleiades and M48
clusters. Here, the younger Pleiades cluster has a large scatter in rotation periods, but
with a sequence of stars grouped at long periods. The M48 cluster is much older and pre-
dominantly consists of stars that have converged onto the main rotation sequence. These
same features are seen in other clusters of various ages (Barnes 2003). The cluster mem-
bers move toward a single well-defined main rotation sequence as the cluster ages. The
more massive stars appear to reach the main rotation sequence before their less mas-
sive counterparts. Barnes (2003, and subsequent publications) suggested the existence of
two distinct timescales that are relevant for the stellar spin-down of stars near and past
the ZAMS. The initial spin-down takes place over a few tens of Myr, increasing with a
decrease in the mass of the star. Once the star reaches the main rotation sequence the
relevant timescale for the spin-down increases to several Gyr. This could imply two dif-
ferent mechanisms that dominate the early spin-down of a star (Barnes 2010), although
the exact nature of such mechanisms are unknown.

Another clear feature in Fig. 1.2 is that the average rotation periods generally decrease
when moving toward lower (B − V) values, corresponding to hotter, more massive stars.

1A proxy for mass, increasing toward lower (B-V) values

14



1.1 Evolution of stellar rotation rates

For (B − V) . 0.5 the rotation periods decrease dramatically2. Past this narrow range in
mass, known as the ‘Kraft break’ (Kraft 1970) the stars appear to lose their ability to spin
down. This coincides with a thinning of the surface convection zone, which eventually
disappears completely. The presence of a convective envelope has been thought to be one
of the main drivers for generating strong magnetic fields (see, e.g., Schatzman 1962), and
thus a magnetically driven stellar wind.

1.1.2.1 Solar rotation

Our knowledge of the solar rotation profile is the most detailed picture of rotation that we
have for any star. Some of the first observations of solar rotation with sunspots include
those by Johannes Fabricius, Galileo Galilei, and, Christopher Scheiner in the 17th cen-
tury. Since then the study of solar rotation has advanced considerably, using photometric
imaging, spectroscopy and spectropolarimetry.

The methods used to study the rotation of the Sun can be broadly divided into three
groups, which are also in some variation applicable to stars. These are: spectroscopic
radial velocity measurements, tracing of surface features across the solar disk, and helio-
seismology. The two former methods are predominantly sensitive to the surface, while
helioseismology probes rotation in the deep solar interior. Notable observatories dedi-
cated to helioseismology include the space based missions SoHO (Domingo et al. 1995),
SDO (Pesnell et al. 2012), and the ground based observation networks GONG (Harvey
et al. 1988) and BiSON (Chaplin et al. 1996).

Surface rotation: The first observations of surface differential rotation on the Sun were
performed by measuring the rotation of sunspots as they cross the solar surface. The
rotation rate of spots near the equator was seen as being faster than those at higher lati-
tudes. Today, the variation of the solar rotation with latitude is typically represented by
Ω(θ)/2π = A+B sin2 θ+C sin4 θ (Howard and Harvey 1970), where θ is the solar latitude,
A is the equatorial rotation rate and B and C define the rate of decrease with latitude.
There have been multiple studies of rotation (reviewed by Beck 2000). Interestingly, each
method returns different values of the Ω(θ) coefficients, e.g., the equatorial rotation rate
A = 453.75 nHz (25.51 days) as measured by spectroscopy and A = 473.01 nHz (24.47
days) as measured by surface tracers (Snodgrass and Ulrich 1990). This might reflect the
sensitivity to rotation of each method varying with depth in the Sun. The spectroscopic
methods are primarily sensitivity to depths at which the surface plasma becomes optically
thick at a given wavelength (the photosphere), while the surface tracers may be rooted
deeper inside the Sun, and so feel the rotation at this depth. The surface tracer rotation
rates appear to match those observed via helioseismology at depths immediately below
the photosphere (Beck 2000, see Fig. 8), but may well be a weighted average of a broader
range of depths.

Differential rotation in the convection zone: Helioseismology is the only tool avail-
able for probing the rotation of the solar interior. Briefly, helioseismology studies the
acoustic oscillations of modes that propagate through the solar interior. These waves are

2Note that the lack of points in this region of Fig. 1.2 is a selection bias in the chosen catalogs.
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1 Introduction

Figure 1.3: The 2D solar rotation profile derived from helioseismic inversions (data
adapted from Larson and Schou (2015)). The profile is symmetric around the equator
and does not vary with longitude. The measurements are insensitive to the high polar
latitudes (> 75◦) and the deep core (below r ≈ 0.3R⊙), the values shown here should
therefore not be taken as representative of the true rotation rates in these regions. The
dashed line denotes the base of the convection zone.

perturbed by rotation, and so reveal the internal rotation rates at various radii and latitudes.
The principles and concepts of this method are largely identical to those of asteroseismol-
ogy3, which will be discussed in further detail in Sect. 1.2.4.

Figure 1.3 shows the 2D solar rotation profile (Schou et al. 1998), which is the result
of helioseismic inversion of the perturbations to the acoustic oscillations. The convection
zone, located between the surface and the dashed curve, shows a strong latitudinal vari-
ation similar to that seen by surface measurements. A relatively thin shear layer exists
near the surface which spans only a few percent of the outer solar radius. In this layer the
rotation rate increases inward for latitudes below ∼ 70◦, and above this latitude the shear
initially becomes very weak and then changes sign at higher latitudes (see, e.g., Barekat
et al. 2014).

Below the near-surface shear layer the rotation rate becomes approximately constant
with radius, having only a small radial gradient. The latitudinal gradient similar to that of
the surface is maintained throughout a large part of the convection zone. Just below the
convection zone lies a stronger shear layer. This layer, called the tachocline, is believed

3Traditionally helioseismology only refers to seismology on the Sun, whereas asteroseismology refers
to seismology of other stars.

16



1.1 Evolution of stellar rotation rates

to be one of the main drivers of the solar magnetic dynamo (see Sect. 1.3.3). Basu and
Antia (2003) find that the tachocline is located at a radius of 0.69R⊙ and has a width of
0.02R⊙, but speculate that it might move slightly outward in radius and become some-
what narrower at higher latitudes. It should be noted that the inversion technique used to
produce Fig. 1.3 introduces a degree of smoothing to sharp features (Beck 2000), so the
transition to solid body rotation may be sharper than it appears. As is seen in Fig. 1.3
the scale of the tachocline shear varies with latitude. Below ∼ 35◦ latitude the rotation
of the envelope is marginally faster than that of the interior, whereas for higher latitudes
the rotation gradient in the shear layer changes sign, producing a slower rotating pole.
However, the average rotation rate in the convective envelope is about 50nHz slower than
in the radiative interior.

Rotation in the deep interior: Beneath the tachocline the rotation profile transitions
from the differentially rotating envelope, into the solidly rotating radiative interior. The
helioseismic measurements indicate no gradients in the rotation profile down to ∼ 0.3R⊙,
at which point the measurement uncertainties increase dramatically. At this point the
acoustic oscillations used to measure rotation in the convection zone have lost much of
their sensitivity to rotation, hence the large uncertainties in the rotation rate. However, the
solid-body rotation profile is thought to continue down to the solar core (Howe 2009).

Driving differential rotation: Much work is currently being done to understand the
exact mechanisms for establishing and maintaining the differential rotation profile seen in
the Sun (see the review by Miesch 2005, and references therein). The angular momentum
is assumed to be redistributed in four ways: meridional circulation which is a circula-
tory flow in the radial and latitudinal direction, convective motion in the radial direction,
magnetic forces, and viscous diffusion (see Eq. 9-16 in Thompson et al. 2003). The
location and role of each of these terms however is still uncertain. While the magnetic
and viscous diffusion terms are likely small in the convection zone, not much is known
about the conditions in or near the tachocline where the magnetic term may become more
important.

1.1.3 Differential rotation in other stars

Naturally, since the Sun rotates differentially one must expect that other stars can do the
same. In the past the majority of work done on stellar rotation has focused simply on
measuring the mean surface rotation rate, and furthermore assuming solid-body rotation.
However, recently a few studies have managed to find evidence for differential rotation.
The methods involved typically have very stringent measurement criteria, and so no single
star has a complete description of both its radial and latitudinal rotation profile. In the
following these two components are therefore reviewed separately.

1.1.3.1 Latitudinal differential rotation

The majority of work done on stellar differential rotation has focused on the surface ro-
tation rates. Early work by Donati and Collier Cameron (1997) imaged surface features
crossing the stellar disk using variations in spectral lines (called Doppler imaging). The
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1 Introduction

presence of spots on the stellar surface creates perturbations to the spectroscopic line pro-
files depending on the latitude and longitude of the spot. Doppler imaging can be used
to gauge the rotation rate at various latitudes, and subsequently estimate the amount of
differential rotation (see the studies reviewed by Barnes et al. 2005). However, Collier
Cameron (2007) notes that the errors associated with this method are often difficult to
quantify, and in some cases are underestimated.

Another method for estimating the surface differential rotation is through direct mod-
eling of the effect of rotation of spots across the stellar disk on the integrated light curves
(see, e.g., Fröhlich et al. 2009, Walkowicz and Basri 2013, and also Sect. 1.2.3.1). How-
ever, this method assumes that all variability is caused by well-defined surfaces spots, and
typically relies on several degenerate parameters such as the spot area and temperature
contrast with the photosphere, or the latitude of the spot and the stellar inclination angle.

Reiners and Schmitt (2002) developed a Fourier-transform based method for estimat-
ing the latitudinal shear solely by the spectroscopic line shape. They calculated the de-
viation of the line profiles from that of a rigidly rotating surface, and use this to estimate
the scale of the radial shear. The benefit of this method is that it does not require long
observing campaigns or that the star shows any spot variability. However, this method is
only applicable to fast rotators (& 10km/s) where the lines are broadened enough to be
well resolved.

Using the above mentioned Fourier method and collating the results of Barnes et al.
(2005), Reiners (2006) confirmed that the surface latitudinal shear increases with increas-
ing temperature, as predicted by stellar mean field modelling (Küker and Rüdiger 2005).
However, they also note that even this combined sample is biased toward the young,
rapidly rotating, magnetically active cool stars, and the hot rapidly rotating F-stars; specif-
ically lacking stars of similar age, rotation rate and spectral type as the Sun.

1.1.3.2 Radial differential rotation

The internal rotation profile of stars can only be probed by seismology. This was first done
on massive B-type stars by Aerts et al. (2003), Pamyatnykh et al. (2004) and Briquet et al.
(2007). More recently, using data from the NASA Kepler mission (Borucki et al. 2010),
Beck et al. (2012), Mosser et al. (2012) and Deheuvels et al. (2012) were able to measure
the core rotation of several red giant stars, at various stages along the red giant branch.
At the end of the MS lifetime of a Sun-like star, the convection zone expands while the
radiative core contracts. In principle this would lead to a rapidly rotating core and a slowly
rotating envelope. These studies showed however, that while the core rotation rate of red
giants is still much faster than the envelope, it is approximately an order of magnitude
slower than what would be anticipated by current models for rotation evolution on the
post-main-sequence (Eggenberger et al. 2012, Cantiello et al. 2014).

The picture of internal rotation has lately been further complicated by other studies.
Kurtz et al. (2014) found a pulsating F-type star which showed evidence of an envelope
rotating faster than interior, in contrast to what we see in the Sun. Moreover, Triana et al.
(2015) measured the core rotation of a young B-type star where a counter-rotating core
and envelope configuration appear the most likely scenario.

The number of stars that have been studied with asteroseismology currently number
in the thousands, but only a handful have measurements of internal rotation. Furthermore,
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these are all more evolved or more massive than the Sun (see the review by Aerts 2015),
which makes constraints of stellar rotation models along the MS very difficult.

1.2 Measuring stellar rotation with Kepler

There are several ways to measure the rotation of a star. This section is an introduction
to the data and methods used in the following chapters. These are: the use of photo-
metric variability caused by surface features, and measuring the effects of rotation on the
oscillation frequencies with asteroseismology.

1.2.1 Kepler photometry

The Kepler mission was designed to measure the occurrence rate of earth like planets
around Sun-like stars4 (Borucki et al. 1997). This requires observation of the same star
field5 over several years, since an Earth-like planet would by definition have a 1 year
orbital period. The nominal mission spanned approximately 4 years from 2009 to 2013,
at which point two of the on-board reaction wheels had failed, rendering the spacecraft
unable to maintain high precision pointing on the Kepler field.

The observations from the Kepler satellite are photometric measurements in a wave-
length band from approximately 4000−9000Å. The observing campaign was divided into
3 month segments (quarters), with a short break for spacecraft reorientation in between.
During each quarter a star was assigned a pixel mask, where the flux values of each pixel
are stored at each cadence. The exposure and readout time for the CCDs is 6.54 seconds.
The spacecraft observed in two modes: a short cadence mode (SC) where the exposures
were binned up to ∼ 58 seconds, and a long cadence (LC) mode binned to ∼29.45 min-
utes. Approximately 150, 000 stars were observed in LC mode during each quarter, while
only up to 512 stars were observed in SC mode because of data constraints. Each quar-
ter the target list was modified according to scientific requirements, eventually leading to
approximately 200, 000 stars being observed.

Kepler targets are labeled with KIC (Kepler Input Catalog), followed by a nine digit
number string. In principle this number string refers exclusively to a single star, how-
ever, in some cases close binary systems or background stars may also be captured in the
photometric aperture (Appourchaux et al. 2015).

The main data product of the mission consists of simple aperture photometry time se-
ries, where the apertures within the pixel masks are automatically computed to optimize
chances of detecting exoplanet transits. An example of a light curve from KIC006106415 is
shown in Fig. 1.4. The data from Kepler is publicly available6 in two formats: the uncor-
rected simple aperture photometry, and the automatically corrected PDC_MAP/msMAP
photometry (see Stumpe et al. 2012, Smith et al. 2012, for details and discussion on the
correction pipeline, as well as Appendix B). In the following work we predominantly used
the corrected photometry, since many now well-known systematic effects are removed. In
chapter 2 we used the LC data for all the available stars in the Kepler catalog, while in

4Sometimes denoted the η-Earth parameter
5Centered on α = 19h22m40s δ = +44◦30′00”, covering part of the Cygnus constellation.
6https://archive.stsci.edu/kepler/
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Figure 1.4: Short cadence light curve from KIC006116048 over the duration of the nom-
inal Kepler mission.

chapters 3 and 4 we used both the LC and SC data for six hand-picked stars. See table 4.1
for the characteristic parameters of these stars.

1.2.2 Photometric time series analysis

In the following work the methods for measuring rotation are based on asteroseismology
and periodic variability in stellar light curves. Both of these are in turn based on treating
the frequency content of the time series by computing its power spectrum. It is therefore
appropriate to first discuss the general properties of time series analysis and the way in
which a power spectrum is constructed.

The minimum observation time T required to identify a periodicity is its period P;
or conversely one can only completely determine periods when P ≤ T . Similarly the
Nyquist criterion specifies the shortest period that can be correctly identified given a cer-
tain sampling. Attempting to reconstruct a sine wave from a set of samples at intervals
∆t ≪ P will result in many samples per period. Reducing the sampling to 2∆t = P, how-
ever, provides only two samples per period, at which point it no longer becomes possible
to define the original sine wave by the sampling points, i.e., one would be sampling at the
same phase of each successive oscillation, making the measurements indistinguishable
from a series of constant values.

In frequency this corresponds to having a range of physically meaningful frequencies
from ν0 = 0 to νNyquist = 1/(2∆t), with a resolution of 1/T .

1.2.2.1 The Lomb-Scargle periodogram

The primary tool for time series analysis used in the following work is the Lomb-Scargle
(LS) method for spectral analysis (Lomb 1976, Scargle 1982). The LS method functions
much like a discrete Fourier transform in that it allows one to construct a spectrum of
the frequency content of a time series. The variant of the LS method used here is that
of Frandsen et al. (1995) which is based on χ2 minimization, where for a time series
consisting of data D at times t the model consists of a sine wave m = A sin 2πνt + δ. The
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Figure 1.5: Spectral window function of the time series from KIC006116048. For a
perfect window function this should be a function proportional to sin2(ν)/ν2 (or sinc2ν).
The most pronounced deviations from a sinc2 function are the side-lobes at ±174µHz and
±566µHz indicated in black. The former is an artifact of the reaction wheel heating cycle,
and the latter is the frequency of the long cadence sampling. This is likely caused by
the on-board electronics (Christiansen et al. 2013). Because of their scale relative to the
central peak they are deemed inconsequential.

details of the derivations and calculation of the power spectrum are shown in Kjeldsen
(1992).

In the case that D is a regularly sampled time series (i.e., ∆t is fixed) the above power
spectrum becomes equivalent to that computed by using the discrete Fourier transform, or
the more commonly used fast Fourier transform (FFT). The FFT is generally preferable
because of its speed and easy implementation, but requires equidistant sampling of the
time series. In real-world scenarios where observations may be interrupted or delayed
because of, say, clouds, technical failures, or sleepy astronomers, the sampling rate will
naturally vary. The Kepler data used here are almost equidistant, but a small change in the
cadence times is apparent over the course of the mission lifetime, making the LS method
the preferred means of computing the power spectrum.

Gaps in the time series also impact the shape of the power spectrum. The effect of
randomly missing cadences is to simply decrease the signal-to-noise ratio (S/N). Periodic
gaps however are more troublesome in that they produce alias peaks surrounding the
true periodicity. These peaks are separated from the frequency of the real variability by
the frequency of the gaps. This has important implications for multi-night ground-based
observing campaigns, since they will not be able to observe periods of ∼ 1day periods
(11.57µHz), or easily distinguish multiple periods with this separation. The effect of gaps
can be estimated by the spectral window function, which corresponds to the spectrum of
a sine wave given the sampling rate of the time series. The window function for the SC
time series of KIC006106415 is shown in Fig 1.5.

One last notable complication when studying non-sinusoidal variability like starspots
is the presence of harmonics in the power spectrum. The LS method assumes the signal
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Figure 1.6: Top: Section of a ∼ 1450 day time series from KIC010963065, showing the
variability from surface features as the long period oscillation. Bottom: Lomb-Scargle
periodogram of the time series, showing the rotation period as the primary peak at ∼ 12
days and a harmonic at ∼ 6 days.

shape is that of a sinusoid, and so it cannot perfectly fit non-sinusoidal variability. Non-
sinusoidal signals will therefore show multiple peaks in the power spectrum at harmonic
frequencies of the true rotation period. In the Kepler data this is an issue when dealing
with the corrected time series, since long periods tend to be strongly reduced by the PDC
pipeline. Harmonic peaks (at shorter periods) may then appear to be the dominant period.

1.2.3 Measuring rotation from surface variability

Tracing the movement of spots and other surface features remains one of the simplest and
also oldest methods for studying stellar rotation. The idea is simply that as a star rotates,
any features fixed to the stellar surface will rotate along with the star, thus periodically
dimming or brightening the star slightly as it passes in and out of view. If the period of
this variability can be measured the stellar rotation rate is then known.

On the Sun the most prominent visible features that may be used to measure rotation
are sunspots. These consist of localized regions of strong magnetic fields in the solar
photosphere. The magnetic pressure suppresses convective motions and thus the total
outward energy transport, making that local region appear cooler and darker compared to
the rest of the photosphere (e.g. Rempel and Schlichenmaier 2011).

Other stars however, only appear as point sources, and variability can in principle not
automatically be attributed to active regions. Examples of variability that may appear
similar to spot variability are: long period pulsations in hot stars like β Cepheid variables
and slowly pulsating B stars (see e.g. Aerts et al. 2010, Chapter 2.), or local changes of
surface opacities in hot stars (Wraight et al. 2012). These types of variability are however
only prevalent in hot stars that do not have surface convection zones. Cool, MS stars

22



1.2 Measuring stellar rotation with Kepler

do not have pulsations on timescales similar to the rotation periods, and are not usually
expected to show variability than can appear similar to that from active regions.

Figure 1.6 shows a section of the light curve (top) from KIC010963065, where the
variability from the surface features is very clear, but the mean period is not particularly
evident because of the lifetime of the variability. Surface features appear randomly in
latitude and time, first growing and then decaying with some characteristic timescale. To
measure a reliable rotation period from surface variability the lifetime of what causes the
variability must be on the order of a few rotation periods or more. On the Sun the spot
lifetimes are usually less than a single rotation period, and the rotation period is therefore
not evident from the integrated light curves. The power spectrum of KIC010963065 in
the lower panel of Fig. 1.6 clearly shows the mean rotation period, where the width of the
peak is in part caused by evolution of the signal.

1.2.3.1 Measuring differential rotation with surface variability

Measuring the surface differential rotation of a star from integrated light is straightfor-
ward provided the surface features are very persistent. If two or more surface features
appear on the star, either simultaneously or at different times, one can in principle mea-
sure two or more rotation periods. The difference between the rotation periods then gives
the degree of surface shear between the latitudes at which the spots are located. However,
this distance in latitude is usually an unknown quantity, making it difficult to estimate the
total shear across surface of the star.

In the power spectrum surface differential rotation would produce several closely
spaced peaks, which may appear as a single broadened peak. However, this same ef-
fect may appear if the average lifetime of the surface features is short, i.e., a localized
signal in the time series produces a wide peak in Fourier space. This is also illustrated
in the bottom frame of Fig. 1.6, where the power at the rotation period is spread over
an interval of ∼ 1 day. Obviously this complicates the detection of differential rotation.
The hare-and-hound study by Aigrain et al. (2015) compared several different methods of
analyzing simulated light-curves designed to mimic Kepler data. They found that none of
the investigated methods (adaptations of those by Reinhold and Reiners 2013, McQuillan
et al. 2014, García et al. 2014, Lanza et al. 2014) could accurately distinguish the evo-
lution of the surface features from the surface differential rotation. This means that any
broadening of the peaks in the power spectrum must be assumed to be some average of
the signal lifetime and differential rotation.

1.2.4 Measuring rotation from asteroseismology

Asteroseismology is to date the only means we have of peering into stellar interiors. This
has been done with great success in the Sun, where it is used to study everything from
convective motions and magnetic fields near the surface to ionization regions and rotation
in the deep interior. Because of its proximity the solar surface can be spatially resolved,
showing millions of oscillation modes, providing an extremely detailed picture of the
solar interior. Other stars however are only point sources, and so we only see the disk-
integrated light. This dramatically reduces the number of visible modes.
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The oscillation pattern on the surface of a star can be decomposed into a sum of
spherical harmonic functions, where each oscillation is defined by an angular degree l

and the azimuthal order m, as well as an additional number for the radial order n. The
radial order defines the number of nodal points of the oscillation in the radial direction,
while l and m give the nodal lines in the latitudinal and azimuthal directions.

In a Sun-like star the pulsations are stochastically damped harmonic oscillations,
where the driving and damping mechanism is the convective motion in the outer enve-
lope. For these modes the restoring force is the local gas pressure and so they are typ-
ically denoted as p-modes or acoustic modes. These are distinguished from the modes
excited in the deep stellar interior, called g-modes, where the restoring force is gravity.
The amplitude of the g-modes are strongly damped in a convectively unstable medium,
and so they are not typically visible in Sun-like stars, i.e., they never reach the surface.
There is currently no clear evidence for g-mode pulsations in the Sun.

Figure 1.7 shows an oscillation spectrum of KIC006116048. The p-modes appear in a
regularly spaced pattern of different radial orders. The left inset shows a zoom on a set of
modes with (n, l = 2), (n+ 1, l = 0), (n, l = 3), (n, l = 1). For l > 0 the peaks are multiplets
of 2l + 1 azimuthal orders.

Modes with |m| > 0 are traveling waves that move around the star in prograde and ret-
rograde directions. When the star rotates the frequencies of these modes become Doppler
shifted. The frequencies of these modes are therefore perturbed, or ‘split’, from that of the
m = 0 mode by an amount proportional to the rotation rate of the star. For the particular
case shown in Fig. 1.7 the rotational splitting is only very slight, and so the multiplets
only appear as broadened peaks as seen in the right inset. The rotational splitting can be
measured by fitting a model to the oscillation spectrum, thereby revealing the rotation of
the star.

Modes with degree l > 3 experience strong cancellation when viewed in integrated
light; as one part of the stellar surface moves outward another corresponding part moves
inward, giving almost a net zero change in the emitted light. While the few visible modes
are still enough to obtain a large amount of information about the stellar structure and
evolutionary state, it makes discerning differential rotation difficult.

1.2.4.1 Measuring differential rotation with asteroseismology

As was seen in Fig. 1.3 the rotation rate inside a star may vary with both radius and
latitude. The oscillation modes in principle feel all of the interior of the star, but with
varying degrees of sensitivity in both radius and latitude. The frequency of a given mode
νnlm in the oscillation spectrum can be written as

νnlm = νnl + m

π
∫

0

R
∫

0

Knlm (θ, r)Ω (θ, r) drdθ, (1.1)

where νnl is the mean frequency of the multiplet7, and Ω (θ, r) is the rotation profile
of the star. Knlm (θ, r) is the rotation sensitivity kernel which is computed from the stellar
structure model by

7Often assumed to be the frequency of the m = 0 mode
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Figure 1.7: Power spectrum of KIC006116048 smoothed with a 0.1µHz Gaussian kernel,
centered at the p-mode envelope. The Gaussian shape of the mode heights is evident, with
the height of the different angular degrees modulated by the respective visibilities. The
frequency of maximum oscillation power is denoted by νmax, and is typically estimated
by fitting a Gaussian to the envelope. The left inset shows a zoom on a set of p-modes,
illustrating the relative positions of modes with (n, l = 2), (n+1, l = 0), (n, l = 3), (n, l = 1).
The right inset shows a zoom on an l = 1 multiplet where the splitting is more apparent,
with a model shown in red for clarity.

Knlm (θ, r) = I−1
nl















(

ξ2
r − 2ξrξh

)

P2 + ξ2
h













(

dP

dθ

)2

+
2m

sin2 θ
P2 − 2P

dP

dθ

cos θ
sin θ



























ρr2 sin θ,

(1.2)
where ξr ≡ ξr (r) and ξh ≡ ξh (r) are the radial and horizontal displacements of the os-
cillations, ρ ≡ ρ (r) is the mass density, and P ≡ Pm

l
(cos θ) is the associated Legendre

polynomial of order m and degree l. The mode inertia Inl is given by

Inlm =
2

2l + 1
(l + |m|)!
(l − |m|)!

∫ R

0

[

ξ2
r + l (l + 1) ξ2

h

]

ρr2dr. (1.3)

Figure 1.8 shows the rotation sensitivity kernels for the modes of a single radial order
that are visible in a solar-like oscillator. Knowing the mode frequencies and computing
Knlm (θ, r) would in principle allow one to invert for the two dimensional rotation profile
of the star. However, the relatively low visibility of the l = 3 modes limits the majority of
latitudinal sensitivity to a region of ∼ 40 degrees in latitude around the equator, and the
radial sensitivity drops off very quickly when moving toward the core.

Because of this insensitivity the rotation profiles of a Sun-like star are often simply
assumed to be constant Ω (θ, r) = Ω = const. Equation 1.1 then only contains integrals
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Figure 1.8: Rotation sensitivity kernels Knlm (θ, r) for the modes of a single radial order
that are typically visible in Kepler observations of Sun-like stars. The kernels have no
azimuthal variation and are symmetric around the equator (abscissa). The decrease in
sensitivity with radius is largely similar for all the different modes. The latitudinal sen-
sitivity differs most noticeably for the l = 3 modes, but given their relatively low S/N

compared to the l = 1 and l = 2 modes, the average sensitivity is primarily focused
around the equator.

over the Knlm. For a Sun-like star where the observed modes are of radial order n ≈ 15
and above, the integrals over the kernels are approximately equal to unity. Therefore, for
a slowly rotating Sun-like star we may make the approximation that

νnlm ≈ νnl + m
Ω

2π
= νnl + mδν, (1.4)

where Ω/2π is equivalent to the rotational splitting which is often denoted by δν. In most
studies this is what is used when fitting oscillation spectra in order to measure the mean
rotation of stars (Bazot et al. 2007, Appourchaux et al. 2008, Gizon et al. 2013, Lund et al.
2014a, Davies et al. 2015).

1.2.4.2 Peakbagging

The process of extracting the rotational splitting is often called peakbagging8. In essence
peakbagging is simply fitting a model to the oscillation power spectrum.

8The etymology of the term is unknown but likely connected to the mountaineering pursuit of counting
the number of climbed or ’bagged’ peaks. The term is often falsely credited to Dr. J. Schou who, despite
being an avid mountaineer, denies having conceived of the term, but has merely proliferated it.
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In the limit of averaging over an infinite number of noise realizations, the peaks in the
power spectrum tend toward Lorentzian profiles (Anderson et al. 1990). This is typically
known as the limit spectrum. The objective of peakbagging is then to find the set of
parameters that best approximate the limit spectrum.

A fit to the spectrum would in principle include three parameters per Lorenztian pro-
file, namely the mode frequency, height, and width, all of which are in principle dependent
on n, l, and m. In Kepler data the typical number of observed radial orders is ∼ 5 − 10,
with angular degrees potentially up to l = 3 and for each of those there are 2l+1 azimuthal
orders. Already, the dimensionality if the parameter space is approaching ∼ 100, and so
without some form of parameterization, attempting to fit the spectrum precisely becomes
very difficult and time consuming. The benefit of using a parameterization for a particular
set of parameters is that one utilizes information from the entire spectrum to constrain the
low S/N parts of the fit. On the other hand this also means that all the relevant parameters
become correlated, making interpretation of the errors more difficult.

Mode frequency: The parameterization of the mode frequencies has already been par-
tially covered above. Using a single splitting for all the modes in the spectrum removes
the necessity of fitting for the individual m-components of a multiplet, drastically reduc-
ing number of fitting parameters. This only leaves the central m = 0 frequencies as free
parameters.

In Sun-like stars the separation between modes of the same degree l and consecutive
radial orders n varies smoothly with frequency. Stahn (2010) explored using this in order
to parameterize the central mode frequencies (m = 0) in terms of a low order polyno-
mial. For low S/N this method is very effective for getting robust estimates of the mode
frequencies. For high S/N stars like those studied in chapters 3 and 4 however, such a
parameterization scheme is unnecessary. Moreover, parameterizing the mode frequencies
imposes a ‘model’ on the spectrum; one that potentially does not allow for higher order
variation in the mode frequencies. An example of these are the so-called acoustic glitches
which arise from sharp structure changes in the star such as the HII ionization zone and
the transition from the convection zone to the radiative interior (see, e.g., Mazumdar et al.
2014). These features often appear as periodic modulations of the mode frequencies with
amplitudes on the order of 0.1 − 1µHz, and so may not be adequately captured by fitting
a simple polynomial.

Mode height: The maximum power of a peak in the power spectrum is a combination
of many different factors, but can in a broad sense be thought of in terms of the scales
involved with the characterizing mode numbers n, l and m. Over the frequency range
spanned by multiple radial orders, the mode amplitudes A describe the overall power of
the peaks and is only dependent on the mode frequency νnlm. This is typically seen as a
Gaussian variation of the peak power with frequency, with a maximum at a frequency νmax

(see Fig 1.7). This Gaussian-like shape is sometimes simply called the p-mode envelope.
At frequencies much lower than νmax the excitation mechanism is not efficient enough to
produce visible modes; while at frequencies higher than νmax the damping of the modes
increases strongly. The signal from a strongly damped mode has a short lifetime, corre-
sponding to a broad profile in the power spectrum, leading to lower S/N ratios of these
modes.
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Secondly there is the visibility Vl of the mode, which decreases with increasing l

because of the partial cancellation as described briefly above. The visibility is typically
assumed to be a constant value, calculated based on an assumed limb-darkening law and
the spectral response function of the observing instrument. The visibility of a particular
l is often expressed relative to the visibility of the l = 0 mode, i.e., Vl=1/Vl=0 ∼ 1.5,
Vl=2/Vl=0 ∼ 0.5 etc., rapidly decreasing for higher l. Given the Gaussian-like shape of
the p-mode envelope and the ratios of the visibilities, it is possible to parameterize the
mode heights in terms of a single Gaussian fit to, e.g., the l = 0 modes (Stahn 2010).
Again this was not deemed necessary for the stars studied in the later chapters given the
exceptionally high S/N ratios.

The final effect on the peak power is the geometric modulation Elm (i), which describes
the visibility of the individual m-components of a given multiplet due to the viewing angle
of the observer, and is given by Gizon and Solanki (2003) as

Elm (i) =
(l − m)!
(l + m)!

[

P
|m|

l (cos i)
]2
. (1.5)

Importantly this gives us the ability to measure the angle of inclination i of the stellar
rotation axis, a parameter which, prior to the wide-spread application of asteroseismology,
would at best be poorly constrained and often completely unknown.

All in all the peak power may be written as

Pnlm =
2A2

nlm
Vl

πΓnlm

Elm (i) (1.6)

where Γ is the full width at half maximum of the Lorentzian profile (see below). In
the following work the visibility and mode amplitude are not parameters of interest, and
together with Γ are therefore lumped into a single parameter S nlm, so that Eq. 1.6 becomes
Pnlm = S nlmElm (i).

Mode width: The mode width Γ is the final parameter needed to describe the Lorentzian.
In general the width of a peak in the power spectrum is determined by the duration of the
signal in the time series. This can be limited by either the length of the time series or
the lifetime of the physical process producing the signal. The Kepler data spans approx-
imately four years, while the typical mode lifetime in a Sun-like star is on the order of a
few days. The width of the peaks in the power spectrum is therefore dominated by the
mode lifetime.

The mode lifetime decreases with increasing frequency with a shallow local minimum
near νmax. This variation is approximately smooth and can therefore by parameterized in
terms of a low order polynomial. Figure 1.9 shows the line widths (black) of the solar
l = 0 modes as a function of frequency. A low order polynomial (red) is fit to the line
widths. The choice of polynomial order is not motivated by any physical quantity, but
rather chosen such that it represents the mode widths well. The polynomial is centered
around νmax in order to minimize correlation between the polynomial coefficients and thus
the mode widths themselves. For a slow rotator the rotational splittings are often on the
order of or smaller than the line widths at frequencies higher than νmax. This makes it
difficult to distinguish the two if only a single mode is analyzed. In the following chapters
we therefore opt to use a polynomial parameterization to represent the line widths.
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Figure 1.9: Linewidths of the solar l = 0 modes (black) as a function of frequency, as
observed by the Michelson Doppler Imager (J. Schou priv. com.). The points may be fit
using a low order polynomial in frequency (red), to obtain a parameterized model of the
linewidth as function of frequency.

Background noise: Observations of stellar flux contain a wide range of variability and
depending on the purpose of the analysis, different parts of the spectrum may be consid-
ered noise. For peakbagging one typically defines noise as anything that interferes with
the fitting of the oscillation peaks. The noise spectrum consists of three components: the
frequency independent (white) photon noise; one frequency dependent component from
brightness variations caused by granulation; and another frequency dependent term stem-
ming from long-term variability such as activity or instrumental effects. Fig. 1.10 shows a
spectrum of KIC006116048 in black, where a model for the background is shown in solid
red and the individual background terms are shown in dashed red.

In the limit of large numbers of incident photons on the CCD the shot noise in the time
series is distributed according to a Gaussian. This appears as a frequency independent
level of noise in the power spectrum, and is typically modeled simply by a constant.
The significance of the white noise relative to the oscillation modes can be mitigated by
observing brighter targets or with long observation periods at high cadence.

At frequencies immediately below the p-mode envelope the granulation noise begins
to dominate. This is caused by the granulation pattern on the stellar surface, which in
turn is caused by convection cells reaching the photosphere. The auto-covariance of the
granulation signal can be closely approximated by an exponentially decaying function
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Figure 1.10: The smoothed power spectrum of KIC006116048 shown in black. The
background model is shown in solid red, with the individual components of the model in
dashed red.

with an e-folding time of τ, which leads to a Lorentzian shape in the power spectrum with
a width of 2πτ (Harvey 1985). This Lorentzian is centered around ν = 0, and its integral
in frequency is proportional to the brightness variations in the time series caused by the
granulation.

The last noise term at low frequencies stems from various sources. Like the gran-
ulation signal this is typically also modeled by a Lorentzian profile centered on ν = 0,
however the characteristic timescale is much longer, on the order of the rotation period of
the star or more. This noise term is therefore sometimes attributed to activity on the stellar
surface, but may also contain the signatures of super-granulation (Vázquez Ramió et al.
2002). A significant component however, is likely also uncorrected instrumental noise,
which has multiple characteristic frequencies.

The total background noise can be modeled by

B (ν) =
2

∑

k=1

Akτk

1 + (2πντk)
αk
+W (1.7)

where W is the white noise and the sum is over the frequency dependent Lorentzian-like
noise terms, with power Ak and characteristic timescale τk. The slopes αk of the power
decay with frequency is often simply set to α1 = α2 = 2, as for Lorentzian profiles.
However, there is currently some speculation that the slope of the profiles transitions to
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a steeper slope, i.e. α > 2 at high frequencies (Kallinger et al. 2010, Karoff et al. 2013,
Kallinger et al. 2014). For the present work however, we have simply let α be a free
parameter, which typically produces a values of α ≈ 2.

Maximum likelihood estimation: The noise in the power spectrum is distributed ac-
cording to χ2 distribution with 2 degrees of freedom with a mean value equivalent to the
limit spectrum (Abramowitz and Stegun 1972).

From the previous sections the complete model spectrum can be constructed by

M(θ, ν) =
∑

n

3
∑

l=0

l
∑

m=−l

S nlElm (i)

1 + (2/Γnlm)2 (ν − νnlm)2
+

2
∑

k=1

Akτk

1 + (2πντk)
αk
+W, (1.8)

where θ = (νnlm,Γnlm, S nl, i, Ak, τk,W) denotes the fitting parameters.
The probability that the power at a frequency ν j takes a particular value P j is given as

(Woodard 1984, Duvall and Harvey 1986, Appourchaux 2003)

f j

(

P j

)

=
1

M(θ, ν j)
exp

(

−
P j

M(θ, ν j)

)

. (1.9)

This allows us to calculate the probability of observing the power spectrum, given a
particular model M(θ, ν). The objective is then to find the set of parameters θ with the
highest probability of explaining the observed power spectrum.

This is done by maximizing the likelihood L given as the joint probability of Eq. 1.9
for all frequency bins ν j, and for a particular model M(θ, ν j). Typically the logarithm of
the likelihood L is computed for better numerical stability, so that one must maximize

ln L (θ) = ln
N

∏

j

f j

(

P j

)

= −

N
∑

j

ln M
(

θ, ν j

)

+
P j

M
(

θ, ν j

) . (1.10)

It should be noted that this is not strictly correct if there are gaps in the time series
since the frequency bins in the spectrum become correlated. The model spectrum should
in principle be convolved with the spectral window function, after which the likelihood
may be calculated. Stahn (2010) showed that at a high duty cycle this effect becomes
minimal, and considering the duty cycle of the Kepler data (∼ 91%) this correction was
deemed unnecessary and time consuming in the computation of the joint probability.

Priors: Equation 1.10 easily lends itself to the application of prior information about
the probability density function (PDF) of a given parameter. Provided the functional form
of the PDF or an approximation of this is known it can be added to Eq. 1.10.

A prior biases one or more parameters toward a part of parameter space where one
expects the true value of the parameter to lie. Obviously one should construct the prior
carefully since it may incorrectly bias the relevant parameter, but may also skew correlated
parameters. For very low S/N data the PDF of the biased parameter will tend toward the
prior. On the other hand, for very high S/N the prior becomes almost meaningless if the
data suggest something different.
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One obvious example of a prior is that of a uniform PDF, which is constant in some
specified interval, and 0 everywhere else. This is sometimes called an ignorance prior,
since it does not yield any information except by placing a boundary on the parameters.

Examples of priors relevant for peakbagging in asteroseismology are explored in
Handberg and Campante (2011). These include: uniform priors on the frequencies, which
may be used to avoid overlap between two closely spaced peaks such as the closely spaced
l = 0 mode and l = 2 multiplet; a PDF which is uniform in logarithmic amplitude, which
is typically used for scale parameters that span several orders of magnitude.

Lastly there is also the parameterizations that have been discussed above. These also
act as priors, since they impose some functional form of the parameters based on some
prior knowledge of their behavior.

Markov chain Monte Carlo sampling: To maximize ln L a suitable optimization al-
gorithm must be chosen. The choice of algorithm is often motivated by the computation
time of ln L, as it may be necessary to explore a large section of parameter space and thus
evaluate the likelihood many times. The aim is to find the global maximum in as few
steps as possible. Such methods include the down-hill simplex method (Nelder and Mead
1965), gradient ascent/descent method, Powell’s method (Powell 1964) and many more.
However, such algorithms suffer from the possibility of getting stuck in a local maximum.

Alternatively one can randomly or pseudo-randomly sample the parameter space. This
is the basis for Markov Chain Monte Carlo sampling. There are many different sampling
techniques (see e.g. Metropolis et al. 1953, Hastings 1970, Geman and Geman 1984),
however we opt to use the recently developed affine invariant sampling which tends to
perform faster than other MCMC algorithms. The details of this sampler are described by
Goodman and Weare (2010) and Foreman-Mackey et al. (2013). This method functions
by invoking an ensemble of samplers, or ‘walkers’. Each new position for a walker is
a linear combination of its current position and that of another randomly chosen walker
in the ensemble. This move in parameter space is then stretched by a randomly chosen
factor. The only tuning parameters in this method are the number of walkers and the
distribution from which the stretch factor is drawn. Both of these only impact the time it
takes for the walkers to converge on the posterior distribution, and do not influence the
result. This algorithm has been incorporated into the MCMC sampler package known as
EMCEE9 for Python, which is used extensively in the following work.

The motivation for using this particular sampler is that because of the randomly chosen
‘stretch move’, which ensures that there is always some probability that the walkers will
move out of a local maximum that they might have gotten stuck in. It is also easily
implemented into the peakbagging process in a parallelized way, which is important given
the size of the parameter space that must be sampled. The sampler yields robust estimates
of the most likely fit solution, as well as estimates of the associated errors for even strongly
correlated parameters in a high dimensionality parameter space. The down-side is that the
sampler needs to run for an exceedingly long time in order to find the global maximum.
The total run-time is the product of the time to evaluate ln L, the number of walkers and
the number of steps that they have to take to converge, which usually equates to several
days.

9http://dan.iel.fm/emcee/current/
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Figure 1.11: The positions of the walkers at each step in the chain are represented by
contours containing the 95 (light shaded) and 68 (dark shaded) percentiles of the walker
distribution, along each axis. The median of the distribution is shown in solid color. The
top left frame shows the mean subtracted frequency of a mode in the oscillation spectrum
of KIC006106415, along with the corresponding amplitude of the mode. The bottom
frame shows the distribution of likelihoods in a similar fashion. Note that − ln L is shown
on a logarithmic scale for clarity.

The majority of the samples taken early in the run, known as the ‘burn-in’ phase, are
discarded since they represent very low likelihood locations in parameter space, and so
are not meaningful when describing the posterior distribution. Once the walkers have
converged on the global maximum their location in parameter space will be a good repre-
sentation of the posterior distribution. The mode of the marginalized posterior distribution
of a given parameter represents the best-fit value. Often the median and the 16th and 84th
percentiles of the marginalized posterior are used as representative values. In the case of a
Gaussian posterior these values would represent the mean and the 1σ confidence interval.

It can be difficult to estimate when the MCMC chains have converged. Several metrics
and methods exist that attempt to quantify convergence (reviewed by Cowles and Carlin
1996). However, it is often most instructive to simply look at the walker positions as a
function of step number (called the trace). The top two frames in Fig. 1.11 show the
traces of two parameters of a peakbagging run of KIC006106415. The density of walkers
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is represented by the contour regions, with the median location of the walkers shown in
solid color. After an initial period of wandering through parameter space the walkers
settle into a localized region and stay there, indicating that this is the global maximum.

Similarly, one can also estimate convergence by the likelihood of each walker position
as a function of step through parameter space. This is shown in the bottom panel of Fig.
1.11. The likelihood should go asymptotically toward the global maximum. Once the
change over time becomes approximately zero the chains are likely burnt in.

1.3 Applications of rotation measurements

The measurements of rotation have applications mainly in three areas of astrophysics
which are briefly discussed in the following section. These include the study of how
rotation evolves over time, which in turn may be applied to using rotation as an age
estimator when other methods are not applicable. Rotation also influences the mixing of
elements inside stars, which affects their nuclear burning rates and is particularly relevant
for the hot, massive stars that tend to be fast rotators. For stars with solar-like magnetic
activity, differential rotation is thought to play a major role in the generation of global
magnetic fields through the stellar dynamo.

1.3.1 Gyrochronology

In Fig. 1.1 we saw that the median rotation rate of clusters past the ZAMS steadily de-
creases. This was also visible in Fig. 1.2 where the main rotation sequence of M48
is located at longer periods than that of the Pleiades. Skumanich (1972) initially mea-
sured this spin-down over time through observations of the Pleiades and Hyades clusters,
and the Ursa Major group. The rotation rates of the clusters were found to decrease as
Ω ∝ A−1/2, where A is the age of the star. Based on a relation between the magnetic field
strength and the stellar rotation rates by Mestel (1984), Kawaler (1988) determined that
this was consistent with a spin-down caused by the wind driven mass-loss. Furthermore,
Fig. 1.2 also showed that the rotation period of the star on the main rotation sequence is
a function of mass. This suggests that the rotation period and mass of a star can be used
as a means of estimating its age, often called ‘gyrochronology’. Stars that are known
to be coeval with nearby stars, such as other cluster members, can be dated quite pre-
cisely through isochrone fitting in a color-magnitude diagram. Field stars on the other
hand do not typically have companion objects that can be used as references. Moreover,
on the MS their fundamental properties, e.g., mass, temperature, luminosity, radius etc.
hardly change. Any observable parameters that measure these quantities therefore will
not change remarkably either, making age estimates of a single star extremely difficult10.
Relative to the structural properties of the star the rotation rate changes dramatically. A
relation between the mass, rotation period, and age would therefore be a particularly use-
ful tool for determining the age of a field star. The rotation period and color index of the

10Only recently through the use of asteroseismology, has it become possible to precisely determine the
age of a star. This technique requires very high quality data however, and is also not applicable to very
active stars.
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Figure 1.12: The period-mass-age plane (Eq. 1.11) for the relation by Barnes (2003).
In this study solar values and those from several young open clusters were used as a
calibrators.

star are very easily measurable, and so through these two quantities it would be possible
to determine the stellar age.

Typically the gyrochronology relation takes the form of an empirically determined
power law (Barnes 2003, 2007, Mamajek and Hillenbrand 2008, Angus et al. 2015)

P = Ana ((B − V)0 − c)b , (1.11)

where P is the mean rotation period of the star, A is the stellar age, and (B − V)0 is the
extinction corrected B-V color index acting as a proxy for the stellar mass. The remaining
variables n, a, and b are calibration constants. Figure 1.12 shows this relation using
the constants derived by Barnes (2007), which were obtained by fitting to the age and
rotation rates of the Sun and several young cluster stars. Finding the precise value of
these calibration constants has however proven to be difficult and a subject of much debate
(Karoff et al. 2013, Metcalfe et al. 2014, García et al. 2014, see the above references as
well as). It should be stressed, that this relation is purely empirical, and so the form of the
relation and the calibration constants are not physically motivated.

Cluster stars have so far been the favored means of calibrating these relations because
of their precise age measurements. Along with color photometry and rotation period
measurements, the above relation may be calibrated. Unfortunately the majority of clus-
ter ages are only a few hundreds of Myr, and so are poor calibrators for stars of similar age
to the Sun. The oldest cluster that has been used so far for this calibration is NGC6819
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(Meibom et al. 2015), which is only ∼ 2.5Gyr. Moreover, the applicability of such a sim-
ple relation for evolved MS stars has recently been called into question (van Saders et al.
2016, see also Sect. 4.5). Using independent measures of stellar age from asteroseis-
mology, these stars appear to rotate too fast, compared to what is predicted by a simple
spin-down law like Eq. 1.11.

1.3.2 Impact of rotation on stellar evolution

Rotation affects the structure of a star and therefore its evolution. The effect is first and
foremost to introduce a centripetal force term into the equation of hydrostatic equilibrium.
For slowly rotating stars like the Sun this is typically neglected (Maeder and Meynet
2000). The effect of rotation can be gauged by the ratio of the centripetal acceleration and
the gravitational acceleration; for the Sun this ratio is on the order of 10−5, whereas for
the larger, more massive and much faster rotating star Vega this ratio is on the order 0.5.

For these massive, fast rotating stars the effects of rotation become visible primarily
through the so-called gravity-darkening. By the von Zeipel theorem (von Zeipel 1924) the
local radiative flux throughout a star is proportional to the local effective gravity. Because
of the centripetal acceleration the local gravity at the equator must be lower than at the
poles, and so the radiative flux is higher at the poles than at the equator.

For a massive star the gravity-darkening has two main effects. First it induces a pole-
ward meridional flow at the surface of the star, which has a return flow deep in the in-
terior. This acts as a form of chemical mixing, where remnants from fusion burning in
the core are replaced by fresh material from closer to the surface, prolonging the MS
lifetime of these stars (see, e.g., Brandt and Huang 2015). Secondly, for a star with
gravity-darkening, the viewing angle of the observer now becomes an important factor
when determining the stellar brightness. Because of the intrinsic random scatter in the
inclination angle of the stars relative to the observer, this will lead to increased scatter
in the observed magnitudes of hot stars. These effects have important implications when
attempting to estimate the ages of young clusters by way of the color-magnitude diagram
(CMD). It increases the spread in the CMD at the MS turn-off, which is an important
reference point for the age determination of clusters (Meynet et al. 2009). Clearly this
impacts studies that rely on precise cluster ages, like gyrochronology.

1.3.3 Solar and stellar dynamos

The Sun is a magnetic star. It is observed to go through an 11 year cycle of high and low
magnetic activity (often simply called solar maximum and minimum), where the global
dipole changes polarity from cycle to cycle. Despite a wealth of observational constraints,
there is no consensus on the physical causes behind the solar dynamo. A simplified picture
of the magnetic cycle is as follows: During solar maximum the strength of the poloidal
magnetic field is at a minimum, and it is thought that the toroidal component of magnetic
field is at its maximum (Charbonneau 2010). At this point the polarity of the poloidal
field is reversed. During this time large numbers of active regions, sunspots and other
magnetic phenomena are present on the solar surface. This is followed by a period of
relative inactivity, where the poloidal field grows in strength. Once the next maximum
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is reached the polarity of the poloidal field is once again reversed, and the process starts
over.

Many models currently exist that attempt to describe the solar dynamo (see the review
by Charbonneau 2010). Each one differs in the detailed description of how the transition
between the poloidally and toroidally dominated field structures, however most of models
rely on differential rotation to act as a source term for one or both of the components. This
is either in the form of the surface shear layer or tachocline (Miesch 2005).

Observations of magnetic fields on other stars have allowed for the extension of
dynamo models into new regimes of parameter space, such as varying magnetic field
strength, field configuration, rotation rate, as well as thin convection versus full convec-
tion. Observations range from simple estimates of spot coverage from, e.g., photometric
time series and Doppler imaging to activity index measurements from dedicated long pe-
riod surveys (Wilson 1968, Baliunas et al. 1995, Karoff et al. 2013). Such long period
surveys show both stars that have cyclic and secular variations in activity, as well as some
that do not show any variation at all. Böhm-Vitense (2007) found that a selection of the
stars with periodic variability in activity fell into two distinct sequences of correlation
between cycle period and rotation period. This was interpreted as the presence of two
different dynamos operating in the two groups of stars as also suggested by Vaughan and
Preston (1980) and Durney et al. (1981). Detailed inversions of the surface magnetic field
structure with spectropolarimetry have also shown different behaviors of the magnetic dy-
namos of other stars, from non-cyclic behavior (Jeffers et al. 2011, Donati et al. 2003) to
the same field reversal behavior as the Sun (Donati et al. 2008, Fares et al. 2009).

These studies all measure the physical effects of stellar dynamos which are manifested
at the surface. They are limited to speculation about the root cause of the dynamos based
only on these surface effects and the global physical parameters of the star. Clearly mea-
suring the internal angular momentum distribution can help in this regard, since it will
be possible to test the effects of differential rotation in dynamo models, to see if they are
able to reproduce similar levels of magnetic activity given the observed surface activity.
However, so far this has not been done for any stars on the MS except the Sun.
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2 Paper I - Rotation periods of 12 000
main-sequence Kepler stars

This chapter has been published in 2013 in A&A vol. 557, page L10. The work was
carried out and written by myself, under the supervision of L. Gizon, H. Schunker from
the Max Planck Institute for Solar System Research and in collaboration with C. Karoff
from Aarhus University, Denmark.

2.1 Summary of Paper I

We aim to measure the starspot rotation periods of active stars in the Kepler field as
a function of spectral type and to extend reliable rotation measurements from F-, G-,
and K-type to M-type stars. Using the Lomb-Scargle periodogram we searched more
than 150 000 stellar light curves for periodic brightness variations. We analyzed periods
between 1 and 30 days in eight consecutive Kepler quarters, where 30 days is an estimated
maximum for the validity of the PDC_MAP data correction pipeline. We selected stable
rotation periods, i.e., periods that do not vary from the median by more than one day in
at least six of the eight quarters. We averaged the periods for each stellar spectral class
according to B-V color and compared the results to archival v sin i data, using stellar radii
estimates from the Kepler Input Catalog. We report on the stable starspot rotation periods
of 12 151 Kepler stars. We find good agreement between starspot velocities and v sin i data
for all F-, G- and early K-type stars. The 795 M-type stars in our sample have a median
rotation period of 15.4 days. We find an excess of M-type stars with periods less than
7.5 days that are potentially fast-rotating and fully convective. Measuring photometric
variability in multiple Kepler quarters appears to be a straightforward and reliable way to
determine the rotation periods of a large sample of active stars, including late-type stars.

2.2 Introduction

Measuring stellar rotation as a function of age and mass is essential to studies of stellar
evolution (Maeder 2009) and stellar dynamos (Böhm-Vitense 2007, Reiners et al. 2012).
Rotation can be measured at the surface of individual stars using either spectroscopy (e.g.,
Royer et al. 2004) or periodic variations in photometric light curves due to the presence
of starspots (Mosser et al. 2009). On the Sun, sunspots and plage regions modulate the
solar irradiance with periods close to the solar rotation period. Brightness variations are
also seen in other stars and are commonly attributed to the presence of magnetic activity
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in the case of main-sequence cool dwarfs (e.g. Berdyugina 2005). Sunspots and solar
active regions have lifetimes of days to weeks (rarely months) (Solanki 2003) and are
reasonably good tracers of solar surface rotation at low latitudes. Starspots have been
observed to persist for even longer periods (e.g. Strassmeier 2009), and they appear at
high latitudes as well.

The Kepler mission (Borucki et al. 2010) has been monitoring the light emitted by
more than 105 stars since its launch in 2009. Treating such an enormous number of
stars obviously demands an automated approach. In this paper we present the results
of a straightforward automated method for analyzing Kepler time series and detecting
amplitude modulation due to stellar activity, with the aim of determining stellar rotation
periods.

2.3 Measuring stellar rotation

2.3.1 Kepler photometry

We used white light time series with a cadence of 29.42 minutes from the NASA Kepler

satellite. The data are released in segments of ∼ 90 days (quarters) through the Mikulski
Archive for Space Telescopes1 for a total sample of stars currently numbering ∼ 190 000.
We used quarters 2 through 9 (two years of observations in total). The data was processed
for cosmic rays and flat fielding prior to release. We used the version of the data that
was corrected by the PDC_MAP pipeline (Smith et al. 2012). The PDC_MAP correction
attempts to detect and remove systematic trends and instrumental effects, which are com-
mon to a large set of adjacent stars on the photometer. In addition, we used the most recent
data from the msMAP correction pipeline (Thompson et al. 2013, where ‘ms’ stands for
multi-scale) to check for consistency with PDC_MAP.

From an initial sample of 192 668 stars, we discarded targets that are known eclipsing
binaries (Matijevič et al. 2012), planet host stars as well as planet candidate host stars,
and Kepler objects of interest (all lists are available through the MAST portal). We do
this to reduce the possibility of false positive detections, since these types of variability
may be mistaken for transits of starspots.

2.3.2 Detecting rotation periods

Provided active regions or starspots are present over several rotations of the star, a peak
will appear in the periodogram of the time series. Assuming starspots trace surface rota-
tion, this provides a way to measure the rotation rate of the star at the (average) latitude
of the starspots. Simulations by Nielsen and Karoff (2012) show that selecting the peak
of maximum power is a suitable method for recovering the stellar rotation period.

We analyzed the Kepler observations as follows:

1. We compute a Lomb-Scargle (LS) periodogram (see Frandsen et al. 1995) for each
star in each quarter for periods between 1 and 100 days, using PDC_MAP data.

2. We find the peak of maximum power in this period range and record its period.

1http://archive.stsci.edu/kepler/
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3. If the period of the peak falls between 1 and 30 days, we consider it due to stellar
variability and not instrumental effects.

4. The peak height must be at least four times greater than the white noise estimated
from the root mean square (RMS) of the time series (Kjeldsen and Bedding 1995).

The lower bound in periods of one day is set to avoid the hot g-mode pulsators with
frequencies of a few cycles per day (see Aerts et al. 2010, chap. 2). Some contamina-
tion from g-mode pulsations is expected for F- or earlier-type stars; however, we have
not investigated how to automatically differentiate these pulsations from stellar activity
variability. The upper bound in period of 30 days is the estimated limit for which the
PDC_MAP pipeline does not overcorrect the light curve, to the extent that it completely
removes the intrinsic stellar signal (Thompson et al. 2013). We calculated periods up to
100 days to ensure that any peak found below 30 days is not a potential side lobe of a
dominating long-term trend (> 30 days).

2.3.3 Selecting stable rotation periods

Further, we require the that the measured periods are stable over several Kepler quarters.
Specifically,

5. we determine the median value of the measured periods over all eight quarters;

6. we select stars for which the median absolute deviation (MAD) of the measured
periods is less than one day, i.e., MAD < 1 day ; The MAD is defined as MAD =
〈|Pi − 〈Pi〉|〉 (where 〈〉 is the median).

7. From these, we select stars with six or more (out of eight) measured periods within
2 MAD of the median period ;

8. we repeat this method using the msMAP data and flag stars that do not satisfy the
above criteria.

We use the MAD since it is less sensitive to outliers than the standard deviation
(Hoaglin et al. 2000). Requiring that a particular variation for a star is visible in mul-
tiple quarters reduces the risk of the detection coming from low-frequency noise from,
say, instrumental effects. The LS periodogram is calculated at ∼ 1300 linearly spaced
frequencies between 1.2 × 10−2 mHz and 3.9 × 10−4 mHz (0.03 d−1 and 1 d−1). The MAD
limit of one day (point 6), along with the signal attenuation introduced by the PDC_MAP
correction, leads to a selection bias towards stars with shorter rotation periods. Examples
of periods detected for three stars are shown in Fig. 2.1.

We applied the scaling relation by Kjeldsen and Bedding (2011) to find timescales for
p-mode pulsations in cool main sequence stars and red giants. We found that stars with
log g . 2 have pulsation periods that can potentially overlap with the range investigated
in this work. We opted for a conservative approach and discarded stars with log g < 3.4
to remove red giants from the sample. Following the scaling relation, the main sequence
stars were found to have pulsation timescales from minutes to hours, far below our lower
period limit. Once all the above criteria are met, the rotation period, Prot, is defined as the
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Figure 2.1: Measured periods in each quarter of observation for three Kepler stars (red,
green and blue). The solid line is the median period over all quarters for each star. The
dashed horizontal lines indicate two median absolute deviations (MAD) from the median
period. The long period target (red) is discarded by the algorithm due to high scatter in
the period measurements (MAD = 1.26 days). The green and blue target are examples of
stars that meet the selection criteria.

median of the valid periods. This selection process leaves us with 12 151 stars out of the
original sample of 192 668. When using the msMAP data, we find that ∼ 80% of these
stars satisfy the above criteria as well. Of these, 0.9% differ from the PDC_MAP results
by more than one resolution element, predominantly because the msMAP data shows the
first harmonic instead of the fundamental period of the variability. The msMAP pipeline
treats the long periods (Prot . 15 days) differently than the PDC_MAP (see Thompson
et al. 2013).

The results for all 12 151 stars are shown in Table 1, which is provided as online
material through the CDS. Column 1 gives the Kepler Input Catalog (KIC) name of the
star, cols. 2 and 3 are the rotation period and scatter (MAD), and cols. 4 to 8 give the
g − r color, E(B − V), radius, log g, and Teff, respectively, all of which are KIC values.
Column 9 is a flag indicating whether each msMAP-corrected data set satisfies the criteria
of section 2.3. Column 10 gives the msMAP period of the stars where we find rotation
rates from the two data sets that differ by more than one resolution element.
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2.4 Consistency with v sin i measurements

We performed a rudimentary spectral classification of the stars based on their B−V color
indices. The KIC provides g − r values that we converted to B − V using the relation
B − V = 0.98 (g − r) + 0.22 given by Jester et al. (2005) for stars with R-I color indices
< 1.15. The B − V values are dereddened using the E (B − V) values from the KIC (see
Brown et al. 2011, for details on their derivation). The calculated B−V colors are mapped
to a spectral type as per Gray (2005, Appendix B).

We compared the periods found in this work with v sin i values compiled by Glebocki
and Gnacinski (2005). This list contains v sin i values and spectral types for ∼ 30 000
cluster stars almost isotropically distributed in galactic coordinates. Using our approxi-
mate spectral classification we compared the median equatorial velocities of this sample
with our results from the Kepler targets. From the v sin i sample we select stars with ap-
parent V magnitude from 6 to 15, roughly equivalent to the magnitude range of the Kepler

targets. We discard any stars from the v sin i sample that have been ambiguously labeled
as ‘uncertain’. Lastly, we select only dwarf stars since this is the main constituent of the
stars selected by our method, reducing the v sin i sample to be comparable in number to
our Kepler target list.

For each spectral type (s.t.) in our sample of Kepler targets we calculate the median
equatorial rotational velocity by v̄(s.t.) = 2π 〈RKIC/Prot〉 where 〈〉 denotes the median over
stars with spectral type s.t., RKIC is the KIC stellar radius, and Prot is the rotation period
determined by our algorithm. The KIC radii are notoriously bad estimates in some cases;
however, by comparing these with characteristic radii given in Gray (2005, Appendix B)
we find that the median values in the region of F0 to K0 agree within ∼ 15%. Outside this
range of spectral types the radii are initially overestimated, but become strongly underes-
timated for A-type stars and earlier.

Since we have such a large statistical sample of v sin i measurements within each spec-
tral type, a random distribution of inclinations of rotation axes gives 〈sin i〉 = π/4 (e.g.,
Gray 2005). Therefore the median equatorial velocity for a given spectral type can be
approximated by (4/π) 〈v sin i〉, which is directly comparable to the v̄(s.t.) computed for
the Kepler targets.

Panel A in Fig. 2.2 shows clear agreement, from late A-type to early G-type stars,
between the median equatorial velocities of the v sin i sample and those we derived from
our measured Kepler rotation periods. For additional comparison we included the v sin i

measurements from Reiners and Mohanty (2012), where the horizontal bar represents 201
stars with velocities below 4 km/s. Panel B shows our measured rotation periods Prot, as
a function of spectral type, which we used to calculate the equatorial velocities. We also
calculated the median periods of the Kepler stars found in Debosscher et al. (2011) and
McQuillan et al. (2013) that are present in our sample. These are shown in comparison to
our results in panel C. We find that ∼ 96% and ∼ 97% of their measured rotation rates fall
within one frequency resolution element (1/90 d−1) of our values for the corresponding
stars.
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Figure 2.2: Panel A: The blue curve is the median equatorial velocity (4/π) 〈v sin i〉 for
each spectral type from Glebocki and Gnacinski (2005). The green curve shows the equa-
torial velocity of the Kepler targets, v̄(s.t.), derived from the measured rotation periods
and the KIC radii. The black points show measurements by Reiners and Mohanty (2012).
In this sample 201 stars have an upper v sin i limit of 4 km/s (due to instrumental limita-
tions), these stars are represented by the solid bar. Panel B: The rotation periods Prot of
the stars in our sample, averaged within each spectral type. Panel C: The same as panel
B, but for comparison we show the median of the rotation periods measured by McQuil-
lan et al. (2013) (black points with errorbars), for the stars overlapping with our sample.
Similarly, the red curve shows the median of the rotation periods found by Debosscher
et al. (2011). Shaded areas and error bars span the upper and lower 34th percentile values
from the median.
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2.5 Rotation of late type stars

Figure 2.3: The light green histogram shows the distribution of rotation periods for the
795 M-type stars in our sample (median, 15.4 days). For comparison the black line shows
the results by McQuillan et al. (2013) for periods less than 30 days. The dark-green
histogram shows the distribution of rotation periods measured by McQuillan et al. (2013)
for the stars in common with our sample.

2.5 Rotation of late type stars

Owing to their small radius and long rotation period, the v sin i measurements of late type
stars are limited by spectral resolution. The v sin i measurements of Reiners and Mohanty
(2012) have a lower limit at ∼ 4 km/s. The KIC radii are overestimated for stars later than
K0 so our velocities are therefore upper limits, but we still systematically find rotation
slower than ∼ 4 km/s. This places our measurements at or below the lower limit for
spectroscopically determining rotation for these types of stars.

The late M-type stars are of particular interest since they represent the transition from
solar-like convective envelopes to fully convective interiors. Figure 2.3 shows the dis-
tributions of stars that have been classified as M-type, found in this work and those by
McQuillan et al. (2013). The median of the distribution in our sample is 15.4 days. There
appears to be good agreement with the result of McQuillan et al. (2013). We note an ex-
cess of fast rotators with P < 7.5 days. The study by Reiners and Mohanty (2012) shows
that the number of magnetically active M-type dwarfs increases approximately after spec-
tral subtype M3, which appears correlated with an increase in the number of fast rotators
(see top panel of Fig. 2.2), likely marking the transition to full convection. Our sample
contains 795 M-type stars, where ∼ 15% have periods less than 7.5 days; i.e., these are
potentially fast-rotating, fully convective M-type dwarfs, such as those found by Reiners
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and Mohanty (2012). As a result of the KIC log g having errors of approximately ±0.4 dex
(Brown et al. 2011), the sample probably still contains some cool giants. A visual inspec-
tion of the power spectra of the M-type stars, with periods P < 7.5 days, indicated that 3
out of 119 stars had p-mode pulsations that could potentially be misidentified as periodic
activity. Thus the contamination by p-mode pulsations appears to be negligible. A more
rigorous determination of log g and spectral type for these stars is required to distinguish
stellar evolutionary stages. However, even a fraction of our sample of M-type dwarfs still
significantly complements the existing literature on this critical region for understanding
differences in stellar dynamos.

2.6 Conclusions

We developed a straightforward, automated method for detecting stable rotation periods
for a large sample of Kepler targets. A total of 12 151 stars ranging from spectral type B3
to M5 all show recurring periods in at least six of the eight quarters of analyzed Kepler

data. This, along with the requirement that the stars in question have a maximum MAD
of one day, are empirically determined criteria. Using the KIC stellar radii, we found
very good agreement between the equatorial rotational velocities derived from the Kepler

rotation periods and independent v sin i measurements for F0 to K0 type stars. For later
type stars we find an inconsistency with the Glebocki and Gnacinski (2005) catalog. This
is due to an age difference between the two samples, since the Glebocki and Gnacinski
(2005) catalog mainly consists of young open cluster stars. However, our results for M-
type stars agree well with those reported by Reiners and Mohanty (2012) and McQuillan
et al. (2013). The study by Debosscher et al. (2011) analyzed a different set of Kepler

data, but we still find good agreement with the stars overlapping with our sample.
We have primarily studied stars that have long-lived stellar activity signatures. We

tested our method on solar-disk integrated light at solar maximum (January 2001 to
March 2003), observed by the VIRGO instrument aboard SOHO (Frohlich et al. 1997).
The VIRGO green channel data were divided into 90-day segments, and we applied the
method described in Sect. 2.3. The stability criterion was not met due to a period scat-
ter of MAD = 3.7 days. Analysis of other segments of VIRGO data from 1995 to 2013
also resulted in rejection. This shows that stars with solar-like (low) activity are rejected
from our sample; for such stars, rotation period measurements are too noisy and not stable
enough over time. A further bias is the upper limit of P ≤ 30 days chosen because the
PDC_MAP does not yield reliable corrections for longer periods. An obvious improve-
ment to our analysis would be to investigate ways of increasing this upper limit, for a
complete view of slow rotators.

As expected, we found that hot stars rotate faster than their cooler counterparts (Barnes
2003, Kraft 1970). The rotation periods of hot stars should be treated with some caution
since they may be false positives from g-mode pulsations. Nevertheless, our analysis
method detects periodic variations in brightness that satisfy the selection criteria. The
measured variability is not necessarily of magnetic origin, but could arise from, for exam-
ple, chemical surface inhomogeneities in chemically peculiar hot stars. Chemical spots
can produce photometric variability that traces the stellar rotation (Wraight et al. 2012,
Paunzen et al. 2013). The short periods measured for the early spectral types (see Fig.
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2.2) in our sample are therefore not contradictory to the expected fast rotation of hot stars
(Royer et al. 2004).

This work is only one step toward characterizing of the rotation of stars in the Kepler

field. Kepler photometry is proving very useful in adequately sampling the slow rotation
rates of cool, faint stars. Future work will include detailed starspot modeling in order
to measure latitudinal differential rotation (Reinhold and Reiners 2013) and asteroseis-
mology (e.g., Deheuvels et al. 2012) to infer internal differential rotation. The Kepler

observations offer unique possibilities for calibrating the mass-age-color relations in gy-
rochronology (Skumanich 1972, Barnes 2007) and exploring the close relation between
stellar rotation and activity cycles.
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3 Paper II - Rotational splitting as a

function of mode frequency for six

Sun-like stars

This chapter has been published in 2014 in A&A vol. 568, page L12. The work was
carried out and written by myself, under the supervision of L. Gizon, H. Schunker and
J. Schou from the Max Planck Institute for Solar System Research.

3.1 Summary of Paper II

Asteroseismology offers the prospect of constraining differential rotation in Sun-like stars.
Here we have identified six high signal-to-noise main-sequence Sun-like stars in the Ke-

pler field, which all have visible signs of rotational splitting of their p-mode frequencies.
For each star, we extract the rotational frequency splitting and inclination angle from sep-
arate mode sets (adjacent modes with l = 2, 0, and 1) spanning the p-mode envelope. We
use a Markov chain Monte Carlo method to obtain the best fit and errors associated with
each parameter. We are able to make independent measurements of rotational splittings
of ∼ 8 radial orders for each star. For all six stars, the measured splittings are consistent
with uniform rotation, allowing us to exclude large radial differential rotation. This work
opens the possibility of constraining internal rotation of Sun-like stars.

3.2 Introduction

Until recently, measuring the rotation of a star other than the Sun has been restricted to
measuring the rotation rate at, or near, the photosphere. Techniques such as spectral line
broadening obtain the projected rotational velocity v sin i (Kraft 1970, Gray 2005), where
i is the inclination of the stellar rotation axis with respect to the line of sight. However,
this is difficult for slowly rotating stars (e.g., Reiners et al. 2012) and a measurement is
fundamentally ambiguous because of the often unknown inclination. An alternative to
this approach is to analyze photometric light curves for signs of active regions crossing
the stellar disk (Nielsen et al. 2013, Reinhold and Reiners 2013, McQuillan et al. 2014).
If enough crossing events of sufficient contrast and coherence are seen, one can estimate
the rotation period. However, for a star like the Sun this is not always possible because
the short lifetime of active regions (Solanki 2003) compared to the mean solar rotation
period leads to an incoherent signature in integrated light.
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Asteroseismology is a tool that can be used to independently measure stellar rotation.
In stars like the Sun the outer convective zone randomly excites acoustic oscillations
(called p-modes) that propagate through the stellar interior. These oscillation modes can
be described by a set of spherical harmonic functions of angular degree l and azimuthal
order m, as well as radial order n. Modes with |m| > 0 travel around the rotation axis
of the star in prograde and retrograde motion. For a non-rotating star the frequencies of
these modes are degenerate with that of the m = 0 modes, but become Doppler shifted if
the star is rotating. This frequency shift, or splitting, is linearly related to the rotation rate
of the star (see, e.g., Aerts et al. 2010, for details). This effect has been exploited to image
the internal rotation in the Sun (see, e.g., Schou et al. 1998).

Using the high-quality observations of stellar light curves from space borne missions
such as CoRoT (Fridlund et al. 2006) and Kepler (Borucki et al. 2010), it is possible to
detect this frequency shift of the azimuthal modes in stars. This was done for a sample of
subgiant stars by Deheuvels et al. (2012, 2014), for which it is possible to measure radial
differential rotation because of the presence of mixed modes. These modes are sensitive
to conditions in both the core and the outer envelope, thereby revealing the rotation rate
at different depths in the star. This has been achieved for a wide variety of stars such
as pulsating B-type stars (e.g., Aerts et al. 2003, Pamyatnykh et al. 2004), white dwarfs
(Charpinet et al. 2009), and a main-sequence A-star (Kurtz et al. 2014). However, stars
like the Sun only exhibit pure acoustic modes, which are primarily sensitive to conditions
in the outer envelope, and so measurements are dominated by the rotation rates in this part
of the star. The average rotation for a few Sun-like stars has been measured using data
from CoRoT (Gizon et al. 2013) and Kepler (Van Eylen et al. 2014, Lund et al. 2014b).
In this paper we perform an asteroseismic analysis of six Sun-like main-sequence stars
observed by Kepler, and measure the rotational splittings from their oscillation spectra.

3.3 Analysis

The splitting of oscillation modes by rotation in Sun-like stars is typically only seen as a
broadening rather than a distinct separation of the modes, caused by the combined effect
of the mode linewidths and the slow rotation rates. We handpicked Sun-like stars with
the longest observed time series to get the highest possible frequency resolution, and a
high signal-to-noise ratio near the p-mode envelope. The typical length of a time series
used in this work spans ∼ 3 years. We defined these stars as Sun-like based on their
reported temperatures Teff ∼ 6000K and surface gravities log g & 4 from spectroscopic
measurements by Bruntt et al. (2012) and Molenda-Żakowicz et al. (2013). We found six
stars with these characteristics that also have visible rotational splitting of the l = 1 and
l = 2 modes.

We used the Lomb-Scargle method as applied by Frandsen et al. (1995) to compute
the power spectrum of each light curve. We fit a model of the oscillation modes to small
segments of the power spectrum spanning a set of l = 2, 0, 1. These mode sets are all
consecutive in frequency and together span the p-mode envelope of the star in question
(see Table 3.1). We used maximum likelihood estimation to find the best-fit solution and
obtain a rotational splitting for each mode set.
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3.3 Analysis

3.3.1 Observations

We used short-cadence (∼ 58 second) white light observations from the NASA Kepler

mission from March 2009 until the end of the mission in early 2013. The data were
obtained from the Mikulski Archive for Space Telescopes1. We used data that was pre-
processed by the PDC_MAP and msMAP pipelines (Smith et al. 2012, Thompson et al.
2013) prior to release. In some cases we found narrow peaks caused by residual in-
strumental effects (Christiansen et al. 2011), although none of these overlapped with the
p-mode frequencies. However, we note that the various background noise terms which
we included in our model could potentially be influenced by the presence of instrumental
peaks.

The Kepler Input Catalogue (KIC) numbers for the analyzed stars are shown in Ta-
ble 3.1, along with the spectroscopic effective surface temperature and surface gravity
measurements (Bruntt et al. 2012, Molenda-Żakowicz et al. 2013).

3.3.2 Power spectrum model

We fit the power spectrum with a model consisting of a constant noise level, two frequency-
dependent Harvey-like noise terms (see Equation 1 in Aigrain et al. 2004), in addition to
the individual oscillation modes. We model these as a sum of Lorentzian profiles as per
Equation 10 in Handberg and Campante (2011), each consisting of mode power, fre-
quency, and linewidth.

We perform an initial fit of the background noise components to the entire spectrum
of each star. These background terms are caused by various processes in the stellar pho-
tosphere such as granulation and magnetic activity, and span a wide range in frequency
that often overlaps with the p-mode oscillations. We found that using two background
terms was sufficient to account for the noise down to ∼ 10 − 100µHz, while the p-mode
oscillations of the stars considered here have frequencies > 1000µHz. The fit parameters
describing the background are subsequently kept fixed when fitting the p-mode oscilla-
tions.

We divide the p-mode envelope into segments of length roughly equal to the separation
between radial orders (called the large frequency separation), and centered approximately
between the l = 0 and l = 1 modes. Thus a segment contains a set of modes of angular
degree l = 2, 0, and 1 (see Fig. 3.1), which we fit separately from the other sets in the
spectrum.

For each angular degree l there is multiplet of 2l + 1 azimuthal modes, where, for a
slowly rotating star, the components are mutually separated by an amount proportional to
the stellar rotation rate Ω. The frequencies of these modes can be expressed as

νnlm = νnl + m
Ω

2π
(1 −Cnl) ≈ νnl + mδν, (3.1)

where νnl is the frequency of the central m = 0 mode, with the |m| > 0 modes displaced
from this frequency by the effect of rotation. The value Cnl is small for modes of n & 20 in
Sun-like stars and is considered negligible. We can therefore approximate the frequency

1http://archive.stsci.edu/kepler/
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Figure 3.1: Example of a local fit performed to a segment (6th modeset) of the power
spectrum of KIC006106415. The power spectrum smoothed with 0.1µHz wide Gaussian
kernel is shown in black. The red curve shows the best-fit model.

shift of the azimuthal orders by the amount mδν, where the rotational splitting δν is equiv-
alent to the rotation frequency of the star. We assume a common rotational splitting for
the modes of a given mode set.

The amplitude of the Lorentzian profiles is a product of the mode height and the mode
visibility. The mode heights are left as free parameters, and are assumed equal for all the
components of a given l. The mode visibility is a function of the inclination i of the star,
where we fit a common inclination for the modes of each set. We use the form of the
mode visibility as in Gizon and Solanki (2003).

For stars that rotate pole-on relative to our point of view (i = 0), the visibility of the
|m| > 0 modes approach zero, and so rotation cannot be measured. However, if a splitting
of the l = 1 or l = 2 modes can be measured the different visibilities of the modes allow
us to infer the inclination of the stellar rotation axis, which is not easily done using other
types of observations like spectroscopy, for example.

Each mode has a finite width proportional to the lifetime of the oscillations, which is
typically only on the order of a few days for Sun-like stars. For slowly rotating stars the
rotational splitting may be small compared to the broadening caused by the lifetime of
the mode. This makes it difficult to identify the individual azimuthal orders. However,
the l = 0 mode is unaffected by rotation so the linewidth of this mode can be taken as
representative of the l = 1 and l = 2 modes and their associated azimuthal components
(Chaplin et al. 1998). Thus, for each set of l = 2, 0, 1 modes we assume a common mode
linewidth.
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3.3.3 Fitting

We used a Markov chain Monte Carlo (MCMC) sampler2 (Foreman-Mackey et al. 2013)
to find the best-fit solution. The likelihood was computed using a χ2 probability den-
sity function as in Anderson et al. (1990). We used the MCMC chains to compute the
marginalized posterior distributions for each parameter, where we adopt the median of
each distribution as a robust measure of the best-fit parameter value. We estimated the
lower and upper errors for each parameter by the 16th and 84th percentile values of the
posterior distributions. Figure 3.1 shows a model fit to a section of the power spectrum of
KIC006106415.

For the mode heights, central frequencies and width the initial positions of the walkers
were randomly chosen from a normal distribution centered on a manually-determined
initial guess. Each distribution had a standard deviation equal to 10% of the initial guess
value in order to provide the walkers with sufficient initial coverage of parameter space.
For the inclination and splitting parameters we opted to use a uniform random distribution
between 0 − 90o and 0 − 2µHz, respectively, since these two parameters are known to be
non-linearly correlated.

We used a probability distribution function of sin i on the inclination angle as a prior.
We used uniform priors for all other parameters. These were only constrained for the l = 2
and l = 0 frequencies and the rotational splitting, such that the frequencies of each mode
could not overlap. Initial testing showed that the walkers of the MCMC chain would
sometimes switch the frequencies of these two modes because of their proximity. We
found that this limitation on δν did not bias the measurements or errors after inspection of
the posterior distributions.

We used 100 walkers to generate the MCMC chains which were allowed to run for
1200 steps, giving us 120 000 samples in the available parameter space. Although not
strictly necessary owing to the rapid mixing of the walkers, we chose to disregard the first
600 steps as the burn-in phase of the MCMC chains.

3.4 Rotation and inclination as a function of frequency

The complete list of fit values and associated errors (Table 2) is available as online ma-
terial via the CDS. The fit values for the rotational splitting δν and the inclination angle
i are presented in Fig. 3.2. We compute a variance weighted mean of the splittings mea-
sured for each star, and list these in Table 3.1. The posterior distributions of the rotational
splittings are approximately Gaussian around the mean (see Fig. 3.3), so the variance is
representative of the errors associated with each splitting. This is not true for the posterior
distributions of the inclinations and so we cannot apply this to obtain a weighted mean
value representative of the inclination of each star. We therefore only list an unweighted
mean of the inclination measurements with typical errors of ∼ 20o.

A few stars (e.g., KIC006106415) appear to show a marginal trend in the splittings
with increasing frequency. To test this further we computed a χ2 and the associated p-
values based on the variance weighted mean splitting, i.e., a constant rotational splitting
with frequency. We found that the χ2 values ranged between 0.6 − 3.9 and the p-values

2The affine invariant sampler in the EMCEE package for Python, http://dan.iel.fm/emcee/current/
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Figure 3.2: The measured splitting δν and inclination i of each mode set. The points show the results of the local fit as a function of the mode
sets in each power spectrum. The error bars denote the 16th and 84th percentile values of the marginalized posterior distributions obtained
from the MCMC samples. Dashed lines indicate the variance weighted mean of the values, using the variance of each posterior distribution.
Red points show the mode set used in Fig. 3.1.
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Table 3.1: Variance weighted mean rotational splittings 〈δν〉, inclination 〈i〉, and rotation periodΩ/Ω⊙ for the six Sun-like stars. The effective
temperature Teff , surface gravity log g, and frequency intervals considered for each star are also listed, where each interval is divided into
segments of length approximately equal to the large frequency separation. The variance weighted mean splittings 〈δν〉 are shown as dashed
lines in Fig. 3.2, where the listed errors are the standard deviations of the weighted mean values. We note that the posterior distributions for
the δν are only approximately Gaussian. The posterior distributions of inclination measurements cannot be approximated as a Gaussian and
so we only show the unweighted mean of the inclinations where typical errors are ∼ 20o. The reader should not use the mean values and
associated errors reported here, but should refer to the online material for more accurate values for each mode set. For comparison, the final
column shows the stellar rotation rate relative to the solar value (we used Ω⊙ = 0.424µHz).

Star Teff [K] log g [cm/s2] Fit interval [µHz] 〈δν〉 [µHz] 〈δν sin i〉 [µHz] 〈i〉 [deg] Ω/Ω⊙

KIC004914923 5808 ± 92 4.28 ± 0.21 1429 - 2135 0.522 ± 0.074 0.371 ± 0.029 54 1.23 ± 0.29
KIC005184732 5669 ± 97 4.07 ± 0.21 1632 - 2400 0.643 ± 0.063 0.517 ± 0.027 62 1.52 ± 0.12
KIC006106415 6050 ± 70 4.40 ± 0.08 1677 - 2609 0.708 ± 0.038 0.647 ± 0.022 64 1.67 ± 0.27
KIC006116048 5991 ± 124 4.09 ± 0.21 1620 - 2425 0.703 ± 0.053 0.603 ± 0.024 69 1.66 ± 0.36
KIC006933899 5837 ± 97 4.21 ± 0.22 1157 - 1662 0.404 ± 0.078 0.296 ± 0.034 57 0.95 ± 0.27
KIC010963065 6097 ± 130 4.00 ± 0.21 1760 - 2475 0.801 ± 0.079 0.656 ± 0.032 56 1.89 ± 0.20
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between 0.69− 0.998, indicating that the measurements are consistent with a constant
splitting over frequency. We noted that the errors on the rotational splittings are likely
to be anti-correlated with the errors on the inclinations (see Fig. 3.3). We therefore also
computed posterior distributions of δν sin i (middle row in Fig. 3.2), and performed the
same test for constant rotation. The computed χ2 and p-values were between 3.3 − 7.7
and 0.36 − 0.77, respectively, i.e., the variations seen in δν sin i are still consistent with
uniform rotation in these stars. We therefore find no evidence of differential rotation
in these stars. In Sun-like stars the mode linewidths increase strongly with frequency
(Chaplin et al. 1998). This means that using a common linewidth likely ceases to be a
good approximation for the last few mode sets at higher frequencies, thus introducing a
bias in the splitting parameter.

The inclination of the rotation axis is an important parameter for characterizing exo-
planetary systems and constraining models of planet formation and evolution (e.g., Na-
gasawa et al. 2008). However, we found that the inclination angles are very poorly con-
strained when using a single mode set, even with these prime examples from the Kepler

database. In Fig. 3.3 we show the marginalized posterior distributions for the fit shown in
Fig. 3.1. The posterior distribution reveals that the inclination angle is dominated by the
sin i prior, i.e., an individual mode set yields very little information about the stellar incli-
nation axis. In this case, based on the posterior distribution we could only conclude that
i . 45o is unlikely. This is a common trait of the posterior distributions for the other stars
in our sample, and some are even less constrained so that we can only rule out i . 20o.
The relatively high inclination angles that we measure are expected when considering
these stars were chosen by eye to have a visible splitting, or at least a broadening of the
l = 2 and l = 1 modes. This selection naturally biases the sample of stars toward highly
inclined configurations (see Fig. 2. in Gizon and Solanki 2003).

These stars were specifically selected for this study since they have visible rotational
splittings. When using high signal-to-noise observations such as these, it is a simple mat-
ter of fitting just the central mode sets of the p-mode envelope in order to obtain a reliable
measure of the rotational splitting. Furthermore, these high-quality data offer the tantaliz-
ing possibility of measuring radial differential rotation. From our measurements we have
determined that these Sun-like stars are unlikely to have variations in rotational splittings
larger than ∼ 40%. Improvements to the fitting method, e.g., linewidth parametrization
or a global fit to the power spectrum, could reduce the uncertainties on the splitting mea-
surements and potentially reveal the signatures of differential rotation.
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Figure 3.3: Bottom left: A 2D representation of the marginalized posterior distributions
for the rotational splitting δν and the inclination of the rotation axis i. Top and right frames
show the projection onto each axis in solid black. The solid red lines indicate the median
along each axis, and dashed red lines are 16th, 84th percentile values. These distributions
are obtained from the local fit to the modes shown in Fig. 3.1.
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4 Paper III - Constraining differential

rotation of Sun-like stars from

asteroseismic and starspot rotation

periods

This chapter has been published in 2015 in A&A vol. 582, page A10. The work was
carried out and written by myself, under the supervision of L. Gizon, H. Schunker and
J. Schou from the Max Planck Institute for Solar System Research.

4.1 Summary of Paper III

In previous work, we identified six Sun-like stars observed by Kepler with exceptionally
clear asteroseismic signatures of rotation. Here, we show that five of these stars exhibit
surface variability suitable for measuring rotation. We compare the rotation periods ob-
tained from light-curve variability with those from asteroseismology in order to further
constrain differential rotation. The two rotation measurement methods are found to agree
within uncertainties, suggesting that radial differential rotation is weak, as is the case
for the Sun. Furthermore, we find significant discrepancies between ages from astero-
seismology and from three different gyrochronology relations, implying that stellar age
estimation is problematic even for Sun-like stars.

4.2 Introduction

Recently, asteroseismology has become a valuable tool to study the internal rotation of
stars. This has been done on a variety of different stars (see, e.g., Aerts et al. 2003,
Charpinet et al. 2009, Kurtz et al. 2014), including Sun-like stars (Gizon et al. 2013,
Davies et al. 2015). Asteroseismic measurements of rotation in Sun-like stars have gen-
erally been limited to the average internal rotation period. More recently, Nielsen et al.
(2014) identified six Sun-like stars where it was possible to measure rotation for indepen-
dent sets of oscillations modes and found that radial differential rotation is likely to be
small.

From the Sun, we know that different methods for measuring rotation, e.g., spot trac-
ing (D’Silva and Howard 1994) and helioseismology (Schou et al. 1998), show the outer
envelope of the Sun rotating differentially. The solar surface rotation period changes by
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approximately 2.2 days between the equator and 40◦ latitude (Snodgrass and Ulrich 1990),
while in the radial direction the rotation period changes by ∼1 day in the outer few per-
cent of the solar radius (Beck 2000). While small on the Sun, differential rotation could be
larger on other stars. With data available from the Kepler mission (Borucki et al. 2010),
it is now possible to compare the measurements of rotation using both asteroseismology
and observations of surface features.

Differences between the results of the two methods would imply that differential ro-
tation exists between the regions where the two methods are sensitive; namely, the near-
surface layers for asteroseismology, and the currently unknown anchoring depth of active
regions in Sun-like stars. However, given the similar scales of the radial and latitudinal
differential rotation seen in the Sun, both of these mechanisms may contribute to an ob-
served difference. On the other hand, agreement between the two methods would suggest
weak differential rotation. Furthermore, this would also mean that we can measure ro-
tation with asteroseismology in inactive stars that exhibit few or no surface features at
all, thus giving us an additional means of calibrating gyrochronology relations (e.g., Sku-
manich 1972, Barnes 2007, Barnes and Kim 2010), which so far have primarily relied on
measuring the surface variability of active stars.

However, the acoustic modes (or p-modes) used to measure rotation in Sun-like stars
are damped by surface magnetic activity (Chaplin et al. 2011). It is therefore difficult to
find stars with both a high signal-to-noise oscillation spectrum and coherent signatures
of rotation from surface features. Nielsen et al. (2014) identified six Sun-like stars from
the Kepler catalog with exceptional signal to noise around the p-mode envelope. Five of
these stars exhibit rotational variability from surface features. We compare the surface
variability periods with those measured from asteroseismology, with the aim of further
constraining the near-surface differential rotation of these stars.

4.3 Measuring rotation periods

We use the ∼58 second cadence observations from the Kepler satellite to capture the high
frequency acoustic oscillations, and the ∼29 minute cadence observations to search for
surface variability. The stars we identified were chosen because of their similarity to
the Sun with respect to surface gravity and effective temperature, and for having a high
signal-to-noise ratio at the p-mode envelope. We use all the available data1 for each star,
from quarter 1 to 17, spanning approximately four years.

4.3.1 Asteroseismic rotation periods

The oscillation modes in a star can be described with spherical harmonic functions, char-
acterized by the angular degree l and azimuthal order m, and a radial component with
order n. When the star rotates the modes with azimuthal order m > 0 become Doppler
shifted, and if this can be measured, the rotation of the star can be inferred. For Sun-like
stars, the oscillation modes have a sensitivity weighted toward the surface of the star, and
so the asteroseismic measurements predominantly probe the rotation of the star in this
region (see, e.g., Lund et al. 2014a).

1Downloaded from the Mikulski Archive for Space Telescopes, http://archive.stsci.edu/kepler/
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4.3 Measuring rotation periods

Figure 4.1: Power density spectrum of the short cadence white light photometry time
series of KIC005184732. Gray represents the spectrum smoothed with a 0.1µHz wide
Gaussian kernel, with the best-fit model shown in red. Black dashed indicates the surface
variability frequency. The inset shows a zoom of the p-mode envelope at an l = 2, 0 pair,
where the black markers indicate the individual m-components. The separation between
components of the l = 2 mode is the rotational splitting.

To measure this frequency splitting we fit a model to the power spectral density. The
modes in a solar-like oscillator are stochastically excited and damped oscillations can be
described by a series of Lorentzian profiles,

P(ν) =
∑

n

3
∑

l=0

l
∑

m=−l

Elm (i) S nl

1 + (2/Γnlm)2 (ν − νnlm)2
+ B (ν) , (4.1)

where ν is the frequency, and B(ν) is the background noise. Here the sums are over the
radial orders (typically ∼8 values of n), the angular degrees l ≤ 3 and the azimuthal orders
−l ≤ m ≤ l. Not all radial orders show clear l = 3 modes, and so only a few l = 3 modes
are included in the fits, depending on the star. The mode power in a multiplet, S nl, is a
free parameter. The mode visibility Elm(i) is a function of the inclination angle i of the
rotation axis relative to the line of sight (see Gizon and Solanki 2003). We assume here
that all modes share the same value of i.

The frequencies νnlm of the modes reveal the rotation information. For Sun-like stars
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rotating no more than a few times the solar rotation rate the mode frequencies can be
parametrized as νnlm ≈ νnl + mδν, where δν is the rotational splitting. In our model fit we
assume that the stellar interior rotates as a solid body, so that all modes share a common
rotational splitting.

The full widths Γnlm = Γ(νnlm) of the Lorentzian profiles depend on the mode life-
times, which in turn depend on the mode frequencies νnlm. In the Sun this variation with
frequency can be modeled by a low-order polynomial (Stahn 2010). We therefore opt to
parametrize the mode widths as a third-order polynomial in (ν − νmax), where νmax is the
frequency at maximum power of the p-mode envelope. Note that only the l = 0 modes
contribute to the fit of this function since they are not broadened or split by rotation.

The background noise level B (ν) is caused by several terms: the very long-term vari-
ability (hours to days) from magnetic activity, the variability (tens of minutes) from stel-
lar surface granulation, and the photon noise. For asteroseismology applications, these
noise components can be adequately described by two Harvey-like background terms
(e.g., Handberg and Campante 2011) and a constant term to account for the white photon
noise.

We find the best fit with maximum likelihood estimation using a Markov Chain Monte
Carlo sampler (Foreman-Mackey et al. 2013). The best-fit values of each parameter are
estimated by the median of the corresponding marginalized posterior distribution, and
the 16th and 84th percentile values of the distributions represent the errors. We fit the
entire spectrum, including all mode parameters and background terms simultaneously (a
so-called global fit), in contrast to Nielsen et al. (2014) who fit the background and sep-
arate sets of p-modes individually. A comparison between the global rotational splitting
obtained in this work, and the mean of the rotational splittings measured by Nielsen et al.
(2014) are shown in Table 4.1.

An example spectrum of KIC005184732 is shown in Fig. 4.1. The background terms
dominate the low frequency end of the spectrum, while the p-mode envelope appears
clearly above the noise level at ∼1800 µHz. The inset shows a part of the p-mode enve-
lope, where the splitting of an l = 2 mode is clearly visible.

4.3.2 Surface variability periods

The rotation of stars can also be inferred from the periodic variability of their light curves
caused by surface features on the stellar disk, such as active regions. For the Sun, active
regions are good tracers of the surface rotation of the plasma, to within a few percent
(Beck 2000). In other stars this difference could potentially be larger.

From the periodic variation of the stellar light curve it is relatively straightforward to
identify the rotation period of the star, and this has been done using automated routines
for tens of thousands of stars (Nielsen et al. 2013, Reinhold and Reiners 2013, McQuil-
lan et al. 2014). However, these routines typically rely on coherent surface variability
over long time periods. The stars studied here do not show simple and regular sur-
face variability and, therefore, they do not appear in these catalogs. Furthermore, the
PDC_MAP pipeline (Smith et al. 2012, Stumpe et al. 2014) is known to suppress vari-
ability on timescales longer than ∼20 days (Christiansen et al. 2013)

We therefore manually reduce the raw pixel data for each star, and search this and the
PDC_MAP reduced data for signs of rotational variability. To reduce the raw data, we
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4.3 Measuring rotation periods

Figure 4.2: Peak periods in the Lomb-Scargle periodogram as a function of observation
quarter for KIC004914923 (top) and KIC005184732 (bottom). Solid gray shows the me-
dian period, and dashed gray shows the median absolute deviation.

use the kepcotrend procedure in the PyKe software package2. The PyKe software uses a
series of so-called cotrending basis vectors (CBVs) in an attempt to remove instrumental
variability from the raw light curves. The CBVs are computed based on variability com-
mon to a large sample of stars on the detector, and so in principle represent the systematic
variability. The number of CBVs to use in the reduction is not clear and we therefore
compute several sets of reduced light curves using a sequentially increasing number of
CBVs (up to six) for each star. We require that the variability appears in light curves re-
duced with different numbers of CBVs. This minimizes the risk of variability signatures
that are caused by the reduction.

To measure the rotation period of each star we used the method of Nielsen et al.
(2013). We compute the Lomb-Scargle periodogram (Lomb 1976, Scargle 1982) of each
quarter and identify the peak of maximum power for periods less than 45 days. The
median period of these peaks is used as a first order estimate of the rotation period. We
then assume that active regions appear at similar latitudes, and so should have similar
periods. This is done by requiring that peaks must lie within 4 median absolute deviations
(MAD) from the median. The median and MAD of the remaining peak periods are the
measured rotation period and error on the rotation period. Examples are shown in Fig. 4.2.

2http://keplerscience.arc.nasa.gov/PyKE.shtml
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The rotation periods of these stars measured using this method agree with those found by
García et al. (2014) do Nascimento et al. (2014).

4.4 Comparing asteroseismic and surface variability pe-

riods

In Table 4.1 we list the periods for each analysis. These values are also shown in Fig. 4.3.
The asteroseismic and surface variability periods agree very well for all the stars analyzed
here. However, the asteroseismic rotation period measurements are systematically lower
than those from surface variability. As a first order significance estimate of this difference
we fit a linear function PS = aPA to the measured values. We find the best fit by maximum
likelihood estimation, using the marginalized posterior distributions for the asteroseismic
measurements, and assume Gaussian posterior distributions for the surface variability pe-
riods. The best-fit solution returns a = 1.044+0.068

−0.058, showing that the difference between
the two measurement methods is insignificant (see Fig. 4.3). As a consistency check we
perform an identical fit to the average rotation periods PN from Nielsen et al. (2014), as-
suming Gaussian errors (see Table 4.1). We find a slope of 1.006+0.066

−0.060, in good agreement
with the slope of PA. However, this does not account for the non-Gaussian form of the
marginalized posteriors of the fits performed in that work.

Here we estimate the stellar ages from three different gyrochronology relations pro-
vided by Mamajek and Hillenbrand (2008), Barnes and Kim (2010), and García et al.
(2014). These relations represent distinct methods of estimating gyrochronology ages. In
all these relations, we use the asteroseismic rotation periods from Sect. 4.3.1.

The type of gyro-relation used by Mamajek and Hillenbrand (2008), first proposed
by Barnes (2007), assumes that the rotation period of a star varies as powers of age and
mass, where the B − V color is used as a proxy for the latter. This relation is calibrated to
young cluster stars with ages . 625 Gyr, with only the Sun representing the older stellar
populations. For the stars studied here we use B − V values from Høg et al. (2000), using
extinction values from the KIC catalog (Brown et al. 2011).

The relation by García et al. (2014) is calibrated to stars with asteroseismically deter-
mined ages from Mathur et al. (2012) and Metcalfe et al. (2014). However, this relation
does not include a mass dependence since the calibrators are all similar in mass (∼1M⊙),
and so this relation only depends on the rotation period of the star.

Lastly, the relation by Barnes and Kim (2010) incorporates the effects of a rapid spin-
down phase, experienced by very young stars (∼100 Myr), into the prediction of the
stellar age. This relation uses convective turnover time τ as a proxy for mass, and is also
calibrated using young cluster stars, with the Sun as the only anchoring point for older
stars.

We determine the convective turnover times from stellar models fit to the stellar os-
cillation frequencies (see online material in Nielsen et al. (2014)). These stellar models
are produced using the Modules for Experiments in Stellar Astrophysics (MESA, Paxton
et al. 2011, 2013),
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4.4 Comparing asteroseismic and surface variability periods

Figure 4.3: Surface variability period PS as a function of asteroseismic period PA. The
1:1 line is shown with a black dashed line. The best-fit value and errors to the slope
are shown with red solid and dashed lines, respectively. For comparison the Carrington
period of 27.3 days is also shown (this is not included in the fit).
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Table 4.1: List of measured and computed parameters for the five stars. The stellar masses and radii, core hydrogen fraction Xc, and
convective turnover time τ, as well as the seismic ages are computed from the best-fit models as described in Section 4.5. The effective
temperatures are adapted from Bruntt et al. (2012). The measured surface variability rotation periods PS and asteroseismic rotation periods
PA are also listed. These periods are compared to the averaged asteroseismic rotation periods PN from Nielsen et al. (2014). The PN values
are averages over several sets of oscillation modes. The gyrochronology ages are calculated from Barnes and Kim (2010), Mamajek and
Hillenbrand (2008), and García et al. (2014).

KIC004914923 KIC005184732 KIC006116048 KIC006933899 KIC010963065

Mass [M⊙] 1.118 ± 0.020 1.205 ± 0.025 1.023 ± 0.021 1.096 ± 0.026 1.062 ± 0.021
Radius [R⊙] 1.378 ± 0.009 1.342 ± 0.010 1.225 ± 0.008 1.574 ± 0.025 1.220 ± 0.009
Xc 0.000 0.216 0.036 0.000 0.108
τ [days] 16.94 23.30 34.34 28.25 33.03
Teff[K] 5880 ± 70 5865 ± 70 5990 ± 70 5870 ± 70 6090 ± 70
PS [days] 19.49 ± 3.12 20.69 ± 0.50 17.96 ± 2.11 31.63 ± 1.43 12.27 ± 0.32
PA [days] 17.98+3.17

−2.27 19.44+1.63
−2.13 17.61+0.95

−1.31 29.92+4.90
−6.76 12.01+1.42

−1.09

PN [days] 22.17 ± 3.14 18.00 ± 1.76 16.34 ± 0.89 28.65 ± 5.53 14.45 ± 1.43
Seismic age [Gyr] 6.23 ± 0.36 4.39 ± 0.13 5.70 ± 0.21 6.57 ± 0.30 4.18 ± 0.19

Gyrochronology ages [Gyr]
Barnes and Kim (2010) 2.68+0.95

−0.62 2.72+0.47
−0.54 3.09+0.36

−0.44 5.58+2.42
−1.95 1.97+0.49

−0.34

Mamajek and Hillenbrand (2008) 3.56+1.93
−1.14 2.36+0.63

−0.53 3.36+1.14
−0.82 8.57+3.73

−3.08 4.38+3.77
−1.74

García et al. (2014) 3.25+1.52
−0.95 3.65+1.37

−0.95 3.05+0.92
−0.67 7.83+4.78

−2.84 1.49+0.51
−0.34
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4.5 Gyrochronology

with the same input physics as in Ball and Gizon (2014). Initial fits were determined
using the SEEK method (Quirion et al. 2010) to compare a grid of models to observed
spectroscopic and global asteroseismic parameters. The models cover the mass range
0.60–1.60M⊙ and initial metal abundances Z in the range 0.001–0.040. The helium abun-
dance was presumed to follow the enrichment law Y = 0.245 + 1.45Z and the mixing
length parameter was fixed at α⊙ = 1.908.

As initial guesses, we used the median values of the grid-based fit and also generated
ten random, uniformly-distributed realizations of the parameters. The 11 initial guesses
were optimized in five parameters (age, mass, metallicity, helium abundance, and mix-
ing length) using a downhill simplex (Nelder and Mead 1965) to match spectroscopic
data (Bruntt et al. 2012) and individual oscillation frequencies, computed with ADIPLS
(Christensen-Dalsgaard 2008) and corrected according to the cubic correction by Ball and
Gizon (2014). As in Ball and Gizon (2014), the seismic and nonseismic observations are
weighted only by their respective measurement uncertainties. Best-fit parameters and un-
certainties are estimated from ellipses bounding surfaces of constant χ2 for all the models
determined during the optimizations, corresponding to a total of about 3000 models for
each star.

The best-fit models yield local convective velocities and we use these to compute τ as
in Kim and Demarque (1996), these are listed in Table 4.1. From these values of τ and the
asteroseismic rotation periods from section 4.3.1, we compute the gyrochronology ages
using Eq. 32 from Barnes and Kim (2010) and the suggested calibration values therein.

4.5 Gyrochronology

In addition to providing values of τ, the stellar models also produce estimates of the stellar
ages. In Fig. 4.4 these ages are compared with those derived from the three gyrochronol-
ogy relations. It is immediately obvious that the gyro-relations are in general not consis-
tent with the seismic ages. For some stars a particular gyro-relation may agree well with
the seismic age, but for other stars that same relation deviates significantly, as seen, e.g.,
for the ages from García et al. (2014) and Mamajek and Hillenbrand (2008) relations for
KIC005184732 and KIC010963065. However, it appears that the gyro-relations tend to
underestimate the stellar ages relative to the seismic values.

For the star KIC006933963, the gyro-relations predict an age older than the stellar
models, which is likely because this star is a subgiant, with a slightly contracted core and
expanded envelope. Thus, by angular momentum conservation one expects the surface
and near-surface regions to have slowed down faster than the gyro-relations predict, lead-
ing to an overestimated age. KIC004914923 also appears to be a subgiant based on its
core hydrogen content (see Table 4.1), but close inspection of the best-fit stellar model
shows that this star has only just moved off the main sequence, and so may still adhere to
these gyro-relations.

It should be noted that the errors on the asteroseismic ages are internal errors from
the fit. However, even conservatively assuming a precision of ∼20% on the asteroseismic
ages (Aerts 2015), the two methods of age estimation are still in poor agreement.
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Figure 4.4: Differences between gyrochronology ages and asteroseismic ages for three
different gyrochronology relations. The relations are Mamajek and Hillenbrand (2008),
Barnes (2010), and García et al. (2014).

4.6 Conclusions

We measured the rotation periods of five Sun-like stars, using asteroseismology and sur-
face variability. The measurements show that the asteroseismic rotation periods are ∼4%
lower than those from surface variability, but this was not found to be a statistically signif-
icant difference given the measurement uncertainties. Thus there is no evidence for any
radial (or latitudinal) differential rotation between the regions that the two methods are
sensitive to.

Previous efforts to calibrate gyrochronology relations have focused on measuring ro-
tation from surface variability of cluster stars. Given that rotation periods can be reliably
determined by asteroseismology compared to the surface variability, gyrochronology may
also be applied to very inactive stars for which surface variability rotation periods are not
available.

Our comparison of three different gyrochronology relations from the literature found
that these ages differed by up to several Gyr from the seismic ages. In general, the gyro-
relations seemed to underestimate the stellar ages relative to the asteroseismic ages. It
also demonstrated that the gyro-relations are not internally consistent.

When considering these discrepancies it is important to remember the calibrations
used for each method. The Barnes and Kim (2010) and Mamajek and Hillenbrand (2008)
relations are both calibrated using ages and rotation periods of the Sun and cluster stars,
and so may not accurately predict ages of stars similar to or older than the Sun (e.g.,
Meibom et al. 2015). On the other hand, asteroseismic ages from stellar models are only
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calibrated to the Sun, and in addition are dependent on the input physics and assumptions
of the stellar models (Lebreton and Goupil 2014). The relation by García et al. (2014)
lacks a mass dependent term, in contrast to the two other tested relations. However,
this was not expected to have a remarkable effect since the stars in our sample were
approximately 1M⊙ stars, similar to the calibrators used by García et al. (2014). Despite
this, there is still a discrepancy of several Gyr between the ages derived from this relation
and our seismic ages for some of the stars.

Tighter asteroseismic constraints for stellar modeling will become available when cal-
ibrations are obtained from cluster stars to be observed by space missions like K2 (Chaplin
et al. 2015) and the Planetary Transits and Oscillations of stars (PLATO) mission (Rauer
et al. 2014). This in turn will allow us to reliably use asteroseismic rotation periods to
further refine gyrochronology relations for magnetically inactive field stars.
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5 Discussion: constraining interior

rotational shear

The measurements performed in Chapters 3 and 4 can be used to make more quantitative
statements about the internal rotation profile of the studied stars. We determined that the
difference in the rotational splittings as a function of frequency is not large, consistent
with what would be observed in the Sun if viewed as a star. In addition to this we found
that the spot rotation periods are consistent with the seismic rotation periods; showing
that any radial or latitudinal differential rotation is likely small. In this section we will
use forward modeling with a simple radial step rotation profile and investigate how well
the above mentioned measurements can constrain such a model. This will allow us to
estimate the upper limits of the radial shear at the tachocline.

5.1 Modeling radial differential rotation

The radial step profile that we consider for the radial differential rotation consists of di-
viding the star into two zones: the radiative interior and the convective envelope, and
assuming constant and independent rotation rates for each. Such a rotation profile has the
form

Ω (r) =
{

ΩC 0 ≤ r ≤ rcz

ΩE rcz < r ≤ R
, (5.1)

where ΩC and ΩE are the angular velocities of the radiative interior and convective en-
velope respectively. The point of separation between the two zones, rcz, is the radius of
the base of the convection zone, and R is the stellar radius; both of these quantities are
computed from the stellar models detailed in Chapter 4, and listed in Table 5.1.

The difference of the two rotational velocities ΩE − ΩC gives some indication about
the magnitude of the tachocline shear. This in turn could be used to show to what extent
the tachocline might play a role in the generation of stellar magnetic activity, or how well
the two zone are able to couple and exchange angular momentum.

Using this simple model together with Eq. 1.1 the rotational splitting of a mode mul-
tiplet can be written as

δνnlm = m
ΩC

2π

rcz
∫

0

Knl(r)dr + m
ΩE

2π

R
∫

rcz

Knl(r)dr. (5.2)

Here Knlm(θ, r) from Eq. 1.2 is reduced to its radial component (see derivation in Christensen-
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5 Discussion: constraining interior rotational shear

Figure 5.1: Left: The radial component of one of the rotation sensitivity kernels Knl (r)
for the star KIC004914923. Right: The cumulative integral of the rotation kernel. The
shaded region denotes the integral from the center up to the base of the convection zone
(dashed).

Dalsgaard 2003), such that

Knl (r) =

(

ξ2
r + l (l + 1) ξ2

h
− 2ξrξh − ξ2

h

)

r2ρ

R
∫

0

(

ξ2
r + l (l + 1) ξ2

r

)

r2ρdr

(5.3)

where as before ξr (r), ξh (r), and ρ (r) are computed using ADIPLS and the stellar struc-
ture models from Chapter 4.

The integrals of Knl(r) are constants corresponding to the sensitivity of the modes
to rotation in the respective zones, i.e., δνnlm becomes a weighted average of the rota-
tion velocities ΩC and ΩE. The left frame in Fig. 5.1 shows Knl (r) for an l = 1 for
KIC004914923, while the right frame shows its cumulative integral. This shows that
roughly 40% of the kernel is located below the convection zone, meaning there is still
significant sensitivity to rotation in this region.

5.1.1 Computing the mode set splittings

Equation 5.2 provides the rotational splitting for a single multiplet. However, in Chapter
3 we measured a splitting for a mode set consisting of (n, l = 2), (n + 1, l = 0), and
(n + 1, l = 1). Only the l = 2 and the l = 1 multiplets feel the rotation, so a splitting
for a particular mode set will consist of an average of the two. Since the S/N differs
significantly between the modes (see, e.g., Fig. 3.1) this is a weighted average. Any
computed model splitting for a given mode set must therefore also be weighted in a similar
way. We can therefore write the splitting of a mode set k as

δνk =
w2δνn,l=2 + w1δνn+1,l=1

w2 + w1
, (5.4)
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5.1 Modeling radial differential rotation

Figure 5.2: Computed rotational splittings using different combinations of the weights
w1 and w2 for the star KIC004914923. The weights are varied such that either δνnl=2

or δνn+1,l=1 is weighted completely, as well as even weighting. This translates into a
difference of only a few nHz, showing that the mode set splittings are relatively insensitive
to the choice of weights on the individual l = 1 and l = 2 multiplet splittings, compared
to other noise sources.

where wl is the weight for the multiplet l in the mode set k.

The weights wl are not straightforward to compute from first principles (Gizon 1996).
However, we tested different weights on the individual l = 1, and l = 2 splittings and
found that the choice of wl ultimately plays a very small role in the variation of the mode
set splitting with frequency. Figure 5.2 shows an example of the computed rotational
splittings, using a constant rotation profile ΩC/2π = ΩE/2π = 0.53µHz. The weights are
varied between complete weighting toward either δνnl=2 or δνn+1,l=1, or an even weighting
between the two terms. This shows that the differences in the splittings of the l = 1 and
l = 2 multiplets are on the order of ∼ 5nHz which is much less than the uncertainties of
the measured mode set splittings. For the sake of simplicity we therefore pick the values
w1 = 0.75, and w2 = 0.25.
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5 Discussion: constraining interior rotational shear

Figure 5.3: The marginalized posterior distribution (red) from KIC004914923 of a mode
set k = 3 at ∼1644µHz. The dashed curve shows the smoothed and interpolated histogram
of the posterior distribution which is used as a PDF in Eq. 5.5.

5.1.2 Using only seismic data to constrain the radial shear

Given the measured mode set splittings from Chapter 3 and using Eq. 5.4 we wish to find
the limits of ΩC and ΩE, and thus constrain the radial shear at the base of the convection
zone.

How well the splittings constrain the radial shear can be estimated by computing the
likelihood of observing a set of splittings like those from Chapter 3, given a particular
combination of ΩC and ΩE. The fits to the mode sets in Chapter 3 were performed inde-
pendently of each other, with only the background term being in common between them,
i.e., the splittings are independent. The likelihood is the joint probability of observing
each mode set splitting, so we can compute this by

L (ΩC,ΩE) =
N

∏

k=1

Pk (δνk (ΩC,ΩE)), (5.5)

where N ≈ 6 is the number of mode sets that were fit for a given star, and Pk (δνk (ΩC,ΩE))
is the probability of observing a particular splitting given ΩC and ΩE.
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5.1 Modeling radial differential rotation

Figure 5.4: Correlation plot of ΩE/2π sin i and ΩC/2π sin i for KIC004914923, with the
corner plots showing the MPDs of each parameter.

In Chapter 3 we used an MCMC sampler to find the maximum likelihood in the fit to
each mode set. The burnt-in chains represent samples drawn from the highest probability
region of the posterior distribution of a mode set model, given the power in the corre-
sponding section of the spectrum. Marginalizing over the frequencies, amplitudes, width,
and inclination in the fit, produces the marginalized posterior distribution (MPD) of the
mode set splitting. We can use this to estimate the PDF Pk (δνk) of the splitting for each
mode set, by computing a histogram of the sample obtained from the MCMC chain and
normalizing this to unit integral.

The errors on the splittings will be the main contributor to the uncertainty on the
radial shear. However, as was seen in Fig. 3.3, the rotational splitting of a mode set and
the inclination of the stellar rotation axis are highly correlated. Moreover, since the fits to
the mode sets were done independently the inclinations were poorly constrained, leading
to large errors on the splittings. This can be overcome by using the projected splitting
instead, i.e., δνk sin i. For the purposes of the present work this translates into simply
using Ω(r) sin i to compute the splittings from the model. Figure 5.3 shows an example
of an MPD for one of the mode sets observed in the power spectrum of KIC006116048
(red), and the resulting PDF in dashed black.

Figure 5.4 shows the likelihoods L for a range of ΩE/2π sin i and ΩC/2π sin i, along
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Figure 5.5: A zoom of Fig. 5.4 around the origin for the star KIC004914923. Here the
likelihood from equation 5.5 is shown in black. The surface rotation rates from Chapter 4
are plotted in red, with the shade of red denoting the 68% and 95% confidence intervals.
The dashed line shows solid-body rotation where ΩE = ΩC. The abscissa and ordinate are
shown for clarity.

with the MPDs of the two parameters. From the posterior distributions alone it is clear that
the two parameters are very poorly constrained. The 2σ confidence interval in both cases
is on the order of ±10µHz, orders of magnitude higher than the shear scales observed in
the Sun. Clearly this does not lead to a meaningful constraint on the radial shear.

The likelihood also shows that the two parameters are very tightly anti-correlated.
This means that if a constraint can be placed on ΩE sin i (e.g., from spot rotation) it would
in turn also constrain ΩC sin i , and thereby the size of the radial shear.

5.1.3 Using prior information from surface variability

In Chapter 4 we saw that the rotation rate from surface variability matches that of the
average rotation rate of the entire star as measured by asteroseismology. This was also
found by Gizon et al. (2013) for the star HD52265, and later confirmed by (Benomar
et al. 2015) with v sin i measurements. For solar-like oscillators the mode sensitivity is
weighted toward the envelope and in a band of approximately ±40◦ degrees around the
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5.1 Modeling radial differential rotation

Figure 5.6: Left: Samples drawn from the probability density of (ΩE − ΩC)/2π sin i for
the star KIC004914923, using a uniform spot prior. The dark shaded regions denote the
68% confidence interval for the distribution, and the solid line denotes the median. The
dashed line represents solid-body rotation at ΩE −ΩC = 0. Right: Same as the left frame,
but using the full PDF of the spot period distribution as a prior.

equator (see Fig 1.8 and, e.g., Lund et al. 2014b, Davies et al. 2015). This means that
an average global rotation rate measured by asteroseismology is weighted toward this
region. Since the surface rotation rate was found to agree with this weighted average,
we can make the assumption that the average envelope rotation rate is in turn not very
different. This allows us to use the projected surface rotation rate ΩS sin i in order to
constrain ΩE sin i, and thereby also ΩC sin i.

Note that it is only because of the strong agreement between the average seismic and
surface rotation rates, that we can make this assumption. Naturally, this is not a valid
assumption for all stars. Many fast rotators are known to have near-polar spots (Strass-
meier 2009), and in the presence of strong latitudinal differential rotation, the rotation
rate as measured by those spots will likely differ from the average envelope rotation as
measured by asteroseismology. Therefore, we start by taking the conservative approach
and using the 95% confidence interval of the projected surface rotation rate ΩS/2π sin i as
a uniform prior on ΩE/2π sin i. In Fig. 5.5 we show a zoom of Fig. 5.4 around the origin,
with ΩS/2π sin i plotted in red, where ΩS and sin i are both obtained from Chapter 4. The
shades of red denote the 68% and 95% confidence intervals of ΩS/2π sin i, and dashed
black indicates ΩE = ΩC.

The limits of ΩE − ΩC are found by computing its PDF. This is done by initially
computing the joint probability function of the spot distribution and the asteroseismic
measurements (red and gray respectively in Fig. 5.5), i.e., the overlapping regions. This
provides the most likely solutions for the projected radial shear (ΩE−ΩC) sin i. Figure 5.6
shows samples drawn from the PDF of the projected shear for KIC004914923. The left
frame shows samples drawn using the uniform prior. This interval is given byΩS/2pi sin i

and the corresponding errors listed in Table 5.1. This shows that applying a simple uni-
form prior to the envelope rotation rate excludes a wide range of possible combinations
of ΩC and ΩE.

Alternatively one can instead use the true shape of the ΩS/2π sin i PDF as a prior.
The result of this is shown in the right frame of Fig. 5.6. Using such a prior serves to
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5 Discussion: constraining interior rotational shear

constrain the possible range of ΩE − ΩC even further, moving it closer to the solid-body
configuration. However, this carries with it stronger assumptions about the latitude of the
surface features, relative to the latitude corresponding to the mean rotation of the envelope
as measured by seismology.

The sin i dependence of the projected shear can be removed by instead considering the
relative radial shear (ΩE − ΩC)/ΩE. This uses the assumption that the radiative interior
and convective envelope rotate around the same axis. The relative shear for each of the
studied stars is show in Fig. 5.7, where we have used the full PDF of ΩS/2π sin i. Table
5.1 lists the median and 68% confidence interval of these distributions, along with those
using a uniform prior.

The measured shear values all show a high degree of symmetry around the median,
which tends to lie close ΩE − ΩC = 0, i.e., the solid-body configuration is the most likely
solution. Furthermore, the widths of the distributions show that in these stars the shear
relative to the envelope rotation rate is most likely no greater than ∼ 50%.
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5.1 Modeling radial differential rotation

Figure 5.7: The distributions of relative shear (ΩC −ΩE)/ΩC that are possible for each of
the studied stars, using the full PDF of ΩS sin i as a prior. The shaded region denotes the
68% confidence interval of each distribution, and the solid line is the median. The dashed
line represents solid-body rotation.
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Table 5.1: Median values of the projected surface rotation rate ΩS/2π sin i, and relative shear using two different types of priors. The two
priors are a uniform prior corresponding to the 95% confidence interval of ΩS/2π sin i, and the full PDF of the ΩS/2π sin i. The errors on
the relative shear values denote the 68% confidence interval of each parameter. The radius R and convection zone radius rcz of each star is
computed from stellar models from Chapter 4.

Kepler Object Radius [R⊙] rcz/R
ΩS
2π sin i [µHz] ΩE

2π sin i [µHz]
Seismology alone

(ΩE −ΩC) /ΩE

Uniform prior
(ΩE −ΩC) /ΩE

PDF prior
KIC004914923 1.378 0.724 0.39+0.32

−0.15 0.42+0.02
−0.02 0.68+0.62

−0.66 0.35+0.57
−0.55

KIC005184732 1.342 0.731 0.51+0.08
−0.11 0.55+0.02

−0.02 −0.31+0.26
−0.31 0.06+0.21

−0.25
KIC006116048 1.225 0.757 0.60+0.27

−0.17 0.63+0.02
−0.02 0.23+0.36

−0.41 0.12+0.34
−0.35

KIC006933899 1.574 0.786 0.30+0.10
−0.10 0.34+0.02

−0.03 −0.08+0.47
−0.63 0.18+0.38

−0.45
KIC010963065 1.220 0.714 0.66+0.17

−0.11 0.68+0.03
−0.03 0.18+0.28

−0.31 0.16+0.24
−0.24
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5.2 Conclusion

5.2 Conclusion

In the work presented here we used a combination of asteroseismic measurements and
surface variability, in order to constrain the radial rotational shear inside five Sun-like
stars. We assumed that the radial rotation profile can be approximated by independent,
constant rotation rates for the radiative interior and convective envelope. The above results
show that the rotational splittings found in the previous chapters are consistent with rigid
rotation, but also place upper limits on the scale of the radial shear and we find that the
relative shear likely does not exceed ∼ 50%. These results show that it is possible to gain
insight into the internal rotation of Sun-like stars using the relatively simple procedures
described here.

Our ability to measure the internal rotation of Sun-like stars is limited by the S/N

in the Kepler observations. The PLATO mission (Rauer et al. 2014) promises to change
this. Currently the selection of bright Sun-like stars observed in short cadence by Ke-

pler number in the few tens. PLATO on the other hand will perform observations of
∼ 80 000 F-,G-, and K-type stars with magnitudes less than ∼11, i.e., many more than
are available in the Kepler seismic catalog. This will provide a much greater selection
of bright targets, potentially some that show clear evidence of internal differential rota-
tion. Importantly, it will also be easier to perform ground-based follow-up observations
of these stars. Combined with the more precise asteroseismic measurements, this will
undoubtedly help complete the picture of stellar rotation and its effects.
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S. Deheuvels, G. Doğan, M. J. Goupil, T. Appourchaux, O. Benomar, H. Bruntt, T. L.
Campante, L. Casagrande, T. Ceillier, G. R. Davies, P. De Cat, J. N. Fu, R. A. García,
A. Lobel, B. Mosser, D. R. Reese, C. Regulo, J. Schou, T. Stahn, A. O. Thygesen, X. H.
Yang, W. J. Chaplin, J. Christensen-Dalsgaard, P. Eggenberger, L. Gizon, S. Mathis,
J. Molenda-Żakowicz, and M. Pinsonneault. Seismic constraints on the radial depen-
dence of the internal rotation profiles of six Kepler subgiants and young red giants.
A&A, 564:A27, April 2014. doi: 10.1051/0004-6361/201322779.

P. Delorme, A. Collier Cameron, L. Hebb, J. Rostron, T. A. Lister, A. J. Norton,
D. Pollacco, and R. G. West. Stellar rotation in the Hyades and Praesepe: gy-
rochronology and braking time-scale. MNRAS, 413:2218–2234, May 2011. doi:
10.1111/j.1365-2966.2011.18299.x.

J.-D. do Nascimento, Jr., R. A. García, S. Mathur, F. Anthony, S. A. Barnes, S. Meibom,
J. S. da Costa, M. Castro, D. Salabert, and T. Ceillier. Rotation Periods and Ages of
Solar Analogs and Solar Twins Revealed by the Kepler Mission. ApJ, 790:L23, August
2014. doi: 10.1088/2041-8205/790/2/L23.

V. Domingo, B. Fleck, and A. I. Poland. The SOHO Mission: an Overview. Sol. Phys.,
162:1–37, December 1995. doi: 10.1007/BF00733425.

J.-F. Donati and A. Collier Cameron. Differential rotation and magnetic polarity patterns
on AB Doradus. MNRAS, 291:1–19, October 1997. doi: 10.1093/mnras/291.1.1.

J.-F. Donati, A. Collier Cameron, M. Semel, G. A. J. Hussain, P. Petit, B. D. Carter, S. C.
Marsden, M. Mengel, A. López Ariste, S. V. Jeffers, and D. E. Rees. Dynamo processes
and activity cycles of the active stars AB Doradus, LQ Hydrae and HR 1099. MNRAS,
345:1145–1186, November 2003. doi: 10.1046/j.1365-2966.2003.07031.x.

J.-F. Donati, C. Moutou, R. Farès, D. Bohlender, C. Catala, M. Deleuil, E. Shkolnik,
A. Collier Cameron, M. M. Jardine, and G. A. H. Walker. Magnetic cycles of the
planet-hosting star τ Bootis. MNRAS, 385:1179–1185, April 2008. doi: 10.1111/j.
1365-2966.2008.12946.x.

S. D’Silva and R. F. Howard. Sunspot rotation and the field strengths of subsurface flux
tubes. Sol. Phys., 151:213–230, May 1994. doi: 10.1007/BF00679072.

B. R. Durney, D. Mihalas, and R. D. Robinson. A preliminary interpretation of stel-
lar chromospheric CA II emission variations within the framework of stellar dynamo
theory. PASP, 93:537–543, October 1981. doi: 10.1086/130878.

88



Bibliography

T. L. Duvall, Jr. and J. W. Harvey. Solar Doppler shifts: Sources of continuous spectra.
In D. O. Gough, editor, NATO Advanced Science Institutes (ASI) Series C, volume 169
of NATO Advanced Science Institutes (ASI) Series C, pages 105–116, 1986.

P. Eggenberger, J. Montalbán, and A. Miglio. Angular momentum transport in stellar
interiors constrained by rotational splittings of mixed modes in red giants. A&A, 544:
L4, August 2012. doi: 10.1051/0004-6361/201219729.

R. Fares, J.-F. Donati, C. Moutou, D. Bohlender, C. Catala, M. Deleuil, E. Shkolnik,
A. Collier Cameron, M. M. Jardine, and G. A. H. Walker. Magnetic cycles of the
planet-hosting star τ Bootis - II. A second magnetic polarity reversal. MNRAS, 398:
1383–1391, September 2009. doi: 10.1111/j.1365-2966.2009.15303.x.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC Ham-
mer. PASP, 125:306–312, March 2013. doi: 10.1086/670067.

S. Frandsen, A. Jones, H. Kjeldsen, M. Viskum, J. Hjorth, N. H. Andersen, and B. Thom-
sen. CCD photometry of the δ-Scuti star κˆ2ˆ Bootis. A&A, 301:123, September 1995.

M. Fridlund, A. Baglin, J. Lochard, and L. Conroy, editors. The CoRoT Mission Pre-

Launch Status - Stellar Seismology and Planet Finding, volume 1306 of ESA Special

Publication, November 2006.

C. Frohlich, B. N. Andersen, T. Appourchaux, G. Berthomieu, D. A. Crommelynck,
V. Domingo, A. Fichot, W. Finsterle, M. F. Gomez, D. Gough, A. Jimenez, T. Leif-
sen, M. Lombaerts, J. M. Pap, J. Provost, T. R. Cortes, J. Romero, H. Roth, T. Sekii,
U. Telljohann, T. Toutain, and C. Wehrli. First Results from VIRGO, the Experiment
for Helioseismology and Solar Irradiance Monitoring on SOHO. Sol. Phys., 170:1–25,
1997. doi: 10.1023/A:1004969622753.

H.-E. Fröhlich, M. Küker, A. P. Hatzes, and K. G. Strassmeier. On the differential rotation
of CoRoT-2a. A&A, 506:263–268, October 2009. doi: 10.1051/0004-6361/200911895.

R. A. García, T. Ceillier, D. Salabert, S. Mathur, J. L. van Saders, M. Pinsonneault, J. Bal-
lot, P. G. Beck, S. Bloemen, T. L. Campante, G. R. Davies, J.-D. do Nascimento, Jr.,
S. Mathis, T. S. Metcalfe, M. B. Nielsen, J. C. Suárez, W. J. Chaplin, A. Jiménez, and
C. Karoff. Rotation and magnetism of Kepler pulsating solar-like stars. Towards aster-
oseismically calibrated age-rotation relations. A&A, 572:A34, December 2014. doi:
10.1051/0004-6361/201423888.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, PAMI-6(6):721–741, Nov 1984. ISSN 0162-8828. doi: 10.1109/TPAMI.1984.
4767596.

L. Gizon. LOI/SOHO constraints on oblique rotation of the solar core. In J. Provost and
F.-X. Schmider, editors, Sounding Solar and Stellar Interiors: Poster Volume, volume
181 of IAU Symposium, 1996.

89



Bibliography

L. Gizon and S. K. Solanki. Determining the Inclination of the Rotation Axis of a Sun-like
Star. ApJ, 589:1009–1019, June 2003. doi: 10.1086/374715.

L. Gizon, J. Ballot, E. Michel, T. Stahn, G. Vauclair, H. Bruntt, P.-O. Quirion, O. Beno-
mar, S. Vauclair, T. Appourchaux, M. Auvergne, A. Baglin, C. Barban, F. Baudin,
M. Bazot, T. Campante, C. Catala, W. Chaplin, O. Creevey, S. Deheuvels, N. Dolez,
Y. Elsworth, R. Garcia, P. Gaulme, S. Mathis, S. Mathur, B. Mosser, C. Regulo, I. Rox-
burgh, D. Salabert, R. Samadi, K. Sato, G. Verner, S. Hanasoge, and K. R. Sreeni-
vasan. Seismic constraints on rotation of Sun-like star and mass of exoplanet. Pro-

ceedings of the National Academy of Science, 110:13267–13271, August 2013. doi:
10.1073/pnas.1303291110.

R. Glebocki and P. Gnacinski. VizieR Online Data Catalog: Catalog of Stellar Rotational
Velocities (Glebocki+ 2005). VizieR Online Data Catalog, 3244:0, March 2005.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Communications

in Applied Mathematics and Computational Science, 5:65–80, January 2010. doi: 10.
2140/camcos.2010.5.65.

D. F. Gray. The Observation and Analysis of Stellar Photospheres. September 2005.

M. R. Haas, N. M. Batalha, S. T. Bryson, D. A. Caldwell, J. L. Dotson, J. Hall, J. M.
Jenkins, T. C. Klaus, D. G. Koch, J. Kolodziejczak, C. Middour, M. Smith, C. K.
Sobeck, J. Stober, R. S. Thompson, and J. E. Van Cleve. Kepler Science Operations.
ApJ, 713:L115–L119, April 2010. doi: 10.1088/2041-8205/713/2/L115.

R. Handberg and T. L. Campante. Bayesian peak-bagging of solar-like oscillators us-
ing MCMC: a comprehensive guide. A&A, 527:A56, March 2011. doi: 10.1051/
0004-6361/201015451.

J. D. Hartman, B. S. Gaudi, M. H. Pinsonneault, K. Z. Stanek, M. J. Holman, B. A.
McLeod, S. Meibom, J. A. Barranco, and J. S. Kalirai. Deep MMT Transit Survey of
the Open Cluster M37. III. Stellar Rotation at 550 Myr. ApJ, 691:342–364, January
2009. doi: 10.1088/0004-637X/691/1/342.

J. D. Hartman, G. Á. Bakos, G. Kovács, and R. W. Noyes. A large sample of photometric
rotation periods for FGK Pleiades stars. MNRAS, 408:475–489, October 2010. doi:
10.1111/j.1365-2966.2010.17147.x.

L. Hartmann, R. Hewett, S. Stahler, and R. D. Mathieu. Rotational and radial velocities
of T Tauri stars. ApJ, 309:275–293, October 1986. doi: 10.1086/164599.

J. Harvey. High-resolution helioseismology. In E. Rolfe and B. Battrick, editors, Future

Missions in Solar, Heliospheric & Space Plasma Physics, volume 235 of ESA Special

Publication, pages 199–208, June 1985.

J. W. Harvey, F. Hill, J. R. Kennedy, J. W. Leibacher, and W. C. Livingston. The Global
Oscillation Network Group (GONG). Advances in Space Research, 8:117–120, 1988.
doi: 10.1016/0273-1177(88)90304-3.

90



Bibliography

W. K. Hastings. Monte carlo sampling methods using markov chains and their appli-
cations. Biometrika, 57:97–109, April 1970. doi: 10.2307/2334940. URL http:
//www.jstor.org/stable/2334940.

C. B. Henderson and K. G. Stassun. Time-series Photometry of Stars in and around the
Lagoon Nebula. I. Rotation Periods of 290 Low-mass Pre-main-sequence Stars in NGC
6530. ApJ, 747:51, March 2012. doi: 10.1088/0004-637X/747/1/51.

W. Herbst, J. F. Booth, D. L. Koret, G. V. Zajtseva, H. I. Shakhovskaya, F. J. Vrba,
E. Covino, L. Terranegra, A. Vittone, D. Hoff, L. Kelsey, R. Lines, and W. Barksdale.
Photometric variations of Orion population stars. V - A search for periodicities. AJ, 94:
137–149, July 1987. doi: 10.1086/114456.

W. Herbst, C. A. L. Bailer-Jones, R. Mundt, K. Meisenheimer, and R. Wackermann. Stel-
lar rotation and variability in the Orion Nebula Cluster. A&A, 396:513–532, December
2002. doi: 10.1051/0004-6361:20021362.

W. Herbst, J. Eislöffel, R. Mundt, and A. Scholz. The Rotation of Young Low-Mass Stars
and Brown Dwarfs. Protostars and Planets V, pages 297–311, 2007.

D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Understanding Robust and Exploratory

Data Analysis. Wiley, wiley clas edition, 2000. ISBN 978-0-471-38491-5.

E. Høg, C. Fabricius, V. V. Makarov, S. Urban, T. Corbin, G. Wycoff, U. Bastian,
P. Schwekendiek, and A. Wicenec. The Tycho-2 catalogue of the 2.5 million brightest
stars. A&A, 355:L27–L30, March 2000.

R. Howard and J. Harvey. Spectroscopic Determinations of Solar Rotation. Sol. Phys.,
12:23–51, April 1970. doi: 10.1007/BF02276562.

R. Howe. Solar Interior Rotation and its Variation. Living Reviews in Solar Physics, 6,
February 2009. doi: 10.12942/lrsp-2009-1.

J. Irwin, S. Aigrain, S. Hodgkin, M. Irwin, J. Bouvier, C. Clarke, L. Hebb, and E. Moraux.
The Monitor project: rotation of low-mass stars in the open cluster M34. MNRAS, 370:
954–974, August 2006. doi: 10.1111/j.1365-2966.2006.10521.x.

J. Irwin, S. Hodgkin, S. Aigrain, J. Bouvier, L. Hebb, M. Irwin, and E. Moraux. The
Monitor project: rotation of low-mass stars in NGC 2362 - testing the disc regulation
paradigm at 5 Myr. MNRAS, 384:675–686, February 2008a. doi: 10.1111/j.1365-2966.
2007.12725.x.

J. Irwin, S. Hodgkin, S. Aigrain, J. Bouvier, L. Hebb, and E. Moraux. The Monitor
project: rotation of low-mass stars in the open cluster NGC 2547. MNRAS, 383:1588–
1602, February 2008b. doi: 10.1111/j.1365-2966.2007.12669.x.

J. Irwin, S. Aigrain, J. Bouvier, L. Hebb, S. Hodgkin, M. Irwin, and E. Moraux. The
Monitor project: rotation periods of low-mass stars in M50. MNRAS, 392:1456–1466,
February 2009. doi: 10.1111/j.1365-2966.2008.14158.x.

91

http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940


Bibliography

S. V. Jeffers, J.-F. Donati, E. Alecian, and S. C. Marsden. Observations of non-solar-type
dynamo processes in stars with shallow convective zones. MNRAS, 411:1301–1312,
February 2011. doi: 10.1111/j.1365-2966.2010.17762.x.

J. M. Jenkins, D. A. Caldwell, H. Chandrasekaran, J. D. Twicken, S. T. Bryson, E. V.
Quintana, B. D. Clarke, J. Li, C. Allen, P. Tenenbaum, H. Wu, T. C. Klaus, C. K.
Middour, M. T. Cote, S. McCauliff, F. R. Girouard, J. P. Gunter, B. Wohler, J. Sommers,
J. R. Hall, A. K. Uddin, M. S. Wu, P. A. Bhavsar, J. Van Cleve, D. L. Pletcher, J. A.
Dotson, M. R. Haas, R. L. Gilliland, D. G. Koch, and W. J. Borucki. Overview of the
Kepler Science Processing Pipeline. ApJ, 713:L87–L91, April 2010. doi: 10.1088/
2041-8205/713/2/L87.

S. Jester, D. P. Schneider, G. T. Richards, R. F. Green, M. Schmidt, P. B. Hall, M. A.
Strauss, D. E. Vanden Berk, C. Stoughton, J. E. Gunn, J. Brinkmann, S. M. Kent, J. A.
Smith, D. L. Tucker, and B. Yanny. The Sloan Digital Sky Survey View of the Palomar-
Green Bright Quasar Survey. AJ, 130:873–895, September 2005. doi: 10.1086/432466.

T. Kallinger, B. Mosser, S. Hekker, D. Huber, D. Stello, S. Mathur, S. Basu, T. R. Bed-
ding, W. J. Chaplin, J. De Ridder, Y. P. Elsworth, S. Frandsen, R. A. García, M. Gru-
berbauer, J. M. Matthews, W. J. Borucki, H. Bruntt, J. Christensen-Dalsgaard, R. L.
Gilliland, H. Kjeldsen, and D. G. Koch. Asteroseismology of red giants from the first
four months of Kepler data: Fundamental stellar parameters. A&A, 522:A1, November
2010. doi: 10.1051/0004-6361/201015263.

T. Kallinger, J. De Ridder, S. Hekker, S. Mathur, B. Mosser, M. Gruberbauer, R. A.
García, C. Karoff, and J. Ballot. The connection between stellar granulation and
oscillation as seen by the Kepler mission. A&A, 570:A41, October 2014. doi:
10.1051/0004-6361/201424313.

C. Karoff, T. S. Metcalfe, W. J. Chaplin, S. Frandsen, F. Grundahl, H. Kjeldsen,
J. Christensen-Dalsgaard, M. B. Nielsen, S. Frimann, A. O. Thygesen, T. Arentoft,
T. M. Amby, S. G. Sousa, and D. L. Buzasi. Sounding stellar cycles with Ke-
pler - II. Ground-based observations. MNRAS, 433:3227–3238, August 2013. doi:
10.1093/mnras/stt964.

S. D. Kawaler. Angular momentum loss in low-mass stars. ApJ, 333:236–247, October
1988. doi: 10.1086/166740.

Y.-C. Kim and P. Demarque. The Theoretical Calculation of the Rossby Number and the
“Nonlocal” Convective Overturn Time for Pre-Main-Sequence and Early Post-Main-
Sequence Stars. ApJ, 457:340, January 1996. doi: 10.1086/176733.

R. Kippenhahn, A. Weigert, and A. Weiss. Stellar Structure and Evolution. 2012. doi:
10.1007/978-3-642-30304-3.

H. Kjeldsen. PhD thesis, PhD thesis, University of Aarhus, Denmark, (1992), 1992.

H. Kjeldsen and T. R. Bedding. Amplitudes of stellar oscillations: the implications for
asteroseismology. A&A, 293:87–106, January 1995.

92



Bibliography

H. Kjeldsen and T. R. Bedding. Amplitudes of solar-like oscillations: a new scaling
relation. A&A, 529:L8, May 2011. doi: 10.1051/0004-6361/201116789.

A. Koenigl. Disk accretion onto magnetic T Tauri stars. ApJ, 370:L39–L43, March 1991.
doi: 10.1086/185972.

R. P. Kraft. Stellar Rotation, page 385. 1970.

M. Küker and G. Rüdiger. Differential rotation of main sequence F stars. A&A, 433:
1023–1030, April 2005. doi: 10.1051/0004-6361:20041987.

D. W. Kurtz, H. Saio, M. Takata, H. Shibahashi, S. J. Murphy, and T. Sekii. Asteroseismic
measurement of surface-to-core rotation in a main-sequence A star, KIC 11145123.
MNRAS, 444:102–116, October 2014. doi: 10.1093/mnras/stu1329.

A. F. Lanza, M. L. Das Chagas, and J. R. De Medeiros. Measuring stellar differential
rotation with high-precision space-borne photometry. A&A, 564:A50, April 2014. doi:
10.1051/0004-6361/201323172.

T. P. Larson and J. Schou. Improved Helioseismic Analysis of Medium-l Data from
the Michelson Doppler Imager. Sol. Phys., 290:3221–3256, November 2015. doi:
10.1007/s11207-015-0792-y.

Y. Lebreton and M. J. Goupil. Asteroseismology for ”à la carte” stellar age-dating and
weighing. Age and mass of the CoRoT exoplanet host HD 52265. A&A, 569:A21,
September 2014. doi: 10.1051/0004-6361/201423797.

N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Ap&SS, 39:
447–462, February 1976. doi: 10.1007/BF00648343.

M. Long, M. M. Romanova, and R. V. E. Lovelace. Locking of the Rotation of Disk-
Accreting Magnetized Stars. ApJ, 634:1214–1222, December 2005. doi: 10.1086/
497000.

M. N. Lund, M. Lundkvist, V. Silva Aguirre, G. Houdek, L. Casagrande, V. Van Eylen,
T. L. Campante, C. Karoff, H. Kjeldsen, S. Albrecht, W. J. Chaplin, M. B. Nielsen,
P. Degroote, G. R. Davies, and R. Handberg. Asteroseismic inference on the spin-orbit
misalignment and stellar parameters of HAT-P-7. A&A, 570:A54, October 2014a. doi:
10.1051/0004-6361/201424326.

M. N. Lund, M. S. Miesch, and J. Christensen-Dalsgaard. Differential Rotation in Main-
sequence Solar-like Stars: Qualitative Inference from Asteroseismic Data. ApJ, 790:
121, August 2014b. doi: 10.1088/0004-637X/790/2/121.

A. Maeder. Physics, Formation and Evolution of Rotating Stars. 2009. doi: 10.1007/
978-3-540-76949-1.

A. Maeder and G. Meynet. The Evolution of Rotating Stars. ARA&A, 38:143–190, 2000.
doi: 10.1146/annurev.astro.38.1.143.

93



Bibliography

A. Maeder and G. Meynet. Stellar evolution with rotation and magnetic fields. II. General
equations for the transport by Tayler-Spruit dynamo. A&A, 422:225–237, July 2004.
doi: 10.1051/0004-6361:20034583.

E. E. Mamajek and L. A. Hillenbrand. Improved Age Estimation for Solar-Type Dwarfs
Using Activity-Rotation Diagnostics. ApJ, 687:1264–1293, November 2008. doi: 10.
1086/591785.

J. P. Marques, M. J. Goupil, Y. Lebreton, S. Talon, A. Palacios, K. Belkacem, R.-M.
Ouazzani, B. Mosser, A. Moya, P. Morel, B. Pichon, S. Mathis, J.-P. Zahn, S. Turck-
Chièze, and P. A. P. Nghiem. Seismic diagnostics for transport of angular momentum
in stars. I. Rotational splittings from the pre-main sequence to the red-giant branch.
A&A, 549:A74, January 2013. doi: 10.1051/0004-6361/201220211.

S. Mathur, T. S. Metcalfe, M. Woitaszek, H. Bruntt, G. A. Verner, J. Christensen-
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Appendix





A Clusters used in Fig. 1.1

Table A.1: Clusters and their ages used in Fig. 1.1.

Cluster Age [Myr] Mean Prot Reference

ONC 1. 3.94 Herbst et al. (2002)
NGC6530 1.65 5.04 Henderson and Stassun (2012)
NGC2264 2 2.57 Affer et al. (2013)
NGC2362 5 1.30 Irwin et al. (2008a)
NGC869 13 2.58 Moraux et al. (2013)
NGC2547 40 4.04 Irwin et al. (2008b)
M50 62 2.21 Irwin et al. (2009)
Pleiades 125 3.02 Hartman et al. (2010)
M35 150 3.59 Meibom et al. (2009)
M34 250 4.46 Irwin et al. (2006)
M48 450 7.51 Barnes et al. (2015)
M37 550 7.53 Hartman et al. (2009)
Hyades 600 11.72 Delorme et al. (2011)
NGC6811 1000 10.37 Meibom et al. (2011)
NGC6819 2500 18.25 Meibom et al. (2015)
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B Detrending and corrections in

PDC/msMAP data

A significant long-term trend that spans the entire length of the time series can be thought
of as an unresolved oscillation. The effect in the power spectrum is a high level of red
noise, stemming from what amounts to the window function of a peak with a frequency
less than the minimum frequency of 1/T .

Depending on the purpose of the analysis, one may wish to remove the long term
trends. If the cause of the trends is known and well understood, where ancillary data
shows the exact cause of the variability, it may be removed based on this information. On
the other hand when the nature of the variability is not clear one must apply an empirical
correction method.

Typical effects in the time series may include smooth variations of the measured quan-
tity or discontinuous jumps. The latter can be easily corrected by shifting the data, pro-
vided it is clear that the jumps are not intrinsic to the star. The former is more difficult
to treat, since there may be a smooth transition in both frequency and amplitude between
the instrumental variability and the intrinsic stellar variability. Typically a frequency limit
is set, below which variability is removed either completely or gradually. An example
is fitting polynomials to sections of the time series, the order of the polynomial and the
sections that are fit to define the lower frequency limit1

When considering the data products from the Kepler mission, one must remember
the overall mission statement which is to measure the frequency of exoplanets around
other stars. Any correction and treatment of the produced light curves have therefore
been optimized for detecting exoplanets around a large number of very different stars, an
optimization that may not necessarily coincide with other analyses.

The number of systematic sources of noise in the raw Kepler data is quite extensive
(Christiansen et al. 2013). The most prominent are the perhaps the jumps between each
observing period of three months (quarter). These occur when the satellite rotates to ac-
commodate the change of position in its orbit and the direction of Earth for downloading
data, and so the stars land on different CCDs with slightly different flux response func-
tions. Secondly these rolls also induce temperature changes in the spacecraft, thereby
changing the focus of the telescope (Haas et al. 2010). This causes an overall broaden-
ing of a stars point spread function (PSF). Since the aperture for each star is fixed at the
beginning of each quarter (in post-processing), a broadening of the PSF will cause less
overall light to fall on the aperture. When the spacecraft has reached thermal equilibrium
once more the PSF returns to normal. Similarly if there is a pointing drift of the space-

1This is the basic premise of Savitzky-Golay filtering (Savitzky and Golay 1964).
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B Detrending and corrections in PDC/msMAP data

craft during the observations, some of the pixels will receive less light, also leading to an
overall drop in measured flux.

The PDC (Pre-search Data Conditioning) pipeline is applied before public release of
the data to correct these systematic variations. The details of the pipeline have evolved
considerably over the Kepler mission lifetime, but for the most part have revolved around
the concept of cotrending (Twicken et al. 2010, Jenkins et al. 2010, Stumpe et al. 2012,
Smith et al. 2012). The pipeline attempts to identify variability that is common to a
subset of otherwise quiet stars, and then remove this variability from the entirety of the
observed sample. The idea is that common variability seen in a sample of quiet stars
would represent that induced by the spacecraft and instrumentation, and not be intrinsic
stellar variability.

While this functions well for the objective of detecting planetary transits, it also
strongly reduces the amplitude of variability with periods greater than ∼ 20 day periods,
and almost completely removed variability at periods longer than 30 days. For particu-
larly active dwarf stars where the variability amplitude is high, like the majority of the
stars analyzed in Chapter 2, this pipeline does not necessarily pose a problem. However,
for less active stars like those studied in chapters 3 and 4 more care must be used when
studying periods on long time scales.
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C Measuring rotation with

spectroscopy

For completeness in relation to Chapter 2, a brief description of the measurement of the
projected rotational velocity v sin i is provided here.

The motion of plasma in the photosphere of a star is a superposition of various ve-
locities. These velocities stem from a variety of sources like simple thermal motion,
convective up-welling, turbulence, as well as rotation. The overall effect of a velocity
field on the stellar surface is to Doppler shift the light emitted from the photosphere along
the line of sight to the observer. This broadens any line profiles in a spectrogram taken
from the star.

The velocity fields are not all isotropic, i.e., the granulation motion is predominantly
radial and horizontal at the surface, while rotation velocity is azimuthal. The correspond-
ing Doppler shifts therefore have different effects on the line profiles. This results in a total
line profile consisting of a convolution of broadening profiles from the different effects.

For a rapidly rotating star (tens of km/s or more) the line profiles are dominated by
rotational broadening. In such a case the full width at half maximum of the line is a
good rough estimate of the projected rotation rate v sin i, where i is the angle of the stellar
rotation axis relative to the line of sight to the observer (Gray 2005). For slower rotators
like the Sun however, the rotational velocity becomes comparable to other motions like
turbulent convection. This places more stringent requirements on instrumentation, and
typically results in large relative uncertainties. A model is then usually fit to the spectrum,
or it is compared to synthetic template spectra.

Using the spectroscopic v sin i to estimate surface velocities has the obvious benefit of
only having to measure a single spectrogram of the star. This may be done for tens of stars
during a night, and so building catalogs of hundreds or thousands of stars is relatively easy
and inexpensive. The main problem however, lies in that the measured velocities are only
the two-dimensional projections of the true three-dimensional velocities. To determine
the rotational velocity of the star the inclination of the rotation axis must be used, which
is often difficult to obtain.
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