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Cover figure:
The antisymmetric part of solar rotation, inverted from 6 years of HMI data using iterative
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Summary

The understanding of the solar interior, in particular the subsurface solar flows, is im-
portant for understanding the solar activity cycle. Traditional local helioseismology does
not use all the seismic information encoded in the surface cross-correlation data. The
goal of this thesis is to contribute to the inversion of correlation-based data in local helio-
seismology. We test and validate the potential and applications of iterative helioseismic
holography.
In a first step, we develop an iterative setup. We find that traditional helioseismic holog-
raphy is the first step in an iterative Newton-type inversion procedure. Furthermore, we
show how holographic back-propagation uses the whole seismic information. The method
is validated in a two-dimensional setup for sound-speed and flow field perturbations.
In a second step, we turn our attention to the axisymmetric flow fields in the solar interior.
We validate iterative helioseismic holography on synthetics for differential rotation and
meridional circulation. We show how to achieve sub-wavelength resolution and improved
signal-to-noise ratios. This work provides us with a new framework for the inversion of
real-Sun data.
In a third step, we explore the uniqueness of the parameter identification problem based
on measurements of the cross-covariance at the solar surface. Under certain assumptions
regarding the source covariance, we can establish the uniqueness of interior parameters
and the volumetric source strength using measurements at two distinct heights above the
solar surface and two different frequencies above the solar acoustic cutoff frequency. In
a simplified scenario, we can also attain stability results for the inverse source problem.
This chapter extends existing uniqueness findings to encompass arbitrary advection terms
and wave damping and introduces the source strength as an additional free parameter
while simultaneously relaxing the assumptions on the source covariance. The proof also
outlines a path toward stability and uniqueness results for completely arbitrary source co-
variances.
In the discussion chapter, we present some preliminary results for rotation using iterative
helioseismic holography applied to six years of HMI data. Rotation is not assumed to be
symmetric across the equator in this process. The work in this thesis highlights the great
potential of iterative helioseismic holography, while also pointing out the need to improve
the forward modeling.
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Zusammenfassung

Das Verständnins des Inneren der Sonne, insbesondere von Strömungen unterhalb der
Sonnenoberfläche, ist von zentraler Bedeutung für die Beschreibung des solaren Aktiv-
itätszyklus. Traditionelle Ansätze in der Helioseismologie nutzen nicht die gesamte seis-
mische Information der Oberflächenkreuzkorrelation und beschränken sich zumeist auf
lineare Inversionsprobleme. Das Hauptziel dieser Dissertation besteht darin, zum Ver-
ständnis von korrelationsbasierten Inversionen in der Helioseismologie beizutragen. Zu
diesem Zweck testen und diskutieren wir das Potential und Anwendungen von iterativer
helioseismischer Holographie.
In einem ersten Schritt entwickeln wir einen iterativen Ansatz, indem wir Holographie
als den ersten Schritt in einem iterativen Gauss-Newton-Algorithmus beschreiben. Weit-
erhin zeigen wir wie die gesamte seismische Information durch die holographischen Ab-
bildungen effizient genutzt werden kann. Wir bestätigen das Potenzial der Methode für
Inversionen von Störungen in der akustischen Schallgeschwindigkeit und Flussfeldern in
gleichförmigen 2D-Medien.
In einem zweiten Schritt befassen wir uns mit axisymmetrischen Flüssen im Inneren
der Sonne. Wir testen iterative helioseismische Holographie anhand von synthetischen
Daten für differentielle Rotation und meridionale Flüsse. Dabei zeigen wir, dass iterative
helioseismische Holographie hinsichtlich der räumlichen Auflösung und des Signal-zu-
Rausch-Verhältnis eine Verbesserung darstellt. Dadurch bietet die iterative helioseismis-
che Holographie einen geeigneten Rahmen für Inversionen von realen Sonnendaten.
Unter bestimmten Annahmen bezüglich der Quellkovarianz können wir die Eindeutigkeit
der Parameter und der Quellenstärke im Inneren der Sonne anhand von Messungen an
zwei verschiedenen Höhen über der Sonnenoberfläche und zwei unterschiedlichen Fre-
quenzen über der akustischen Abtrennfrequenz der Sonne nachweisen. In einem vere-
infachten Szenario können wir auch Stabilitätsergebnisse für das inverse Quellproblem
erzielen. Dieses Kapitel erweitert bestehende Erkenntnisse zur Eindeutigkeit, um be-
liebige Advektionsterme und Wellendämpfung zu berücksichtigen, und führt die akustis-
che Quellenstärke als zusätzlichen freien Parameter ein, wobei gleichzeitig die Annahmen
zur Quellkovarianz gelockert werden. Der Beweis skizziert auch einen Weg zu Stabilitäts-
und Eindeutigkeitsergebnissen für vollständig beliebige Quellkovarianzen.
In der Diskussion wenden wir die iterative helioseismische Holographie auf 6 Jahre HMI-
Daten an, mit dem Ziel, sowohl die symmetrischen als auch die antisymmetrischen Kom-
ponenten der solaren differentiellen Rotation zu messen. Diese Analyse zeigt das Poten-
tial der iterativen helioseismischen Holographie und betont gleichzeitig die
Notwendigkeit die Exaktheit des Vorwärtsproblems zu verbessern.
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1 Introduction

1.1 Motivation and outline

The solar activity cycle, which has been observed for approximately 150 years (e.g. Hath-
away 2015), remains a topic of ongoing investigation. While there is a general under-
standing of the dynamics within the solar interior, many questions remain unanswered,
particularly regarding the origin of the solar magnetic cycle. In established solar dynamo
theories such as the well-known Babcock-Leighton mechanism (Babcock 1961, Leighton
1964), large-scale flows, like differential rotation and meridional flows, play a crucial
role in the generation of the poloidal and toroidal magnetic fields. These flows can be
studied through helioseismology, a discipline that examines surface signals of acoustic
and surface-gravity oscillations to infer properties of the solar interior. Global and local
helioseismic inversion strategies have provided a qualitative understanding of the solar
interior, in particular for meridional flows (see Gizon et al. 2020, and references therein)
and differential rotation (see Howe 2009, and references therein). However, a full com-
prehensive quantitative view of the large-scale flows is still lacking, despite the abundance
of continuous acoustic data available from ground-based and space-based telescopes and
the various established approaches to helioseismology. This can be attributed to the chal-
lenge of developing helioseismic tools that can effectively handle the substantial noise
level and accurately probe these flow fields. Traditional helioseismic inversion strategies
often focus on a subset of the available data set, which limits their effectiveness.
In this dissertation, we establish and analyze a novel inversion technique called itera-
tive helioseismic holography. Building upon traditional helioseismic holography, this ap-
proach offers significant improvements by incorporating iteration and leveraging a larger
amount of seismic information compared to traditional local helioseismology techniques,
like normal mode coupling or time-distance helioseismology. Furthermore, the iterative
procedure allows us to tackle non-linear inversion problems in the context of helioseis-
mology.
The thesis begins with an overview of solar oscillations and traditional helioseismic tech-
niques. Chapter 2 introduces the theoretical framework, establishes the well-posedness of
the functional analytic setting, and provides inversion results in a uniform and Sun-like
two-dimensional media. Additionally, we extend the inversions from scalar parameters
to flow fields. In Chapter 3, we present inversion results on synthetic data for differen-
tial rotation and meridional flows within the solar interior. We analyze the performance
of iterative helioseismic holography in terms of the signal-to-noise ratio and the spatial
resolution. In Chapter 4, we discuss the uniqueness of the inverse parameter problem
of helioseismology. In particular, we prove that measurements at two different heights
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1 Introduction

and two distinct frequencies uniquely determine the parameters in the solar interior. Fur-
thermore, we prove the uniqueness of the passive inverse source problem occurring in
helioseismology. Finally, in Chapter 5, we conclude our main results and provide an
outlook for future projects involving iterative helioseismic holography.

1.2 Solar internal structure
Extreme physical conditions characterize the interior of the Sun: The mass of the Sun is
approximately m⊙ = 2 · 1030 kg, which is roughly 200,000 times bigger than the mass of
the Earth. The solar radius is R⊙ = 696 Mm, making it 100 times larger than the radius of
the Earth. The gas temperature at the solar surface is approximately 5777 K.

The parameters in the solar interior used in this thesis, in particular the density and
the sound speed, are based on the solar Model S (Christensen-Dalsgaard et al. 1996), as
shown in Figure 1.1. The solar Model S is validated since it successfully describes the
observed frequencies in the solar power spectrum.

The wave attenuation is modeled as a power law, motivated by studies by Korzennik
et al. (2013) and Larson and Schou (2015), where the attenuation is proportional to the
Full Width at Half Maximum (FWHM) of the wave modes. In this thesis, we model
the stochastic seismic sources as stationary in time and spatially uncorrelated, which is a
standard noise model in the field of helioseismology (e.g. Gizon and Birch 2004, Fournier
et al. 2014).
The solar interior can be divided into three main regions: the solar core (r ≤ 0.2 R⊙),
the radiative zone (r ≤ 0.7 R⊙), and the convection zone (r ≤ 0.7 R⊙). The core of the
Sun is the region where hydrogen burning occurs, with temperatures reaching up to 15
million Kelvin. The energy is transported by radiation when the temperature gradient is
smaller than the adiabatic gradient. In regions with larger temperature gradients, energy is
transported by convection. The transition to convection occurs around 0.7 R⊙ (e.g. Howe
2009). This thesis focuses mainly on the convection zone, where meridional circulation
and differential rotation primarily occur.

1.3 Solar oscillations
In this section, we briefly introduce the theory of solar oscillations. We refer the reader to
Aerts et al. (2010), Christensen-Dalsgaard (2003) for a more detailed view. The turbulent
convection near the solar surface is commonly believed to generate oscillatory waves that
propagate through the solar interior (e.g. Goldreich and Keeley 1977). These oscillations
manifest as observable intensity and velocity variations at the solar surface with periods
of approximately 5 minutes. These surface variations were first discovered by Leighton
et al. (1962) and interpreted as signals from standing acoustic waves trapped in the solar
interior (Ulrich 1970, Leibacher and Stein 1971). A few years later, Deubner (1975)
discovered the characteristic ridge structure of the solar power spectrum (compare with
Figure 1.2).

The normal modes of oscillation are controlled by four fundamental hydrodynamic
equations: the continuity equation, the equation of mass, the Poisson equation for gravi-
tational potential, and the energy equation (e.g. Christensen-Dalsgaard 2003). The modes
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1.3 Solar oscillations

Figure 1.1: The sound speed and density in the solar interior. The solar Model S is
extended to the outer atmosphere with constant sound speed and exponentially decaying
density.

of oscillations are characterized by three quantum numbers: The radial order n, which
specifies the number of radial nodes; the harmonic degree ℓ, which determines the num-
ber of node lines in the horizontal direction; and the azimuthal order m, which determines
the number of node lines in the longitudinal direction. The actual wavefield is a superpo-
sition of multiple normal modes.

The solar oscillations are described as stochastically driven, damped oscillator (e.g.
Houdek 2006, Aerts et al. 2010, Houdek and Dupret 2015) and can be classified into
three distinct categories based on the restoring force (e.g. Gizon and Birch 2005).

• p modes are acoustic waves with a characteristic frequency peak of around 3 mHz.
These waves are excited by convection, with pressure as the restoring force. Be-
cause of the density gradient at the solar surface and the increasing sound speed in
the solar interior, p-modes become trapped in a cavity within the Sun (between the
lower turning point and the upper turning point close to the solar surface). The turn-
ing points depend on the frequency and the harmonic degree. Therefore, p-modes of
different frequencies provide sensitivity to distinct regions within the solar interior.

• g modes, also known as internal gravity modes, are characterized by buoyancy as
the restoring force acting on a parcel of gas. Therefore, g-modes are confined in
the radiation zone and are damped in the convection zone. Consequently, g-modes
exhibit relatively small amplitudes at the solar surface, with estimated upper limits
of around 10 mm/s for a single mode (Appourchaux et al. 2000). Therefore, the
detection of g-modes poses a significant challenge in helioseismology (e.g. Fossat
et al. 2017, Schunker et al. 2018). In contrast to the Sun, g-modes have been ob-
served in a diverse range of stars, including white dwarfs (e.g. Winget and Kepler
2008), B stars (e.g. Waelkens 1991) and subdwarfs B stars (e.g. Green et al. 2003).
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1 Introduction

Figure 1.2: The m-averaged solar power spectrum for medium-ell data from 55 hours of
SOHO/HMI data. Light regions indicate regions of high acoustic power. The characteris-
tic ridge structure of the power spectrum is clearly visible.

• f modes, also known as surface gravity modes, are another type of oscillations
in helioseismology and are comparable to shallow water waves on Earth. These
modes are characterized by gravity acting through buoyancy as the restoring force.
In contrast to p-modes and g-modes, f-modes are primarily present near the solar
surface. As a result, these modes are particularly useful for studying near-surface
layers (e.g. Gizon and Birch 2005).

• r and i modes are toroidal modes of oscillation. Toroidal modes differ from sphero-
idal modes in that they have non-zero radial vorticity (e.g. Unno et al. 1979). These
modes exhibit an oscillatory behavior in a rotating frame, with the Coriolis force
acting as the restoring force. The quasi-toroidal inertial modes of solar oscillation
have only recently been detected and identified (e.g. Löptien et al. 2018, Liang et al.
2019, Mandal and Hanasoge 2020, Gizon et al. 2021).

1.4 Helioseismology
Helioseismology is a scientific discipline that focuses on analyzing solar oscillations to
gain insights into the Sun’s internal structure. It can be divided into two main branches:
global and local helioseismology. Global helioseismology examines the normal modes of
solar oscillations and provides information about the global structure of the Sun. On the
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other hand, local helioseismology studies the local three-dimensional structure of partic-
ular regions in the solar interior. In the following, we will present the basic concepts of
local/global helioseismology, focusing on the most significant achievements over the last
few decades. For applications of helioseismology on different stars, we refer the reader
to the reviews of Christensen-Dalsgaard (2012), Chaplin and Miglio (2013), Basu and
Chaplin (2017).

1.4.1 Global helioseismology

Global helioseismology focuses on global properties such as the eigenfrequencies of nor-
mal modes (e.g. Broomhall et al. 2014, and references therein). The stability of these
eigenfrequencies against small perturbations of the solar structure justifies their use as
reliable indicators (Chandrasekhar 1964). By comparing observed eigenfrequencies with
those predicted by models, researchers can analyze the sound speed and density profiles
within the solar interior (e.g. Christensen-Dalsgaard et al. 1985, Basu and Antia 2010).
These studies have significantly contributed to the understanding of the solar neutrino
problem (e.g. Bahcall 2004).

Frequency splittings, another aspect studied in global helioseismology, provide infor-
mation about the solar differential rotation. In the absence of internal rotation, the modes
are "m-degenerate", meaning the modes with different azimuthal orders have the same
frequency. This degeneracy is broken in the presence of a rotational medium. The result-
ing frequency splittings can be used to infer the solar differential rotation (see e.g. Howe
2009, Schou et al. 1998).

Furthermore, amplitude ratios can be used to measure the solar meridional circulation
(Schad et al. 2012, 2013). It is important to note that global helioseismology is not sen-
sitive to antisymmetries between the northern and southern hemispheres. Attempts to use
cross-spectra between different modes instead of power spectra may introduce systematic
uncertainties that are not fully understood (Woodard et al. 2013).

1.4.2 Local helioseismology

Local helioseismology is a branch of helioseismology that focuses on studying the local
three-dimensional structure of the Sun and large-scale axisymmetric flows. It employs
various methods that analyze the cross-correlation between any two points on the solar
surface. The different techniques are sketched in the following. For a detailed review, we
refer to Gizon and Birch (2005) and Gizon et al. (2010).

The ring-diagram analysis is a technique employed in local helioseismology that ex-
amines the power spectrum obtained from localized patches on the solar surface. This
analysis method shares similarities with global helioseismology (e.g. Hill 1988). In the
ring-diagram analysis, the solar disc is locally projected onto a Cartesian coordinate sys-
tem, and after that, a Fourier transform is applied to the remapped data (e.g. Corbard et al.
2003). In the absence of flows, the waves exhibit no preferred directions, resulting in a
two-dimensional power spectrum, identified by wavenumbers (kx, ky) for fixed frequency,
that takes a ring-like shape. Local perturbations, such as local flows, can introduce asym-
metries to the power spectrum since they are associated with variations in mode frequency
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and wave propagation. The ring-diagram analysis is intensively used in helioseismology,
particularly for the daily study of near-surface flows (e.g. Bogart et al. 2011a,b).

Normal mode coupling involves the analysis of the cross-spectrum of eigenmodes,
which was initially described by Woodard (1989) by adapting techniques from earth seis-
mology. In the absence of flow fields and wave damping, the wave operator is Hermitian
self-adjoint (e.g. Lynden-Bell and Ostriker 1967), resulting in a complete orthonormal
system of eigenfunctions with real eigenvalues. Small perturbations to the reference
medium lead to the coupling of eigenmodes, which can be observed through Doppler-
grams. The normal-mode coupling has garnered increasing interest in the helioseismol-
ogy community due to its sensitivity to the antisymmetric part of internal flow profiles
(e.g. Hanson et al. 2021). It has been employed to investigate meridional flows (e.g.
Schad et al. 2012, 2013), study large-scale subsurface convection (e.g. Woodard 2016),
measure sound speed perturbations (e.g. Hanasoge et al. 2017), examine Rossby modes
(e.g. Hanasoge and Mandal 2019), and analyze supergranular power spectra (e.g. Hanson
et al. 2021).

The Fourier-Hankel method is a technique that decomposes the acoustic p-mode sig-
nals in a circular annulus around a central point into outgoing and incoming components.
This decomposition is achieved using Hankel functions (e.g. Braun et al. 1987, 1988). It
has been demonstrated that sunspots absorb the incoming waves, leading to a phase shift
between the incoming and outgoing waves (e.g. Braun et al. 1987, Braun 1995). There-
fore, the Fourier-Hankel method is a diagnostic tool for studying and analyzing sunspots.
The Fourier-Legendre analysis follows the same principle, but instead of using Hankel
functions, it is based on Legendre functions. The Fourier-Legendre analysis is used to
gain information about the solar meridional circulation (e.g. Braun and Fan 1998, Roth
et al. 2016).

Time-distance helioseismology analyses the travel time of wave packets between two
specific points on the solar surface (Duvall et al. 1993). The observed travel times are
compared to a reference solar model to compute travel time shifts. Time-distance helio-
seismology is very sensitive to subsurface flows and inhomogeneities in sound speed. It
is used to study supergranules (e.g. Gizon et al. 2003, Langfellner et al. 2018), the so-
lar meridional flow (e.g. Giles 2000, Böning 2017), subsurface flows of active regions
(e.g. Braun 1997, Gizon et al. 2009). Time-distance helioseismology shares similarities
to travel-time tomography, well-established in geoseismology, which is used to study the
interior of the Earth (e.g. Inoue et al. 1990, Woodward and Masters 1991, van der Hilst
et al. 1997).

Finally, there is helioseismic holography, developed by Lindsey and Braun (1990) and
Braun et al. (1992) to encounter subsurface anomalies in active regions. The fundamental
concept behind helioseismic holography is that the wavefield at any desired location in
the solar interior can be estimated by the egression and ingression of p-mode waves at
the solar surface (Lindsey and Braun 1997). The most notable application of helioseismic
holography is the detection of active regions on the far side of the Sun (e.g. Lindsey and
Braun 2000a,b, Braun and Lindsey 2001, Zhao et al. 2019, Yang et al. 2023). In addition
to far-side imaging, helioseismic holography has been successfully employed in studying
various aspects of solar phenomena, such as solar convection (e.g. Braun et al. 2004,
2007), active region emergence (e.g. Birch et al. 2016, Birch et al. 2019, Braun 2019),
sunspot subsurface structure (e.g. Braun and Birch 2008b, Birch et al. 2009), imaging of
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wave sources (e.g. Lindsey et al. 2006) and to study sun quakes caused by solar flares
(e.g. Besliu-Ionescu et al. 2017).

1.5 Observations
In helioseismology, the main observables are intensity and velocity fluctuations at the
solar surface. In this thesis, we focus on using Dopplergrams, which are maps of line-
of-sight velocities obtained by measuring Doppler shifts of a spectral line at a specific
location on the Sun’s visible disk.

Nowadays, there are three major data sets available for local helioseismology:

• The Solar and Heliospheric Observatory (SOHO) was launched in 1995 and carries
the Michelson Doppler Imager (MDI, Scherrer et al. (1995)). The MDI data covers
the period from 1996 to 2011. The instrument has a cadence of 60 seconds and
operates in two programs. The dynamic program runs for 2–3 months annually and
provides high-resolution images of 1024x1024 pixels. The structure program runs
continuously throughout the year but provides lower-resolution images of 192x192
pixels.

• The Solar Dynamics Observatory (SDO) was launched in 2011 as the successor to
SOHO. Onboard the SDO is the Helioseismic and Magnetic Imager (HMI, Scher-
rer et al. (2012), Schou et al. (2012)). HMI provides full-resolution images of
4096x4096 pixels with a cadence of 45 seconds. Furthermore, small-resolution
images of 204x204 pixels are created to merge the time series with the older MDI
data.

• The Global Oscillation Network Group (GONG, Harvey et al. (1996)) is a network
of six identical telescopes distributed across the whole globe to secure continuous
and uninterrupted observations. The merged GONG data has been available since
1996. Before 2001, the data had a resolution of 251x251 pixels; after 2001, it had a
resolution of 839x839 pixels. The cadence of the GONG data is 60 seconds, making
it directly comparable to the space-based observations of MDI and HMI.

1.6 Large-scale flows
One primary purpose of this thesis is the inversion of large-scale flows in the solar interior.
Therefore, we will briefly introduce solar differential rotation and meridional flows.

1.6.1 Differential rotation
We refer the reader to Howe (2009) for a detailed review of solar differential rotation. Al-
though the existence of solar differential rotation has been known since the early 17th cen-
tury through tracking of sunspots, a quantitative analysis of differential rotation became
possible only about 40 years ago with the invention of helioseismology. Helioseismic
methods enable us to study the differential rotation in detail and its role in the solar cycle.
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Figure 1.3: Solar differential rotation in the solar interior, obtained from global helioseis-
mology (Larson and Schou 2018). The differential rotation varies from the equator to the
poles and in radial depth. The different regions are described in the text.

The differential rotation is believed to be responsible for converting the toroidal magnetic
field to a poloidal magnetic field through the Ω-effect (Parker 1955, Charbonneau 2010).
Furthermore, the solar rotation as the most prominent deviation from spherical symmetry
in the Sun requires accurate modeling to study smaller effects.
In Figure 1.3, we present the current picture of differential rotation in the solar interior.
The rotation rate is usually modeled as constant along lines inclined at an angle of 25◦ to
the rotation axis (e.g. Howe et al. 2005). This general picture and the temporal variations
of the rotation rate have been confirmed by numerous inversions and analyses (e.g. Basu
and Antia 2000, Beck 2000, Howe 2009, Howe et al. 2011).
The rotation of the solar core is studied by frequency shifts obtained from low-degree
modes, starting with Claverie et al. (1979). To date, ascertaining the rotation rate within
the solar core remains a challenge due to the extremely small frequency shifts. This
necessitates observations at low frequencies with correspondingly low amplitudes (e.g.
Chaplin et al. 2004). Therefore, sensitivity is limited, and a precise understanding of the
rotation rate in the convection zone is necessary to constrain the core rotation. The in-
verted rotation rates in the solar core range from values similar to those at the bottom of
the convection zone up to 1227 ± 10 nHz (Fossat et al. 2017).

The tachocline is a distinct region found at the base of the solar convection zone at
approximately 0.71 solar radii. It exhibits a significant radial and latitudinal shear in the
rotation profile. The existence of the tachocline was initially identified by Spiegel and
Zahn (1992) following predictions from dynamo modeling that suggested the presence of
a deep shear layer with an inwards increasing rotation rate (Parker 1987). This discovery
resolved the issue of a missing radial shear within the convection zone (Brown et al. 1989).
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While a couple of studies have confirmed the location of the tachocline, the thickness
remains unclear. This is primarily due to the limitations imposed by the low resolution
of modes with lower turning points near the base of the convection zone (ℓmax ≈ 20).
Furthermore, why the shear in the tachocline does not propagate into the radiative core
of the Sun remains an unresolved question. Various mechanisms for stabilizing the shear,
such as g-modes, fossil magnetic fields, and turbulent flows, have been proposed and
discussed in Miesch (2005).

Another shear layer exists near the solar surface. This shear layer is known as the
near-surface shear layer (NSSL) and extends to a depth of up to 15 Mm. The presence of
this shear layer was initially identified through the discrepancy between sunspot tracking
and Doppler data at the solar surface (e.g. Brown et al. 1989, Beck 2000). The NSSL can
be investigated using frequency splits of f-modes (e.g. Corbard and Thompson 2002), as
well as through local helioseismology techniques (e.g. Basu et al. 1999). The NSSL ap-
pears to be nearly symmetric between the northern and southern hemispheres, with only
minor differences. It remains an open question whether there is a sign change in the radial
gradient between the equator and the poles (e.g. Corbard and Thompson 2002).
The differential rotation has some time-dependent components. Firstly, there are torsional
flows with migrating bands, which are regions of faster or slower rotation than the aver-
age zonal flow. The occurrence of these time-dependent torsional flows is often associated
with the equatorward drift of sunspots. Additionally, bands of slower rotation are corre-
lated with greater magnetic flux (Komm et al. 1993a), with a slight asymmetry between
the faster and slower bands (Vorontsov et al. 2002). In modeling, the torsional flow is
interpreted as a magnetic side effect arising from the Lorentz force of dynamo waves (e.g.
Schuessler 1981), Reynolds stresses (e.g. Kueker et al. 1996), or geostrophic flows (e.g.
Spruit 2003).
The most important unresolved questions include:

• Is there symmetry in solar rotation between the hemispheres?

• What is the nature of the NSSL at high latitudes?

• Are there variations and inhomogeneities present in the tachocline?

It should be noted that there is no complete model for the solar dynamo that can account
for all the observed phenomena (e.g. Howe 2009).

1.6.2 Meridional flows
Meridional flows play a crucial role in the context of differential rotation, as angular mo-
mentum conservation drives a tendency towards uniform rotation. This tendency gives
rise to a poleward flow near the solar surface (e.g. Miesch 2005). Meridional flows are a
fundamental component in solar dynamo theories since they enable the transport of mag-
netic flux to the poles, contributing to the creation of the poloidal magnetic field (e.g. Brun
and Rempel 2009, Cameron et al. 2017). The deep meridional flow transports toroidal
magnetic flux from the poles to the equator and is significant for the understanding of
butterfly diagrams (e.g. Charbonneau 2010).

Extensive studies have been conducted on meridional flows, starting with the initial
detection of surface poleward flows of approximately 20 m/s by Duvall (1979). The solar
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meridional circulation near the surface has been well-characterized through various in-
struments and inversion techniques, including magnetic feature tracking (e.g. Hathaway
and Rightmire 2010), Doppler shifts (e.g. Hathaway 1996, Ulrich 2010), time-distance
helioseismology (e.g. Giles et al. 1997, Beck et al. 2002, Zhao and Kosovichev 2004,
Liang et al. 2018, Gizon et al. 2020), ring-diagram analysis (e.g. Haber et al. 2002, Basu
and Antia 2010) and Fourier-Hankel analysis (e.g. Braun and Fan 1998, Krieger et al.
2007). Nevertheless, different inversion techniques with different data sets have yielded
divergent results in the deep solar interior. These results include multiple cells in depth
(e.g. Zhao et al. 2013), multiple cells in latitude and depth (e.g. Schad et al. 2013), or a
single cell per hemisphere over the entire convection zone (e.g. Rajaguru and Antia 2015,
Gizon et al. 2020). Some of these differences may be attributed to different observation
durations, a different treatment of the center-to-limb effect (Zhao et al. 2012), and the
systematic effects connected to surface magnetic fields (e.g. Liang and Chou 2015a,b).
Gizon et al. (2020) showed that the GONG and MDI time series give a single-cell solu-
tion, while the HMI travel times contain a small systematic offset, which remains to be
explained. Overall, helioseismic studies of the deep meridional flow are challenging.

Moreover, the surface meridional flows vary with solar activity level. The fluctuating
component of meridional circulation is directed inward active regions close to the surface
(e.g. Gizon et al. 2001, Gizon 2004, González Hernández et al. 2008, Komm et al. 1993b)
and outward in deeper regions (e.g. Komm et al. 2005, Gizon and Rempel 2008). The
active region inflows have been attributed to horizontal pressure gradients associated with
the active regions (Spruit 2003). Furthermore, Mahajan et al. (2023) find that there is a
small component of the temporal variations of the meridional flow, which is not associated
with active regions and is seen during solar cycle minima.

1.6.3 Other flow fields
Additional flow fields exist in addition to the axisymmetric flow fields, solar differential
rotation and meridional circulation. The following flow fields are not investigated in
this thesis. However, they hold promise as potential domains for future applications of
iterative helioseismic holography.

• Supergranulation and large-scale convection. Supergranulation refers to a dy-
namic cellular flow pattern in the solar convection zone. These cells have an av-
erage size of approximately 30 − 35 Mm (e.g. Leighton et al. 1962, De Rosa and
Toomre 2004, Meunier et al. 2007) and a lifetime of 1–2 days (Rincon and Rieu-
tord 2018). Supergranular flows can be measured using local correlation tracking
of granulation (e.g. Rieutord et al. 2007, Langfellner et al. 2015, Gottschling 2021)
and time-distance helioseismology (e.g. Gizon et al. 2000, 2003). Supergranulation
has mysterious wave-like properties (e.g. Gizon et al. 2003, Schou 2003, Langfell-
ner et al. 2018). Besides supergranulation, iterative helioseismic holography can
potentially be applied to learn about convective structures at larger scales too.

• Evershed flows Evershed flows were first discovered by Evershed (1909) and are
characterized by a radially outward plasma motion within sunspots. The peak ve-
locity of Evershed flows is around 6 km/s (e.g. Shine et al. 1994, Solanki 2003,
Siu-Tapia et al. 2018). For more details on the Evershed flow, we refer to Solanki
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Figure 1.4: The meridional circulation for solar cycle 23 in the solar convection zone. The
inversions show a one-cell profile for the meridional circulation. The image is created
with inversion results from Gizon et al. (2020).

(2003). In current research, the Evershed flow is described as the horizontal compo-
nent of a convective flow occurring within an inclined magnetic field (e.g. Scharmer
et al. 2008).

• Moat flow Moat flows are flow fields which extend around 30 Mm and are pointing
radially away from sunspots (e.g. Sheeley 1972). The horizontal velocities typi-
cally range from 500 m/s to 1000 m/s (e.g. Sobotka and Roudier 2007). The moat
flows are measurable in the near-surface layers with the technique of time-distance
helioseismology (Gizon et al. 2000).

• Inflows around active regions Inflows around active regions with a velocity of
approximately 50 m/s were first detected by Gizon et al. (2001) and subsequently
confirmed by numerous studies (e.g. Haber et al. 2004, Braun 2019)). Various ex-
planations have been proposed to account for these inflows, ranging from tempera-
ture gradients caused by radiative surface cooling (e.g. Spruit 2003) to convection
in large-scale magnetic fields resulting in a reduction in magnetic pressure (e.g.
Brandenburg et al. 2016). It is widely accepted that inflows around active regions
play a significant role in the solar dynamo (e.g. Cameron and Schüssler 2012).

• Flows associated with inertial modes. Inertial modes of oscillations are observed
at the solar surface in the two horizontal components of velocity. The surface am-
plitudes of these modes are typically of order 1 m/s (e.g. Löptien et al. 2018) and at
most 20 m/s for the m = 1 high-latitude mode (e.g. Gizon et al. 2021). One of the
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value meaning
c0 6855 m/s constant sound speed in the upper solar atmosphere
ρ0 2.886 · 10−6 kg/m3 density at the end of solar Model S
H 125 km density scale height in the upper atmosphere

Table 1.1: Parameters used to model the upper solar atmosphere. This model smoothly
extends solar Model S (Christensen-Dalsgaard et al. 1996) to the upper atmosphere.

future goals of helioseismology is to map the inertial mode eigenfunctions in the
subsurface layers.

1.7 Forward and inverse problem
The starting point in local helioseismology consists of time series of Dopplergrams. Dopp-
lergrams are two-dimensional maps of the line-of-sight-velocity at the solar surface.
In this thesis, we focus on a scalar wave equation obtained by neglecting gravity in the
equation of stellar oscillations (e.g. Lynden-Bell and Ostriker 1967). In the presence of a
moving heterogeneous background medium, Gizon et al. (2018) approximated the acous-
tic wavefield ψ = ρ1/2c2∇ · ξ by

−(∆ + k2)ψ −
2iω
ρ1/2c

ρu · ∇
ψ

ρ1/2c
= s, (1.1)

where c is the sound speed, ρ is the density, u is the flow field, ξ is the wave displacement
vector and s is the stochastic source term. The wavenumber k is given by

k2 =
ω2 + 2iωγ

c2 − ω2
c ,

where ω is the frequency, γ is the damping rate and ω2
c = ρ

1/2∆(ρ−1/2)/c2 is the squared
acoustic cutoff frequency. Instead of employing a Sommerfeld outgoing radiation condi-
tion at infinity, which can be modeled with perfectly matched layers, atmospheric bound-
ary conditions are applied on the boundary of a finite computational domain.

Helioseismology is a passive imaging problem since we image an unknown medium
with uncontrolled acoustic sources. Unlike active imaging, where the sources are con-
trolled, in passive imaging, the seismic sources (such as turbulent motions near the so-
lar surface in helioseismology) are unknown, and only their probability distribution is
known. Passive imaging problems are widely studied in various fields, including (helio-
)seismology, synthetic aperture radar, ocean acoustics, and many further applications (e.g.
Garnier and Papanicolaou 2016). The key concept in passive imaging is to extract the
Green’s function from the passive data. The Green’s function contains the complete
physical information needed for imaging and, in numerous instances, can be obtained
by applications of the Kirchhof theorem.
The central subject of study in local helioseismology is the temporal cross-correlation C
between oscillation signals at two points r1 and r2 on the solar surface:

C(r1, r2, t) =
1
T

∫ T/2

−T/2
ψ(r1, t′)ψ(r2, t′ + t) dt′, (1.2)
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Figure 1.5: Synthetic normalized cross-covariance for a spherical symmetric background
as a function of time lag for three different angular distances between the two points. The
different skips are clearly visible.

where T is the duration of observation and ψ(r, t) represents the wavefield at position r and
time t. The cross-correlation provides the whole seismic information available in helio-
seismology. Figure 1.5 presents a synthetic cross-covariance function using solar Model S
(Christensen-Dalsgaard et al. 1996). The wave packets are clearly visible and correspond
to the 1-skip, 2-skip, and 3-skip travel paths. Based on these plots, it is possible to infer
the travel times for waves traversing between two points on the solar surface.

HMI provides high-resolution Dopplergrams with a grid size of 4096x4096. This
leads to approximately 1013 independent possible cross-correlations every 45 s. These
two-point covariance measurements contain the whole amount of available seismic data,
which can be used to infer the Sun’s internal structure. Nevertheless, directly studying
the correlation data is not feasible due to its sheer size. Therefore, certain averaging tech-
niques must be introduced in frequency and spatial domains to handle the data volume
effectively.
Furthermore, the Doppler data obtained from HMI is noisy due to the stochastic excita-
tion of solar oscillations. Various averaging schemes have been employed to reduce the
necessary amount of data and improve the signal-to-noise ratio. These schemes include
"point-to-annulus geometry" (e.g. Duvall et al. 1993), "point-to-quadrant geometry" (e.g.
Duvall et al. 1997) and "arc-to-arc geometry" (e.g. Liang et al. 2017). These averaging
schemes enhance the detectability of the desired seismic signals.
Nevertheless, traditional approaches use only a subset of the complete covariance data.
These methods effectively capture weak perturbations such as supergranular and merid-
ional flows in time-distance helioseismology or rotational splittings in global helioseis-
mology. The inversion of these measurements can often be reformulated as a linear kernel
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equation (Christensen-Dalsgaard 2003):

di =

N∑
j=1

∫
⊙

K j
i (r)δq j(r) d3r + ni, (1.3)

where di is the data, K is the sensitivity kernel, δq is the perturbation to the solar back-
ground medium, ni the noise term and r the three-dimensional point vector. The index i
denotes different helioseismic measurements.

The forward problem and the accuracy of sensitivity kernels in the modeling process
can be improved, leading to advancements in inversion techniques. Sensitivity kernels
can be computed using either the ray approximation (e.g. Kosovichev 1996, Kosovichev
and Duvall 1997) or the Born approximation (e.g. Birch and Kosovichev 2000, Gizon
and Birch 2002). The ray approximation assumes infinite wavelengths along the ray
path, while the Born approximation considers a finite wavelength away from the ray path.
Therefore, the Born approximation has sensitivity away from the ray path. In this thesis,
we use the Born approximation to calculate the sensitivity kernels and cross-correlations
based on Green’s functions, following the methods proposed by Chabassier and Duruflé
(2016) and Gizon et al. (2017). The computation of the solar Green’s function is computa-
tionally expensive due to the strong density gradient close to the solar surface. Therefore,
the calculation of the solar Green’s function is still under improvement (Preuss et al. 2020,
Faucher et al. 2021). Because of the substantial gradients near the solar surface, a refined
finite element grid is necessary, leading to a significant count of degrees of freedom (see
Figure 1.6, generated using Ngsolve). For instance, in the two-dimensional case with a
resolution of 10 degrees of freedom per local wavelength, we need approximately 106

degrees of freedom, while in the three-dimensional case with a similar spatial resolution,
we need around 109 degrees of freedom.

In addition to enhancing the accuracy of the forward problem, we are considering im-
provements to the inversion technique. Linear kernel equations are commonly inverted
using optimally localized averages (OLA) (Backus and Gilbert 1968), subtractive op-
timally localized averages (SOLA) (e.g. Pijpers and Thompson 1994, Jackiewicz et al.
2012, Böning 2017), regularized linear squares (RLS) (e.g. Kosovichev 1996, Giles et al.
1997, Giles 2000, Rajaguru and Antia 2015), least-square QR (LSQR) (e.g. Zhao et al.
2013) or Pinsker estimator (Fournier et al. 2016).
OLA/SOLA relies on minimizing the distance between the averaging kernel and a tar-
get function, typically sharply centered around the target location. In the field of inverse
problems, this approach is also known as the method of approximate inverse (e.g. Louis
and Maass 1990, Schuster 2007).
RLS, also known as Tikhonov regularization in the inverse problems community (e.g.
Tikhonov and Arsenin 1977), aims to minimize the squared data error by simultaneously
incorporating a regularization term to achieve a smoother solution. LSQR is based on the
same idea but additionally uses the sparseness of the sensitivity kernel.
On the other hand, the Pinsker estimator addresses the inversion problem from a statis-
tical perspective by minimizing the minimax linear risk (e.g. Fournier et al. 2016). In
deterministic inverse problems, various methods have optimal convergence properties. In
contrast to this, the Pinsker estimator is the only minimax linear estimator in statistical
inverse problems (Pinsker 1980).
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Figure 1.6: The two-dimensional mesh generated using NgSolve (Schoeberl 1997, 2014)
at 2 mHz. There is a need for a fine structure in the outer regions of the Sun to model the
strong density variations in this region.

While full-waveform inversions are more common in geoseismology (e.g. Fichtner et al.
2008, Fichtner 2010, Virieux and Operto 2009), they are rarely used in helioseismology
(Hanasoge and Tromp 2014). This can be attributed to the large amount of data and the
computational costs associated with computing the sensitivity kernels.
In this thesis, we intend to solve a nonlinear passive parameter inverse problem in helio-
seismology. To tackle this kind of problem, we have several algorithmic options at our
disposal, such as Landweber iteration (Hanke et al. 1995), iteratively regularized Gauss-
Newton method (Bakushinskii 1992) or Newton Conjugate Gradient Methods (Hanke
1997). These methods are particularly interesting for helioseismology because the com-
putation of sensitivity kernels can be avoided. Furthermore, these methods are well-suited
for parallel processing. In this thesis, we develop an inversion setup that further avoids
the computation of the surface cross-correlation data.
The passive imaging problem in helioseismology shares significant similarities with the
classical parameter identification from Cauchy data at parts of the surface (the traditional
Calderón problem). The Calderón problem has been intensively studied since 1980 (e.g.
Calderón 1980). For an overview of the achievements from a theoretical perspective,
we refer to Uhlmann (2012-2013). The discussion is based on complex geometric op-
tics solutions, which are introduced by Sylvester and Uhlmann (1986) and Sylvester and
Uhlmann (1987).
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1.7.1 Implementation of forward problem
The whole physics is encoded in the Green’s function. It is helpful to scale the Sun to the
unit ball using the coordinate transformation x′ := x/R⊙ and r′ := |x′|/R⊙, where R⊙ rep-
resents the solar radius. By applying the parameter transformation introduced by Barucq
et al. (2020), the relevant quantities can be expressed in terms of the scaled coordinates
as follows:

ρ′(x′) := ρ(R⊙x′), c′(x′) :=
c(x′R⊙)

R⊙
, γ′(x′, ω) := γ(x′R⊙, ω),

u′(x′) :=
u(x′R⊙)

R⊙
, s′(x′, ω) :=

s(x′R⊙, ω)
R2
⊙

.

Under the assumptions of spherical symmetry and a vanishing flow field, the Green’s
function can be decomposed into spherical harmonics, where the modes solve the ordinary
differential equation:

−1
r′2
∂r′

(
r′2∂r′Gl(r′, ·)

)
+

(
l(l + 1)

r′2
+
−ω2 − 2iωγ′

c′2
+ ω′2c

)
Gl(r′, ·) =

1
r′2
δ(r′ − ·).

The Green’s function is computed for all locations in the interval [0,R′a], where Ra

denotes the outer boundary of the atmospheric model. This thesis uses the atmospheric
model Atmo, which smoothly extends the solar Model S to the outer atmosphere. In
the outer solar atmosphere, the density is modeled by an exponential decay of the form
ρ(r) = ρ0 exp(−(r − Ra)/H), where H is the density scale height at the end of solar Model
S. Furthermore, we assume a constant acoustic sound speed throughout the solar atmo-
sphere. The parameters used in the model are summarized in Table 1.1. Alongside this
Atmo model, there are empirical atmospheric models such as VAL models (e.g. Vernazza
et al. 1981) of the solar atmosphere. Usually, VAL models are smoothly connected to
the end of solar Model S (Fournier et al. 2018). In contrast to the Atmo model, which is
capable of modeling the lower chromosphere, VAL can reproduce the temperature jump
in the solar atmosphere.
In this dissertation, the Atmo-model is composed of an atmospheric boundary condition.
Possible choices are discussed in Fournier et al. (2018) and are usually approximations
to the exact boundary equation, obtained in terms of Whittaker functions (Barucq et al.
2020, Preuss 2021). At r′ = 0, we apply the boundary condition lim

r′→0
r′−lGl(r′, s′, ω) = 0

to guarantee the smoothness of the Green’s function. The computed power spectrum is
compared with observed MDI data in Figure 1.7 using 1.5D code. Here, we have used
a frequency resolution of 600 frequencies in the presented frequency range. This corre-
sponds to observation times of 24 h of Dopplergrams, a typical time range for holography.
The matching between the synthetic model and the observations is remarkable.
Large-scale flows like meridional circulation and differential rotation can be effectively
studied using a 2.5D code. The theoretical background is presented in Gizon et al. (2017).

1.7.2 Iteratively regularized Gauss-Newton method
The nonlinear inversion problems are addressed using iterative inversion techniques, par-
ticularly iteratively Gauss-Newton methods (IRGNM). Consider a nonlinear, Fréchet dif-
ferentiable operator: F : X → Y, where X and Y are assumed to be Hilbert spaces. We
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Figure 1.7: Comparison of the synthetic power spectrum and MDI data. The synthetic
power spectrum is computed using 1.5D code in a spherical symmetric setting. The MDI
data is obtained from Korzennik et al. (2013).

aim to solve the ill-posed nonlinear inversion problem:

F(u) = gobs, (1.4)

where gobs is the observed data. The fundamental idea behind IRGNM is to linearize the
problem and was first described by Bakushinskii (1992) for the case of Hilbert spaces.
In the neighborhood of an approximation un, we approximate the nonlinear operator F
using its first Taylor approximation. The iterative update can be found as a solution to the
equation:

F(un) + F′(un)(un+1 − un) = gobs. (1.5)

Typically, the Problem (1.5) is ill-posed, so we solve the equation with an additional
regularization. The generalized step can be expressed as:

h ∈ argminh̃∈X

[
∥F(un) + F′(un)h̃ − gobs∥Y + αnR(un + h̃)

]
un+1 = un + h,

(1.6)

where αn is the regularization parameter and R is the penalty term. We have freedom
in the choice of the regularization term. For instance, the famous Levenberg-Marquardt
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algorithm is one special case of IRGNM (Levenberg 1944, Marquardt 1963). The regular-
ization parameters are typically chosen such that αn → 0, 0 < αn+1

αn
< 1. Throughout this

thesis, we choose αn = pnα0 for some real number 0 < p < 1. The inversion is terminated
with the discrepancy principle as the stopping rule. The algorithm’s convergence can
be guaranteed if a generalized tangential cone condition can be established (e.g. Werner
2011).

1.8 Uniqueness of a passive inverse problem in helioseis-
mology

The injectivity of the active problem (the source term can be controlled) is studied in
numerous studies (e.g. Nachman 1988, Hähner and Hohage 2001), typically by connect-
ing the problem to the famous Calderón problem. The main ingredient of the work is
complex geometric optics solutions (CGOs). Complex geometric optics solutions are so-
lutions to the wave equation, which are exponentially growing in one direction. It can
be shown that the product of two CGOs is dense in L2. Furthermore, there were signifi-
cant improvements in studying the stability of the active imaging problem (e.g. Bao et al.
2010, Cheng et al. 2016, Li et al. 2020). In contrast, injectivity and stability are poorly
understood for passive imaging problems like helioseismology.

The passive imaging problem for helioseismology is only solved under proper simpli-
fications. For instance, Agaltsov et al. (2018, 2020) assume full-surface data and vanish-
ing advection terms. Furthermore, these studies assume that the surface cross-covariance
corresponds to the Green function’s imaginary part. This assumption is seen in many dif-
ferent passive imaging problems (e.g. Garnier and Papanicolaou 2009a) and is explained
by equipartition of energy (Snieder 2007). Nevertheless, it is preferable to weaken this
assumption in order to extend the uniqueness to more general passive imaging problems.

In Agaltsov et al. (2018), the authors show local uniqueness in the case of a vanishing
damping term. The proof is based on a discrete version of Kramers-Kronig relations.
On the other hand, Agaltsov et al. (2020) has proved a global uniqueness result under
the assumptions of spherical symmetry and measurements at two different heights. The
proof’s main ingredient relies on the exterior’s analytic solution. For both approaches, it
is not apparent how to overcome the mentioned simplifications. In this thesis, we use the
denseness of complex geometric optics solutions.

1.9 Outline of the thesis
This thesis aims to develop a theoretical and numerical framework for full-waveform in-
versions, which can tackle nonlinear problems. In the main part of this thesis, we validate
this new inversion strategy on synthetics of large-scale flows in the solar interior. This
thesis validates the potential to improve traditional helioseismic inversions.
In Chapter 5, we introduce a suitable operator that maps perturbations in the solar back-
ground medium to the expected cross-correlations of the wavefield on the visible part of
the solar disk. We prove that this operator is of Hilbert-Schmidt type, which allows us
to use adjoint inversion methods. In the main part of the chapter, we interpret traditional
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helioseismic holography as an evaluation of the adjoint of the Fréchet derivative of the co-
variance operator. This way, traditional holography becomes the first step of an iterative
inversion method. Finally, we present the potential of iterative helioseismic holography
in terms of spatial resolution and inversion results in a two-dimensional uniform medium
for parameters like sound speed and flow fields.
In Chapter 3, we apply the framework of iterative helioseismic holography to analyze ax-
isymmetric flows within the solar interior. We validate iterative helioseismic holography
for solar differential rotation and meridional flows in terms of spatial resolution and inver-
sion results on synthetics. Furthermore, we study the signal-to-noise ratio and the case of
partial surface observations. Finally, we discuss which questions can be solved by using
the iterative approach to helioseismic holography.
In Chapter 4, we discuss the unique reconstruction of parameters in the solar interior
from measurements of the cross-correlation. We apply complex geometric optics solu-
tions to prove that measurements at two different observation heights and two frequencies
uniquely determine sound speed, density, damping rate, and the flow field in the solar in-
terior. Alternatively, the parameters are uniquely determined for partial surface data when
both the Dirichlet and Neumann data are known. Furthermore, we discuss the uniqueness
of the passive inverse source problem. In particular, the source strength can be uniquely
determined by the acoustic power spectrum in a spherically symmetric model. Finally,
we discuss future developments of full-waveform inversions in Chapter 5. We finish the
thesis by providing an outlook for iterative helioseismic holography.
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2 Quantitative passive imaging by
iterative holography: The example
of helioseismic holography

2.1 Abstract
In passive imaging, one attempts to reconstruct some coefficients in a wave equation from
correlations of observed randomly excited solutions to this wave equation. Many methods
proposed for this class of inverse problem so far are only qualitative, e.g., trying to identify
the support of a perturbation. Major challenges are the increase in dimensionality when
computing correlations from primary data in a preprocessing step, and often very poor
pointwise signal-to-noise ratios. In this paper, we propose an approach that addresses
both of these challenges: It works only on the primary data while implicitly using the full
information contained in the correlation data, and it provides quantitative estimates and
convergence by iteration.

Our work is motivated by helioseismic holography, a well-established imaging method
to map heterogenities and flows in the solar interior. We show that the back-propagation
used in classical helioseismic holography can be interpreted as the adjoint of the Fréchet
derivative of the operator which maps the properties of the solar interior to the correlation
data on the solar surface. The theoretical and numerical framework for passive imaging
problems developed in this paper extends helioseismic holography to nonlinear problems
and allows for quantitative reconstructions. We present a proof of concept in uniform
media.

2.2 Introduction
In this paper, we consider passive imaging problems described by a linear time-harmonic
wave equation

L[q]ψ = s

with a random source s and some unknown coefficient q, which is the quantity of interest.
We assume that E [s] = 0 such that E

[
ψ
]
= 0 by linearity of L[q]. Solutions ψ to this

This chapter reproduces the article Quantitative passive imaging by iterated back-propagation: The ex-
ample of helioseismic holography by Björn Müller, Thorsten Hohage, Laurent Gizon and Damien Fournier,
Inverse Problems, 40 (2024). Author contributions: B.M. and T.H. developed the theoretical framework.
B.M. implemented the method. All authors contributed to the final manuscript.
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wave equation are observed on part of the boundary Γ = ∂Ω of a domain Ω for many
independent realizations of s. Thus we can approximately compute the cross-covariance

C(x1, x2) = E
[
ψ(x1)ψ(x2)

]
, x1, x2 ∈ Γ. (2.1)

Our aim is to determine the unknown parameter q given noisy observations of C or the
corresponding integral operator (C f )(x1) :=

∫
Γ

C(x1, x2) f (x2) dx2. If TrΓ is the trace oper-
ator onto Γ, then straightforward calculations show that the forward operator mapping q
to C = Cov[TrΓ ψ] is given by

C[q] = Cov[TrΓ L[q]−1s] = TrΓ L[q]−1 Cov[s](L[q]−1)∗ Tr∗Γ .

(Recall that the covariance operator Cov[v] ∈ L(X) of a random variable v with values in
a Hilbert-space X is defined implicitely by Cov(⟨v, ψ⟩X, ⟨v, φ⟩X) = ⟨Cov[v]ψ, φ⟩X for all
φ, ψ ∈ X.) An early and influential reference on passive imaging is the work of Duvall
et al. (1993) on time-distance helioseismology. Later, passive imaging has also been used
in many other fields such as seismology (Tromp et al. 2010), ocean acoustics (Burov et al.
2008), and ultrasonics (Weaver and Lobkis 2001). We refer to the monograph Garnier
and Papanicolaou (2009b) for many further references. Concerning the uniqueness of
passive imaging problems, we refer to Helin et al. (2018) for results in the time domain
and to Agaltsov et al. (2018, 2020), Devaney (1979), Hohage et al. (2020) for results in the
frequency domain. For the unique recovery of the source and the potential from passive
far-field data, we refer to Li et al. (2021).

Local helioseismology analyzes acoustic oscillations at the solar surface in order to re-
construct physical quantities (subsurface flows, sound speed, density) in the solar interior
(e.g. Gizon and Birch 2005, and references therein). Since solar oscillations are excited by
near-surface turbulent convection, it is reasonable to assume random, non-deterministic
noise terms. In this paper, we will describe sound propagation in the solar interior by a
scalar time-harmonic wave equation and study the passive imaging problem of parameter
reconstruction from correlation measurements.

Very large data sets of high-resolution solar Doppler images have been recorded from
the ground and from space over the last 25 years. This leads to a five-dimensional (22

spatial dimensions and 1 temporal dimension) cross-correlation data set on the solar sur-
face, which cannot be stored and analyzed all at once. In traditional approaches, like
time-distance helioseismology, the cross-correlations are reduced to a smaller number of
observable quantities, such as travel times (Duvall et al. 1993) or cross-correlation ampli-
tudes (e.g. Liang et al. 2013, Nagashima et al. 2017, Pourabdian et al. 2018). Since the
reduction to these quantities leads to a loss in information, we are interested in using the
whole cross-correlation data throughout the inversion procedure, stepping forward to full
waveform inversions.

Helioseismic holography, a technique within the field of local helioseismology, has
proven to be a powerful tool for studying various aspects of the Sun’s interior. It operates
by propagating the solar wavefield backward from the surface to specific target locations
within the Sun (Lindsey and Braun 1997). A notable success of helioseismic holography
is the detection of active regions on the Sun’s far side (e.g. Lindsey and Braun 2000b,
Liewer et al. 2014, Yang et al. 2023). Furthermore, helioseismic holography is used in
many other applications, e.g. to study the subsurface structure of sunspots (Braun and
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Birch 2008a, Birch et al. 2009, Lindsey et al. 2010), wave absorption in magnetic regions
(Cally 2000, Schunker et al. 2007, 2008), and seismic emission from solar granules (Lind-
sey and Donea 2013). The main idea of helioseismic holography is the back-propagation
(“egression”) of the wavefield at the solar surface (Lindsey and Braun 2000a). Improve-
ments have been proposed in the choice of backward propagators (e.g. using Porter-
Bojarski holograms Porter and Devaney 1982, Gizon et al. 2018). Helioseismic holog-
raphy has a strong connection to conventional beam forming, where imaging functionals
similar to the holographic back-propagation occur (e.g. Garnier and Papanicolaou 2016).
In contrast to these approaches, we will achieve improvements by iterations.

In the present paper, we connect holographic imaging methods to iterative regulariza-
tion methods. This way, holography can be extended to a full converging regularization
method. This approach was successfully applied to inverse source problems in aeroa-
coustics (Hohage et al. 2020) and is extended in this work to parameter identification
problems.

The organization of the paper is as follows. In Section 2.3 we introduce a generic
model for the forward problem. In Section 2.4 we establish foundations of our functional
analytic setting by establishing sufficient conditions under which the diagonal of an in-
tegral operator is well defined, using Schatten class properties of embedding operators.
With this we compute the Fréchet derivative of the forward operator and its adjoint in
Section 2.5. Next, we discuss the algorithm of iterative holography in Section 2.6. Based
on the analysis of Sections 2.3–2.11.2 we then introduce forward operators in local he-
lioseismology, their derivatives and adjoints in Section 2.7. Then we discuss iterative
helioseismic holography as an extension of conventional helioseismic holography in Sec-
tion 2.8, and demonstrate its performance in numerical examples with simulated data in
Section 2.9 before we end the paper with conclusions in Section 2.10. Some technical
issues are discussed in three short appendices.

2.3 A model problem
We first present the main ideas of this paper for a generic scalar time-harmonic wave
equation. Let Ω0 ⊂ Ω be a smooth, bounded domain in Rd and let Γ ⊂ Ω \ Ω0 the
hypersurface on which measurements are performed. Γ may be part of the boundary ∂Ω
or it may be contained in the interior of Ω. Moreover, consider the parameters

v ∈ L∞(Ω,C), A ∈ W∞(div,Ω).

Here W∞(div,Ω) := {A ∈ L∞(Ω,Rd) : div A ∈ L∞(Ω)} with norm ∥A∥W∞(div,Ω) := ∥A∥L∞ +
∥ div A∥L∞ .

Assume that the excitation of wavefields ψ in Rd by random sources s, which are
supported in Ω0, is described by the model

(−∆ − 2iA · ∇ + v − k2)ψ = s, in Ω (2.2a)
∂ψ

∂n
= B Tr∂Ω ψ on ∂Ω (2.2b)

for the outward pointing normal vector n on ∂Ω and some operator
B ∈ L

(
H1/2(∂Ω)→ H−1/2(∂Ω)

)
. (Here and in the following L (X,Y) denotes the space of
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bounded linear operators between Banach spacesX andY.) Typically, B is some transpar-
ent boundary condition, e.g. Bψ = ikψ for ∂Ω = S d−1. We may also choose Bψ := DtNψ
with an exterior Dirichlet-to-Neumann map for the Helmholtz equation with the Sommer-
feld radiation condition. In this case, equation (2.2) is equivalent to a problem posed on
Rd with the Sommerfeld radiation condition.

Assumption 2.1. Suppose that for some B0 ∈ L
(
H1/2(∂Ω),H−1/2(∂Ω)

)
, k ∈ C and some

set Bk ⊂ L∞(Ω,C) ×W∞(div,Ω) of admissible parameters v,A the following holds true:

div A − ℑk2 + ℑv ≤ 0 in Ω (2.3a)
A · n = 0 on ∂Ω (2.3b)

ℑ

∫
∂Ω

(Bζ) ζ ds > 0 for all ζ ∈ H1/2(∂Ω), ζ , 0 (2.3c)

ℜ

∫
∂Ω

(B0ζ)ζ ds ≤ 0 for all ζ ∈ H1/2(∂Ω) (2.3d)

B − B0 : H1/2(∂Ω)→ H−1/2(∂Ω) is compact. (2.3e)

The conditions (2.3c)–(2.3e) are obviously satisfied for Bζ := ikζ, and they also hold
true if B is the exterior Dirichlet-to-Neumann map on a sphere or a circle (see Colton and
Kress 2013, Ihlenburg 1998). Throughout this paper we denote by H s

0(Ω) the closure of
the space of distributions on Ω in H s(Rd). For a Lipschitz domain, we have the duality
H s(Ω)∗ = H−s

0 (Ω) (McLean 2000, Thm 3.30).

Proposition 2.1. Under Assumption 2.1 the problem (2.2) is well posed in the sense that
for all s ∈ H−1

0 (Ω) there exists a unique ψ ∈ H1(Ω) satisfying (2.2) in the weak sense, and
ψ depends continuously on s with respect to these norms.

Proof. We only sketch the proof, which is a straightforward modification of similar proofs
in Colton and Kress (2013), Ihlenburg (1998). The weak formulation of Problem (2.2) is
given by∫
Ω

(
∇ψ · ∇ϕ − 2iA · (∇ψ)ϕ + (v − k2)ψϕ

)
dx −

∫
∂Ω

B Tr∂Ω ψ Tr∂Ω ϕ ds =
∫
Ω

sϕ dx (2.4)

for ϕ ∈ H1(Ω). To show that for s = 0 this variational problem only has the trivial
solution, we choose ϕ = ψ and take the imaginary part. Noting that ℑ(−2iA · (∇ψ)ψ) =
−A · 2ℜ((∇ψ)ψ) = −A · ∇|ψ|2 and using a partial integration and (2.3b), we obtain∫

Ω

(
div A + ℑ(v − k2)

)
|ψ|2 dx = ℑ

∫
∂Ω

B Tr∂Ω ψ Tr∂Ω ψ ds .

It follows from (2.3a) and (2.3c) that both sides must vanish. Hence, Tr∂Ω ψ = 0. By
elliptic regularity, ψ ∈ H2(Ω) is also a strong solution to (2.2) with ∂ψ

∂n = 0 on ∂Ω. Due
to vanishing Cauchy data on ∂Ω, ψ may be extended by 0 as a strong solution of the
wave equation to the exterior of Ω. Now it follows from unique continuation results (see
Le Rousseau and Lebeau 2012, Theorem 4.2) that ψ vanishes identically.

Using Assumptions (2.3d) and (2.3e), it can be shown that the sesquilinear form of the
variational formulation is coercive up to a compact perturbation. Therefore, the operator
representing this sesquilinear form is Fredholm of index 0. By uniqueness, it is boundedly
invertible.
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If we write the solution operator

Gv,A : H−1
0 (Ω)→ H1(Ω), Gv,As := ψ

as an integral operator

(Gv,As)(x) =
∫
Ω

Gv,A(x, y)s(y) dy,

the kernel Gv,A of Gv,A is the Green’s function, which may also be characterized by (−∆−
2iA · ∇ + v − k2)Gv,A(·, x′) = δx′ , ∂nGv,A(·, x′) − B Tr∂ΩGv,A(·, x′) = 0 on ∂Ω.

For certain random processes of interest, s does not belong to H−1
0 (Ω) almost surely.

E.g., white noise is in H−s
0 (Ω) almost surely if and only if s > d/2. Nevertheless, the

solution formula

(TrΓ ψ)(x) =
∫
Ω0

Gv,A(x, y)s(y) dy, x ∈ Γ (2.5)

may still make sense if Gv,A(x, ·) is sufficiently smooth on Ω0. This is always the case if
the support of s and v,A are disjoint or if s ∈ H−1

0 (Ω) almost surely, which is typically
true if s is spatially correlated. Otherwise, we have to impose smoothness conditions on
v and A such that Gv,A is sufficiently smooth and G has suitable mapping properties.

Assumption 2.2. The solution to (2.2) on Γ is given by (2.5).

Assume we have observations TrΓ ψ1, . . . ,TrΓ ψN where ψ j solves (2.2) for indepen-
dent samples s1, . . . , sN of s. As E [s] = 0, we have E

[
TrΓ ψ j

]
= 0, and we can compute

the correlations by

Corr(x1, x2) :=
1
N

N∑
n=1

TrΓ ψn(x1)TrΓ ψn(x2), x1, x2 ∈ Γ. (2.6)

This is an unbiased estimator of the covariance

Cv,A(x1, x2) := Cov (TrΓ ψ(x1),TrΓ ψ(x2)) = E
[
TrΓ ψ(x1)TrΓ ψ(x2)

]
(2.7)

converging in the limit N → ∞.
The integral operator (C[v,A] f )(x1) :=

∫
Γ

Cv,A(x1, x2) f (x2) dx2 is the covariance oper-
ator

C[v,A] = Cov[TrΓGv,As] = TrΓGv,A Cov[s]G∗v,A Tr∗Γ . (2.8)

C will be the forward operator of our inverse problem. Recall that if Cv,A ∈ L2(Γ × Γ),
then C[v,A] belongs to the space of Hilbert-Schmidt operators HS

(
L2(Γ)

)
on L2(Γ), and

∥C[v,A]∥HS = ∥Cv,A∥L2 .

Therefore, HS
(
L2(Γ)

)
is the natural image space of the forward operator. It is a Hilbert

space with an inner product ⟨T, S ⟩HS = tr(S ∗T ). Here tr(K) denotes the trace of a linear
operator K : H → H in a separable Hilbert space H defined by tr(K) :=

∑∞
j=1⟨Ke j, e j⟩H

for any is an orthonormal basis {e j : j ∈ N} of H.
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Let us also consider the case that in addition to sources s in the interior of Ω there are
sources s∂Ω on the boundary ∂Ω.

Such sources generate a field ψ(x) =
∫
∂Ω

Gv,A(x, y)s∂Ω(y)dy. Its restriction to Ω0 is
given by

(Kv,As∂Ω)(x) := (TrΓ ψ)(x) =
∫
∂Ω

Gv,A(x, y)s∂Ω(y) dy, x ∈ Γ, (2.9)

which is the single layer potential operator for Γ = ∂Ω. It is easy to see that K admits a
factorization K = TrΓGv,A Tr∗∂Ω in the spaces

H−1/2(∂Ω)
Tr∗∂Ω
−−−→ H−1

0 (Ω)
Gv,A
−−−→ H1(Ω)

TrΓ
−−→ H1/2(Γ),

which implies that K ∈ L
(
H−1/2(∂Ω),H1/2(Γ)

)
(see Costabel 1988, Thm. 1(iii)). There-

fore, in the presence of boundary sources the measured covariance operator is given by

C[v,A] = TrΓGv,A Cov[s]G∗v,A Tr∗Γ +Kv,A Cov[s∂Ω]K∗v,A
= TrΓGv,A

(
Cov[s] + Tr∗∂ΩCov[s∂Ω] Tr∂Ω

)
G∗v,A Tr∗Γ .

Often one assumes that the source process s is spatially uncorrelated and

Cov[s] = MS

for some source strength S ∈ L∞(Ω0), where MS denotes the multiplication operator
MS f := S · f . If S is treated as an additional unknown, the forward operator becomes

C[v,A, S ] = TrΓGv,A
(
MS + Tr∗∂ΩCov[s∂Ω] Tr∂Ω

)
G∗v,A Tr∗Γ . (2.10)

Of course, we could also assume that s∂Ω is spatially uncorrelated and treat its source
strength as a further unknown, but for the sake of notational simplicity, we assume that
Cov[s∂Ω] ∈ L

(
L2(∂Ω)

)
is known.

We first study the continuity and Fréchet differentiability of Gv,A with respect to the
parameters (v,A). We will assume that v and A are known in Ω \ Ω0. Let (vref, Aref) ∈ Bk

be some reference solution. Then the set Bk of admissible parameters in Assumption 2.1
satisfies

Bk ⊂ (vref, Aref) + XG with XG := L∞(Ω0) ×W∞
0 (div,Ω0), (2.11)

where W∞
0 (div,Ω0) := {A ∈ W∞

0 (div,Ω0) : A · n = 0 on ∂Ω0}.

Lemma 2.1. Under Assumption 2.1, the mapping Bk → L
(
H−1

0 (Ω),H1(Ω)
)
, (v,A) 7→

Gv,A is well-defined and continuous, and Fréchet differentiable in the interior of Bk w.r.t.
the XG-topology. The Fréchet derivative G′v,A : XG → L

(
H−1

0 (Ω),H1(Ω)
)

at (v,A) ∈
int(Bk) is given by

G′v,A(∂v, ∂A) = Gv,A(2iM∂A · ∇ − M∂v)Gv,A .

Proof. Again, we only sketch the proof and refer to (Colton and Kress 2013, §5.3) for a
more detailed proof of a similar result. Let Lv,A : H1(Ω) → H−1

0 (Ω) denote the operator
associated to the sesquilinear form in the weak formulation (2.4) such that Gv,A = L−1

v,A.
Lv,A is continuous and affine linear in the parameters. As L′v,A(∂v, ∂A) = −2iM∂A · ∇ +

M∂v, the result follows from the continuity of operator inversion and the formula for its
derivative, G′v,A(∂v, ∂A) = −Gv,AL′v,A(∂v, ∂A)Gv,A.
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2.4 Diagonals of operator kernels
The present section serves as a preparation for computing adjoints of the Fréchet deriva-
tive of the forward operator defined by (2.10). A crucial step will be the characterization
of adjoints of the mapping

S 7→ MS

(in a sense to be specified later).
In the discrete setting, MS corresponds to diagonal matrices diag(S ) ∈ Cd×d with

diagonal S . The adjoint of the mapping

M : Cd → Cd×d, S 7→ diag(S )

with respect to the Frobenius norm is given by

Diag A = Diag(A),

where Diag(A) ∈ Cd denotes the diagonal of the matrix A ∈ Cd×d.
We wish to generalize this to an infinite dimensional setting, with the Frobenius norm

replaced by the Hilbert-Schmidt norm. Recall that any operator A ∈ HS
(
L2(Ω)

)
has a

Schwartz kernel A ∈ L2(Ω×Ω) such that (Aφ)(x) =
∫
Ω

A(x, y)φ(y) dy and ∥A∥HS = ∥A∥L2 .
It is tempting to define (DiagA)(x) := A(x, x). However, as A is only a L2-function and
the diagonal {(x, x) : x ∈ Ω} ⊂ Ω×Ω has measure zero, the restriction of A to the diagonal
is not well-defined.

To address this problem, we first recall that for Hilbert spaces X, Y and p ∈ [1,∞)
the p-Schatten class S p (X,Y) consists of all compact operator A ∈ L (X,Y) for which
the singular values σ j(A) (counted with multiplicity) form a ℓp sequence. S p (X,Y) is
a Banach space equipped with the norm ∥A∥S p := (

∑
j σ j(A)p)1/p. S 2(X,Y) coincides

with HS (X,Y). We write S p (X) := S p (X,X). The elements of S 1(X) are called trace
class operators. For such operators, the trace tr(A) :=

∑
k⟨Ae j, e j⟩ is well-defined for any

orthonormal basis {ek} of X, and | tr(A)| ≤ ∥A∥S 1 .
Let us first recall Mercer’s theorem: It states that for a positive definite operator A

with continuous kernel A, we have

trA =
∫
Ω

A(x, x) dx

and A(x, x) ≥ 0 for all x. Since not all (positive semidefinite) Hilbert-Schmidt oper-
ators are trace class, we cannot expect that x 7→ A(x, x) belongs to L1(Ω) for general
Hilbert-Schmidt operators. However, with the help of Mercer’s theorem, we can show the
following result.

Proposition 2.2. Let Ω ⊂ Rd be open and non-empty. Then there exists a unique bounded
linear operator

Diag : S 1

(
L2(Ω)

)
→ L1(Ω)

such that
Diag(A)(x) = A(x, x), x ∈ Ω

for all operatorsA ∈ S 1(L2(Ω)) with continuous kernel A. Moreover,

tr(A) =
∫
Ω

Diag(A) dx . (2.12)
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Eq. (2.12) is shown in (Brislawn 1988, Thm. 3.5) where it is also shown that Diag(A)
can be constructed by local averaging, but the first part is not explicitly stated. We sketch
an alternative, more elementary proof:

Proof of Proposition 2.2. If A is positive semidefinite, it may be factorized as A = B∗B
with B ∈ HS

(
L2(Ω)

)
and ∥A∥S 1 = ∥B∥

2
S 2

, e.g., by choosing B = A1/2. By density of

C(Ω × Ω) in L2(Ω × Ω), there exists a sequence (Bn) converging to B in L2(Ω × Ω). For
the corresponding operators Bn it follows that limn→∞ ∥Bn − B∥HS = 0 and limn→∞ ∥An −

A∥S 1 = 0 for An := B∗nBn (see Prop. 2.3, part 2 below). Thus, we have constructed a
sequence of positive semidefinite operators with continuous kernels converging to A in
S 1

(
L2(Ω)

)
, and the statement follows from the classical Mercer theorem.

We decompose a general A ∈ S 1

(
L2(Ω)

)
as linear combination of trace class op-

erators: We start with A = ℜ(A) + iℑ(A) where ℜ(A) := 1
2 (A + A∗) and ℑ(A) :=

1
2i (A − A

∗). There exists an expansion ℜ(A) =
∑∞

k=1 λkψk ⊗ ψk. We define P1 :=∑∞
k=1 max(λk, 0)ψk ⊗ ψk, P2 :=

∑∞
k=1 max(−λk, 0)ψk ⊗ ψk such that ℜ(A) = P1 − P2

with positive semidefinite P1, P2 ∈ S 1

(
L2(Ω0)

)
. Therefore, a general A ∈ S 1

(
L2(Ω)

)
can be written as a linear combination of positive semi-definite trace class operators:
A = P1 − P2 + iP3 − iP4 where ∥P1∥S 1 , ∥P2∥S 1 ≤ ∥ℜ(A)∥S 1 , ∥P3∥S 1 , ∥P4∥S 1 ≤ ∥ℑ(A)∥S 1 .
By the Courant-Fischer characterization σn(A) = inf{∥A − F ∥ : rank(F ) ≤ n}, we get
σ2n(ℜ(A)), σ2n(ℑ(A)) ≤ σn(A) and hence ∥ℜ(A)∥S 1 , ∥ℑ(A)∥S 1 ≤ 2∥A∥S 1 . It follows
that ∥P j∥S 1 ≤ 2∥A∥S 1 . Now we can apply the first proven special case to all P j to obtain
the result.

To speak of an adjoint of the operator M : S 7→ MS , we have to treat MS in some
space with a dual pairing. We will use Hilbert-Schmidt spaces between suitable Sobolev
spaces. (Recall that MS : L2(Ω)→ L2(Ω) is not compact in general.)

Note that a Gelfand triple V′ ↪→ H ↪→ V of Hilbert spaces induces Gelfand triple

HS
(
V,V′

)
↪→ HS (H,H) ↪→ HS

(
V′,V

)
of Hilbert-Schmidt spaces with dual pairing, given by ⟨A, B⟩HS := tr(B∗A) for
A ∈ HS (V,V′) and B ∈ HS (V′,V).

We give some preliminary results on p-Schatten class embeddings.

Proposition 2.3. Let Ω ⊂ Rd be a bounded Lipschitz domain and let X,Y,Z be Hilbert
spaces. Then the following holds true:

1. The Sobolev embedding: j : Hm(Ω) ↪→ Hl(Ω) is an element in the Schatten class
S p

(
Hm(Ω),Hl(Ω)

)
if and only if p > d

m−l .

2. Let p, q, r > 0 satisfy 1
p +

1
q =

1
r and let A ∈ S p (X,Y) , B ∈ S q (X,Y). Then,

BA ∈ S r (X,Z) and we have the bound:

∥BA∥S r(X,Z) ≤ 21/r∥A∥S p(X,Y)∥B∥S q(Y,Z).

3. Let A ∈ S p (X,Y) , B ∈ L (Y,Z) ,C ∈ L (Z,X). Then, BA ∈ S p (X,Z) , AC ∈

S p (Z,Y) and we have the bounds:

∥BA∥S p(X,Z) ≤ ∥A∥S p(X,Y)∥B∥, ∥AC∥S p(Z,Y) ≤ ∥A∥S p(X,Y)∥C∥.
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4. Let p, q > 1 with 1
p +

1
q = 1. Then, S p (X,Y)′ = S q (Y′,X′) with the dual pairing

⟨A, B⟩ = tr(B∗A) for A ∈ S p (X,Y) and B ∈ S q (X′,Y′).

Proof. Part (i) follows from Theorem 1 of Gramsch (1968). Part (ii) and (iii) follow from
Lemma 16.7 of Meise and Vogt (1992).

Let A ∈ S p (X,Y) and B ∈ S q (X′,Y′). By part (ii) and the boundedness of the trace
in S 1 (Meise and Vogt 1992, Lemma 16.23), we get: |⟨A, B⟩| = | tr(B∗A)| ≤ ∥B∗A∥S 1(Y) ≤

∥B∗∥S q(Y,X)∥A∥S p(X,Y) = ∥B∥S q(X′,Y′)∥A∥S p(X,Y). Hence, S q (Y′,X′) ⊆ S p (X,Y)′ and
S p (X,Y) ⊆ S q (Y′,X′)′. By the Hahn-Banach theorem, we have the sequence

S p(X,Y) ⊆ S q
(
Y′,X′

)′
⊆ S p(X,Y)′′.

S p (X,Y) is a uniformly convex Banach space (Fack and Kosaki 1986, Chapter 5) and
therefore reflexive by Milman–Pettis theorem (Pettis 1939).
Hence, S p (X,Y)′′ = S p (X,Y) and the assertion follows.

Using this proposition, we can prove that multiplication operators are Hilbert-Schmidt
in suitable Sobolev spaces:

Lemma 2.2. Let Ω ⊂ Rd be a bounded Lipschitz domain, S ∈ L∞(Ω), and s > d/4,
s − 1/2 < N0. (In particular, for d ∈ {2, 3} we may choose s = 1.) Then MS ∈

HS
(
H s(Ω),H−s

0 (Ω)
)
, and the following mapping is continuous

M :L∞(Ω)→ HS
(
H s(Ω),H−s

0 (Ω)
)
,

S 7→ MS .
(2.13)

Proof. The condition s − 1/2 < N0 ensures that H s(Ω)′ = H−s
0 (Ω) (see, e.g. Triebel 1978,

Chap. 4). Let M̃S : L2(Ω) → L2(Ω), M̃Sψ := Sψ. Then, we consider MS in the function
spaces:

H s(Ω)
j
↪→ L2(Ω)

M̃S
−−→ L2(Ω)

j∗
↪→ H−s

0 (Ω).

By Proposition 2.3, part 1, the embedding j is an element of the Schatten class
S p

(
H s(Ω), L2(Ω)

)
if p > d/s. Consequently, j∗ ∈ S p

(
L2(Ω),H−s

0 (Ω)
)
. It follows from

Proposition 2.3, parts 2 and 3 that MS ∈ S r(H s(Ω),H−s
0 (Ω)) if 1

r =
1
p +

1
p < 2s

d . As
2s
d > 1/2, r = 2 is admissible. The continuity of M follows from the continuity of the
mapping: S → M̃S .

Lemma 2.3. Under the assumptions of Lemma 2.2, the adjoint operator
M∗ : HS

(
H−s

0 (Ω),H s(Ω)
)
→ L∞(Ω)′ takes values in the pre-dual L1(Ω) ⊂ L∞(Ω)′ of

L∞(Ω) and

M∗ = Diag . (2.14)

Proof. Let f ∈ L∞(Ω), j : H s(Ω) ↪→ L2(Ω), and A ∈ HS
(
H−s

0 (Ω),H s(Ω)
)
. It follows

from Proposition 2.3 that Ã := jA j∗ ∈ S 1

(
L2(Ω)

)
. We identify Ã and A, i.e. a more

precise formulation of (2.14) is M∗(A) = Diag(Ã) for all A. By the density result
established at the beginning of the proof of Proposition 2.2, it suffices to establish the
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relation for operators A with continuous kernel A. Choosing an orthonormal basis {ek :
k ∈ N} of L2(Ω), we obtain

⟨M f ,A⟩ = tr
(
A∗M f

)
= tr

(
jA∗M f j−1

)
= tr

(
Ã∗M̃ f

)
=

∞∑
k=1

〈
Ã∗( f ek), ek

〉
=

∞∑
k=1

∫
Ω

∫
Ω

A(y, x) f (y)ek(y) dy ek(x) dx

=

∫
Ω

∞∑
k=1

ek(y)
∫
Ω

A(y, x)ek(x) dx f (y)dy.

Since Ω is bounded and hence A(y, ·) ∈ C(Ω) ⊂ L2(Ω), the completeness of {ek} implies
that

∑∞
k=1 ek(y)

∫
Ω

A(y, x)ek(x) dx = A(y, y). This shows that ⟨M( f ),A⟩ = ⟨ f ,Diag(Ã)⟩,
completing the proof.

In Lemma 2.1 we consider M∂v and M∂A in the following function spaces:

M∂v : H1(Ω0)→ H−1
0 (Ω0),

M∂A : L2(Ω)d → H−1
0 (Ω).

The multiplication operator M∂v has been discussed in Lemma 2.2 and Lemma 2.3. Al-
though for M∂A we have less regularity, the following analogs still hold true:

Lemma 2.4. Let d ∈ {2, 3} and ∂A ∈ W∞(div,Ω0). Then,

1. M∂A ∈ S 4

(
L2(Ω0)d,H−1

0 (Ω0)
)

and the following map is continuous:

M̃ : L∞(Ω0,R
d)→ S 4

(
L2(Ω0)d,H−1

0 (Ω0)
)

∂A 7→ M∂A.

2. M̃∗ : S 4/3(L2(Ω0)d,H1(Ω0)) = S 4

(
L2(Ω0)d,H−1

0 (Ω0)
)′
→ L∞(Ω0)′ takes values in

the pre-dual L1(Ω0) ⊂ L∞(Ω0)′. For an operator B = (B1, . . . ,Bd)
∈ S 4/3(L2(Ω0)d,H1(Ω0)) with continuous kernel B = (B1, . . . , Bd) : Ω ×Ω→ Cd we
have

M̃∗B = Diag B, Diag B := (Diag B1, . . . ,Diag Bd).

Proof. In this proof, j will denote the embedding H1(Ω0) ↪→ L2(Ω0) and recall from
Proposition 2.3, part 1 that j ∈ S 4

(
H1(Ω0), L2(Ω0)

)
and hence j∗ ∈ S 4

(
L2(Ω0),H−1

0 (Ω0)
)
.

Part (i): We consider M∂A = j∗ ◦ M̃∂A in the function spaces

L2(Ω0)d M̃∂A
−−−→ L2(Ω0)

j∗
↪→ H−1

0 (Ω0),

where M̃∂Aψ = ∂A · ψ for ψ ∈ L2(Ω0)d. The claim follows by Proposition 2.3.
Part (ii): Let B̃ := j ◦ B : L2(Ω0)d → L2(Ω0). Part (ii) of this proposition yields

B̃ ∈ S 1

(
L2(Ω0)d, L2(Ω0)

)
. As in Lemma 2.3, the assertion now follows.

44



2.5 Fréchet derivative and adjoint of the forward operator

2.5 Fréchet derivative and adjoint of the forward opera-
tor

A characterization of the adjoint of S 7→ TrΓGMSG
∗ Tr∗Γ was given in Hohage et al.

(2020). There, a characterization of the adjoint of S 7→ MS in a functional analytic
framework was circumvented, resulting in a rather technical formulation of the result.

With the results of the previous section, the proof of the following central results is
now mostly straightforward.

Theorem 2.4. Assumptions 2.1 and 2.2 hold true for some wave number k ∈ C and d ∈
{2, 3}. LetX := XG×L∞(Ω0,R) withXG defined in (2.11) and letB := Bk×L∞(Ω0; [0,∞)).
Then the following holds true:

1. The forward operator (2.10) is well-defined and continuous as a mapping

C : B→ HS
(
L2(Γ)

)
,

and it is Fréchet differentiable on the interior of B. The derivative C′[v,A, S ] :
X→ HS

(
L2(Γ)

)
is given by

C′[v,A, S ](∂v, ∂A, ∂S )

= 2ℜ
(
TrΓGv,A (−M∂v + 2iM∂A · ∇)Gv,A

(
MS + Tr∗∂ΩCov[s∂Ω] Tr∂Ω

)
G∗v,A Tr∗Γ

)
+ TrΓGv,AM∂SG

∗
v,A Tr∗Γ

whereℜ(A) := 1
2 (A +A∗).

2. The adjoint C′[v,A, S ]∗ : HS
(
L2(Γ)

)
→ X′ of C′[v,A, S ] takes values in the pre-

dual L1(Ω0;C) × L1(Ω0;Rd) × L1(Ω0;R) ⊂ X′ of X and is given by

C′[v,A, S ]∗D =


−2 Diag

(
E(MS + Tr∗∂ΩCov[s∂Ω] Tr∂Ω)G∗v,A

)
−4i Diag

(
E(MS + Tr∗∂ΩCov[s∂Ω] Tr∂Ω)(∇Gv,A)∗

)
DiagE

 ,
E := G∗v,A Tr∗Γℜ(D) TrΓGv,A.

Proof. Part (i): Let C1[v,A, S ] := TrΓGv,AMSG
∗
v,A Tr∗Γ . and C2[v,A, S ] :=

TrΓGv,A Tr∗∂ΩCov[s∂Ω] Tr∂ΩG∗v,A Tr∗Γ . We consider the factors defining C1[v,A, S ] in the
following function spaces:

L2(Γ) ↪→ H−1/2(Γ)
Tr∗
Γ

−−→ H−1
0 (Ω)

G∗

−−→ H1(Ω)
MS
−−→ H−1

0 (Ω)
G
−→ H1(Ω)

TrΓ
−−→ H1/2(Γ) ↪→ L2(Γ).

Here MS : H1(Ω) → H−1
0 (Ω) is Hilbert-Schmidt by Lemma 2.2, and all other operators

are bounded. By part (iii) of Proposition 2.3, it follows that C1[v,A, S ] is Hilbert-Schmidt.
Similarly, we consider the factors definingC2[v,A, S ] in the following function spaces:

L2(Γ) ↪→ H−1/2(Γ)
K∗
−−→ H1/2(∂Ω) ↪→ L2(∂Ω)

Cov[s∂Ω]
−−−−−−→ L2(∂Ω)

↪→ H−1/2(∂Ω)
K
−→ H1/2(Γ) ↪→ L2(Γ).
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By part (i) of Proposition 2.3, every embedding is an element of S 8. By part 2, 3 of Propo-
sition 2.3, it follows that C2[v,A, S ] is Hilbert-Schmidt. Hence, C[v,A, S ] is Hilbert-
Schmidt. Together with Lemma 2.1, it follows that C is continuous. Fréchet differentia-
bility and the formula for the derivative follow from Lemma 2.1 and the chain rule.

Part (ii): If X1, . . . ,X4 are Hilbert spaces, A ∈ L (X1,X2) and B ∈ L (X3,X4), then a
straightforward computation shows that the adjoint of the linear mapping HS (X2,X3) →
HS (X1,X4), T 7→ BTA is given by the mapping HS (X1,X4) → HS (X2,X3), S 7→
B∗SA∗ and thatℜ ∈ L

(
HS

(
X j

))
is a self-adjoint projection operator. Note that Cov[s∂Ω] ∈

S 4

(
H1/2(∂Ω),H−1/2(∂Ω)

)
from Proposition 2.3. Furthermore, by Proposition 2.3 and

Lemma 2.2, E ∈ HS
(
H−1

0 (Ω0),H1(Ω0)
)
,MS ∈ HS

(
H1(Ω0),H−1

0 (Ω0)
)
. Hence, E(MS +

Tr∗∂ΩCov[s∂Ω] Tr∂Ω) ∈ S 4/3

(
H−1

0 (Ω0)
)
. Now, the assertion follows from Lemma 2.3 and

part (ii) of Lemma 2.4.

Introducing so-called forward propagators Hα and backward propagators Hβ by

Hv,A
αv

:= Hv,A
αA

:= Hv,A
αS

:= HβS := TrΓGv,A ∈ L
(
H−1

0 (Ω), L2(Γ)
)
,

Hv,A
βv

:= TrΓGMSG
∗
v,A ∈ L

(
H−1

0 (Ω), L2(Γ)
)
,

Hv,A
βA

:= TrΓGv,AMS (∇Gv,A)∗ ∈ L
(
H−1

0 (Ω), L2(Γ)
)
,

(2.15)

the Fréchet derivative and its adjoint in Theorem 2.4 can be reformulated as

C′[v,A, S ](∂v, ∂A, ∂S ) = −2ℜ(Hv,A
αv

M∂v H
v,A
βv

∗
) + 2ℜ(Hv,A

αA
M2i∂AHv,A

βA

∗
) + Hv,A

αS
M∂S Hv,A

βS

∗
,

C′[v,A, S ]∗D =


−2 Diag

(
Hv,A
αv

∗
ℜ(D)Hv,A

βv

)
−4i Diag

(
Hv,A
αA

∗
ℜ(D)Hv,A

βA

)
Diag

(
Hv,A
αS

∗
ℜ(D)Hv,A

βS

)
 . (2.16)

These propagatorsHα,Hβ have a physical interpretation in helioseismology that will
be discussed in Section 2.8.1.

2.6 On the algorithmic realization of iterative regulariza-
tion methods

For notational simplicity, we will use q = (v,A, S ) throughout this section. Then we
formally have to solve the operator equation

C[q] = Corr with Corr :=
1
N

N∑
n=1

TrΓ ψn ⊗ TrΓ ψn.

2.6.1 Avoiding the computation of Corr

Computing Corr from the primary data TrΓ ψn in a preprocessing step drastically increases
the dimensionality of the data. In helioseismology, the data set with the best resolution
consists of Doppler images of size 4096 × 4096. This leads to approximately 1014 inde-
pendent two-point correlations, at each frequency. Hence, the surface cross-correlation is
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a noisy five-dimensional data set of immense size, which is infeasible to use in inversions
directly. Moreover, these two-point correlations are extremely noisy. In traditional ap-
proaches such as time-distance helioseismology, one usually reduces the cross-correlation
in an a priori step to a smaller number of physically interpretable quantities with an ac-
ceptable signal-to-noise ratio. However, this leads to a significant loss of information, see
Pourabdian (2020).

To use the full information content of Corr without the need to ever compute these
correlations, we exploit the fact that the adjoint of the Fréchet derivative of the forward
operator is of the form C′[q]∗D = Diag(Hq

α
∗
ℜ(D)Hq

β ), see eq. (2.16). As ℜ(Corr) =
Corr, pulling the sum outside yields

C′[q]∗ Corr =
1
N

N∑
n=1

Diag
(
Hq

α
∗ TrΓ ψn ⊗H

q
β

∗ TrΓ ψn

)
. (2.17)

We will show in Section 2.8.1 that traditional helioseismic holography can be interpreted
as the application of C′[q]∗ to Corr. Since 1

N

∑N
n=1 Diag(. . . ) can be interpreted as comput-

ing diagonal correlations of the back-propagated signals, eq. (2.17) may be paraphrased
as first back-propagating signals and then correlating them, rather than vice versa.

2.6.2 Iterative regularization methods without image space vectors
For ill-posed inverse problems, the adjoint of the linearized forward operator is typically
a bad approximation of the inverse. To obtain a quantitative imaging method, we can
improve the approximation in (2.17) by implementing an iterative regularization method.
We will focus on the Iteratively regularized Gauss-Newton Method (IRGNM) with inner
Conjugate Gradient iterations, but the discussion below also applies to other commonly
used methods such as Landweber iteration or the Newton-CG method. IRGNM is defined
by

δqn = argminq ∥C[qn] + C′[qn]q − Corr∥2Y + αn∥q + qn − q0∥
2
X

=
(
C′[qn]∗C′[qn] + αn Id

)−1 (
C′[qn]∗ (Corr−C[qn]) + αn(q0 − qn)

)
qn+1 = qn + δqn.

(2.18)

Here q0 defines the initial guess. Since the image space Y of the forward operator is high
dimensional, direct evaluations of C[q] and C′[q] must be avoided. However, IRGNM
with inner CG iterations as well as other iterative regularization methods only require the
operations q 7→ C′[q]∗C[q] and

(
C′[q]∗ C′[q] ∂q

)
(x) =

∫
Ω

K(x, y)∂q(y) dy. (2.19)

We will refer to the integral kernels K of C′[q]∗ C′[q] as sensitivity kernels for the normal
equation. In Section 2.8.2 they will be described for various settings of interest in terms
of forward-backward operators

Fα,β := H∗αHβ : H−1
0 (Ω)→ H1(Ω), (Fα,βψ)(x) =

∫
Ω

Fα,β(x, y)ψ(y) dy. (2.20)
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In our numerical tests in helioseismology reported in Section 2.9, the bottleneck concern-
ing computation time is the evaluation of the Green function involved in the definitions
of the propagatorsHα andHβ. To accelerate these computations, we use separable refer-
ence Green’s functions G0 := Gq0 discussed in 2.11.1 and 2.11.2 and the corresponding
integral operator G0 as well as the algebraic identity

Gq =
[
Id+G0(Lq − L0)

]−1
G0. (2.21a)

This identity, with Lq := G−1
q and L0 := G−1

0 , is equivalent to G0 − Gq = G0(Lq − L0)Gq.
The operators Lq, L0 : H1(Ω) → H−1

0 (Ω) represent the corresponding sesquilinear forms
in eq. (2.4) in the proof of Proposition 2.1 and involve both the differential operator and the
boundary condition. As both the boundary operator B and the leading order differential
operator are independent of the parameters q, they cancel out, and

(Lq − L0)ψ = (v − v0)ψ − 2i(A − A0) · ∇ψ. (2.21b)

This approach is efficient since the operator G0 can be solved with one-dimensional
code and the operator the calculation of

[
Id+G0(Lq − L0)

]
can typically be restricted

to a supported area of Lq − L0. Usually, we compute a pivoted LU-decomposition of
Id+G0(Lq − L0) and solve for a list of input sources G(·, x), x ∈ Γ. Furthermore, we
can use low-rank approximations for G0 based on the expansions in 2.11.1 for solar-like
medium and 2.11.2 for uniform medium.

2.6.3 Noise and likelihood modelling
In this section, we study the noise model in order to step forward to the full likelihood
modeling and to create realistic noise. The main noise term is realization noise. Re-
call that the wavefield ψ is a realization of a Gaussian random process with covariance
operator C[q].

The covariance matrix of Gaussian correlation data can be computed by Isserlis theo-
rem (Isserlis 1918) and is given by fourth-order correlations (e.g. Gizon and Birch 2004,
Fournier et al. 2014, Gizon et al. 2018):

E
[
ψ(r1)ψ(r2)ψ(r3)ψ(r4)

]
= E

[
ψ(r1)ψ(r2)

]
E

[
ψ(r3)ψ(r4)

]
+E

[
ψ(r1)ψ(r3)

]
E

[
ψ(r2)ψ(r4)

]
+ E

[
ψ(r1)ψ(r4)

]
E

[
ψ(r2)ψ(r3)

]
.

The third term vanishes as E
[
ψ(r1)ψ(r2)

]
=

∫
Ω

∫
Ω

G(r1, z1)G(r2, z2)E [s(z1)s(z2)] dz1dz2

and E [s(z1)s(z2)] = 0. Hence, we observe

Cov(C(r1, r2),C(r3, r4)) = E
[
ψ(r1)ψ(r2)ψ(r3)ψ(r4)

]
− E

[
ψ(r1)ψ(r2)

]
E

[
ψ(r3)ψ(r4)

]
= E

[
ψ(r1)ψ(r3)

]
E

[
ψ(r2)ψ(r4)

]
= C(r1, r3)C(r4, r2).

Therefore, we can define the data covariance operator by

C4[q] ∈ L
(
L2(Γ) × L2(Γ)

)
, C4[q]( f ⊗ g) = C[q]( f ) ⊗ C[q](g). (2.22)
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Hence, if we choose a quadratic log-likelihood approximation, we are formally lead to
replace ∥ · ∥2Y in (2.18) by ∥C4[qn]−1/2 · ∥2Y. However, with this replacement, the iteration
(2.18) would in general not be well defined and numerically unstable since C4[qn] is not
boundedly invertible. Note that the operator C4[qn] is not boundedly invertible. Even if
C4[qn] is injective, the inverse is given by C4[qn]−1 = C[qn]−1⊗C[qn]−1, and this cannot be
bounded in infinite dimensions since C[qn] is Hilbert-Schmidt. Hence, the mentioned re-
placement is not well defined and numerically unstable. Therefore, we choose a bounded,
self-adjoint, positive semi-definite approximation

C[qn]−1 ≈ Γn ∈ L(L2(Γ)), (2.23)

e.g., by a truncated eigenvalue decomposition or by Lavrentiev regularization
Γn = (β Id+C[qn])−1. Then C4[qn]−1 ≈ Γn ⊗ Γn and C4[qn]−1/2 ≈ Γ

1/2
n ⊗ Γ

1/2
n . The pa-

rameter β may model the presence of measurement and modelling errors in addition to
the realization noise modelled by C4[qn]−1/2. Then the iteration (2.18) is replaced by

δqn = argminq

∥∥∥(Γ1/2
n ⊗ Γ

1/2
n )C[q] + C′[qn]q − Corr

∥∥∥2

Y
+ αn∥q + qn − q0∥

2
X

=
(
C′[qn]∗(Γn ⊗ Γn)C′[qn] + αnI

)−1 (
C′[qn]∗(Γn ⊗ Γn) (Corr−C[qn]) + αn(q0 − qn)

)
qn+1 = qn + δqn.

Note that for numerical efficiency it is very fortunate that the covariance operator C4 of
the correlation data has the separable structure (2.22). Further note from the second line
of the last equation that we only need Γn, not Γ1/2

n .

2.7 Forward problems in local helioseismology
In this section, we discuss applications of the model problem considered in the previous
sections to helioseismology.

2.7.1 Acoustic oscillations in the Sun
Ω0 will denote the interior of the Sun (typically Ω0 = B(0,R⊙) with R⊙ = 696 Mm),
whereas Ω may also include parts of the solar atmosphere. The measurement region we
consider is an open subset Γ of the visible surface ∂Ω0, accounting for the fact that in
typical helioseismic applications, measurements are only available on the near side of the
solar surface. Given that solar oscillations near the solar surface are primarily oriented in
the radial direction (Christensen-Dalsgaard 2003), there is also a lack of Doppler infor-
mation near the poles. This phenomenon results in leakage, causing challenges such as
incomplete decoupling of normal modes of oscillation (e.g. Schou and Brown 1994, Hill
and Howe 1998). In the subsequent analysis, we will exclusively work in the frequency
domain.

The propagation of acoustic waves in a heterogeneous medium like the Sun can be
described by the differential equation

−(ω + iγ + iu · ∇)2ζ −
1
ρ
∇(ρc2∇ · ζ) = F, (2.24)
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where we have ignored gravitational effects and have assumed an adiabatic approximation
(Gizon et al. 2017). The random source term F describes the stochastic excitation of
waves by turbulent motions and ζ is the Lagrangian wave displacement vector. As usual,
we denote with ρ the density, c the sound speed, γ the damping, and u the flow field. If
we furthermore neglect second order terms in γ,u, equation (2.24) can be converted into
a Helmholtz-like equation (Gizon et al. 2018), inspired by (Lamb 1909)

Lψ := −(∆ + V)ψ −
2iω
ρ1/2c

ρu · ∇
ψ

ρ1/2c
= s, (2.25)

where ψ = ρ1/2c2∇ · ζ is the scaled wavefield and s = ρ1/2c2∇ ·F a stochastic source term.
The potential V is defined by

V =
ω2 + 2iωγ − ω2

c

c2 , ω2
c = ρ

1/2c2∆(ρ−1/2). (2.26)

The frequency ωc is recognized as the acoustic cutoff frequency. This cutoff frequency
arises due to the abrupt decline in density near the solar surface and results in the trap-
ping of acoustic modes with frequencies below the acoustic cutoff frequency. Modes
with frequencies surpassing the acoustic cutoff frequency can propagate through the solar
atmosphere.

The conditions on c, ρ, γ, u are summarized in Assumption 2.3.

Assumption 2.3. Suppose that for some B0 ∈ L
(
H1/2(∂Ω),H−1/2(∂Ω)

)
, k ∈ C and some

set Acmin,ρmin,k ⊂ W1,∞(Ω,R) ×W2,∞(Ω,R) × L∞(Ω, [0,∞)) ×W∞(div,Ω) × L∞(Ω, [0,∞))
of admissible parameters c, ρ, γ, u, S containing some reference parameters cref, ρref, γref ,
uref, S ref such that the following holds true:

inf
x∈Ω

c ≥ cmin > 0, inf
x∈Ω

ρ ≥ ρmin > 0, (2.27a)

q = qref for q ∈ {c, ρ, γ, u, S } in Ω \Ω0, (2.27b)
u = 0, S = 0 in Ω \Ω0, (2.27c)
div(ρu) = 0 on Ω, (2.27d)

B : H1/2(∂Ω)→ H−1/2(∂Ω) satisfies the conditions (2.3c)–(2.3e) (2.27e)

For the flow field, we incorporate a mass conservation constraint (equation (2.27d)).
Additionally, we assume that the flow field does not intersect the computational boundary
(equation (2.27c)). Various boundary conditions, in particular radiation boundary condi-
tions and learned infinite elements, and their efficacy are extensively discussed in Barucq
et al. (2018), Fournier et al. (2017), Preuss et al. (2020). It is notable that the most popu-
lar choices of boundary conditions in helioseismology, such as radiation boundary condi-
tions, Sommerfeld boundary conditions, or free boundary conditions, are incorporated in
Assumption (2.27e).

We define the operator P that transforms the parameters in the wave equation (2.25)
into the form of equation (2.2) by

P : Acmin,ρmin,k → Bk, P(c, ρ, γ, u, S ) = (v,A, S ), (2.28)
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Figure 2.1: The left panel shows the sound speed and density obtained from the Solar
Model S (Christensen-Dalsgaard et al. 1996) in the solar core, the convection zone (CZ),
and the radiation zone (RZ). The right panel shows the potential close to the surface for
ω/2π = 3 mHz.

where

k2 =
ω2 + 2iωγ

c2
0

−
1

4H2 , A = ω
1
c2 u (2.29a)

v = k2 −
ω2 + 2iγω

c2 + ρ1/2∆(ρ−1/2) − 2iω
1

ρ1/2c
ρu · ∇

1
ρ1/2c

. (2.29b)

In Figure 2.1, we present the acoustic sound speed, the density, and the scalar potential
v as obtained from the Solar Model S and smoothly extended to the atmosphere. Mod-
eling the forward problem for the Sun remains challenging due to the substantial density
gradients near the surface, leading to strong variations of the scalar potential v near the
solar surface.

Lemma 2.5. The operator P, defined in equation (2.28), is well-defined in the sense that
for all parameters (c, ρ, γ, u, S ) ∈ Acmin,ρmin,k we have P(c, ρ, γ, u, S ) ∈ Bk, and this map is
continuous.

Proof. By equations (2.29a), (2.29b), we have v ∈ L∞(Ω,C), A ∈ W∞(div,Ω0), and the
mapping is continuous. The conditions (2.3c)–(2.3e) are obviously satisfied, and (2.3b) is
satisfied by Assumption 2.27d. For condition (2.3a), we note that ∇ · A = ω∇ · ρu

(ρ1/2c)2 =
2ω
ρ1/2cρu · ∇ 1

ρ1/2c , where we have used (2.27d). Therefore,

div A − ℑk2 + ℑv = −
2γω
c2 ≤ 0.

Because of Assumption (2.27b), c, ρ,∇ρ, γ,u,∇u are fixed at ∂Ω0 and in the exterior.
Therefore, the space of parameter perturbations is

XP := W1,∞
0 (Ω0,R) ×W2,∞

0 (Ω0,R) × L∞0 (Ω0) ×W∞
0 (div,Ω0) × L∞(Ω0)

where W∞
0 (div,Ω0) = {u ∈ W∞(div,Ω0) : u · n = 0 on ∂Ω}.
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Lemma 2.6. For cmin, ρmin > 0 and k ∈ C, the operator P is Fréchet differentiable in the
interior ofAcmin,ρmin,k with Fréchet derivative P′ : XP → XG given by

P′[c, ρ, γ, u, S ](∂c, ∂ρ, ∂γ, ∂u, ∂S ) =


∑

q∈{c,ρ,γ,u}(∂qv)(∂q)∑
q∈{c,u}(∂qA)(∂q)

∂S

 . (2.30)

For arguments (ṽ, Ã, S̃ ) ∈ L1(Ω0;C) × L1(Ω0;Rd) × L1(Ω0;R) ⊂ X′, the values of the
adjoint

P′[c, ρ, γ, u, S ]∗(ṽ, Ã, S̃ ) =


(∂cv)∗ṽ + (∂cA)∗Ã

(∂ρv)∗ṽ
(∂γv)∗ṽ

(∂uv)∗ṽ + (∂uA)∗Ã
S̃


belong to W−2,1(Ω0,R) ×W−1,1(Ω0,R) × L1(Ω0,R) × L1(Ω0,R

d) × L1(Ω0,R) ⊂ X′
P

.

Proof. We rephrase the potential v in the form:

v = k2 −
ω2 + 2iγω

c2 + ρ1/2∆(ρ−1/2) − iω∇ ·
( u
c2

)
.

It follows that

[∂cv](∂c) = 2
ω2 + 2iωγ

c3 · ∂c + 2iω∇ ·
( u
c3∂c

)
=: Mg0

c
(∂c) +

(
Mg1

c
◦ ∇

)
(∂c)

[∂γv](∂γ) = −2iωM 1
c2

(∂γ) =: Mg0
γ
(∂γ)

[∂ρv](∂ρ) =
(
1
2
ρ1/2∆ρ−3/2 −

1
2
ρ−1/2∆ρ−1/2

)
· ∂ρ −

1
2
ρ−1∆∂ρ − ρ1/2∇ρ−3/2 · ∇∂ρ

=: Mg0
ρ
(∂ρ) +

(
Mg1

ρ
◦ ∇

)
(∂ρ) +

(
Mg2

ρ
◦ ∆

)
(∂ρ)

[∂uv](∂u) = −iω∇
(
∂u
c2

)
=: Mg0

u
(∂u) +

(
Mg1

u
◦ ∇

)
(∂u),

(2.31)

where

g0
c , g

0
γ, g

0
ρ ∈ L∞(Ω0), g0

u ∈ L∞(Ω0)d, g1
u ∈ W1,∞(Ω0),

g1
c , g1

ρ ∈ W1,∞(Ω0)d, g2
ρ ∈ W2,∞(Ω0).

Furthermore, we have

∂cA = M −ω

c3 u, ∂uA = M ω

c2
, ∂γA = ∂ρA = 0, (2.32)

The operator P is Fréchet differentiable with Fréchet derivative (2.30) since the terms
∂qv, ∂qA are well-defined for q ∈ {c, ρ, γ, u}. The claim follows with the mapping proper-
ties of (∂qv)∗, (∂qA)∗.
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In analogy to equation (2.16), we can write the Fréchet derivative in the form:

(C ◦ P)′[c, ρ, γ, u, S ](∂c, ∂ρ, ∂γ, ∂u, ∂S ) =
∑

q∈{c,ρ,γ,u,S }

ℜ
(
H v,A

αq
Lq(∂q)H v,A

βq

∗
)

(C ◦ P)′[c, ρ, γ, u, S ]∗D =



L∗c

(
H

v,A
αc

∗
ℜ(D)H v,A

βc

)
L∗ρ

(
H

v,A
αρ

∗
ℜ(D)H v,A

βρ

)
L∗γ

(
H

v,A
αγ

∗
ℜ(D)H v,A

βγ

)
L∗u

(
H

v,A
αu

∗
ℜ(D)H v,A

βu

)
L∗S

(
H

v,A
αS

∗
ℜ(D)H v,A

βS

)


.

(2.33)

The operators Lq play the role of local correlation operators. The propagators and
local correlation operators in the flow-free case can be read in Table 2.1.

Table 2.1: Distributional kernel of back-propagator and local correlation operator for the
different parameters. The functions g0

ρ, g
1
ρ, g

2
ρ are defined in equation (2.31). The coordi-

nates are chosen such that x ∈ Γ and y ∈ Ω. Here, we assume that Cov[s∂Ω] = MB with
B ∈ L∞(∂Ω) and use the notation S Ω := S + Bδ∂Ω.

Quantity q PropagatorHαq PropagatorHβq Local correlation L∗q
Source Strength S G(x, y) G(x, y) Diag

Sound speed c G(x, y)
∫
Ω

G(x, z)S
Ω

(z)G(y, z) dz −2ω2+2iωγ
c3 · Diag

Density ρ G(x, y)
∫
Ω

G(x, z)S
Ω

(z)G(y, z) dz
(
g0
ρ − g1

ρ∇ + g2
ρ∆

)
· Diag

Wave damping γ G(x, y)
∫
Ω

G(x, z)S
Ω

(z)G(y, z) dz 2iω
c2 · Diag

Flow component Ai G(x, y) êi · ∇y

( ∫
Ω

G(x,z)S
Ω

(z)G(y,z) dz
ρ1/2(y)c(y)

)
2iω ρ1/2

c · Diag

Note that despite the fact that the adjoint with respect to the standard L2 dual pairings
takes values in negative Sobolev spaces, it is usually not necessary to deal with such
functions (or distributions) numerically in iterative regularization methods. For instance,
in Landweber iteration in Banach spaces, the application of the adjoint is followed by
the application of a duality mapping which takes values in positive Banach spaces. For
Hilbert space methods, one would choose a L2-based Sobolev space W s,2 with sufficiently
large s and compute the adjoint with respect to the W s,2 inner product, which amounts to
an evaluation of the adjoint of the embedding W s,2 ↪→ L2.

2.7.2 Source model in helioseismology
It remains to discuss the seismic source model in helioseismology. It has been shown in
several settings that the cross-correlation is roughly linked to the imaginary component of
the outgoing Green’s function (Garnier and Papanicolaou 2016). In helioseismology, this
relation takes the form (Gizon et al. 2017)

C(r1, r2, ω) =
Π(ω)
4iω

(
Gv,A(r1, r2, ω) −Gv,−A(r1, r2, ω)

)
, (2.34)

whereΠ(ω) is the source power spectrum. This relation leads to a power spectrum in good
agreement with the observations (Gizon et al. 2017). As outlined in Gizon et al. (2017),

53



2 Quantitative passive imaging by iterative holography: The example of helioseismic
holography

Equation (2.34) holds true for an outgoing radiation condition and random sources that
are appropriately excited across the volume in proportion to the damping rate

(Cov[s]ϕ)(r, ω) = Π(ω)
γ(r, ω)
c2

0(r)
ϕ(r, ω). (2.35)

Moreover, there are surface integrals that persist for frequencies above the acoustic cutoff
frequency, and these are dependent on the chosen boundary condition.

The relationship between source power and damping rate emerges from the idea of
equipartition among distinct acoustic modes (Snieder 2007). This choice of covariance
couples the source strength with wave attenuation and sound speed. Nevertheless, we
consider the source strength as an additional individual parameter. This source model is
included in the discussion of the previous sections. In helioseismology, the relation (2.34)
is the standard choice to reduce the computational costs of the operator evaluation. Fur-
thermore, it allows us to evaluate the back-propagator in Table 2.1 efficiently.

2.8 Iterative helioseismic holography
In this section, we discuss the application of the approach outlined in Section 2.6 to local
helioseismology. We first show that it can be interpreted as an extension of conventional
helioseismic holography. For this reason, we will refer to this approach as iterative helio-
seismic holography. We also discuss relations to other methods in local helioseismology.

In a second subsection, we will describe sensitivity kernels for the normal equation as
introduced in (2.19) for the following three scenarios:

1. Inversion for the source strength,

2. Inversion for scalar parameter q ∈ {ρ, c, γ},

3. Inversion for mass-conserved flow field u.

2.8.1 Relations to conventional helioseismic holography and other
methods

Conventional helioseismic holography is based on the Huygens principle in the sense that
the observed wavefield is described as a superposition of seismic point sources on the
wavefront. This principle allows holography to propagate the correlations of acoustic
waves at the solar surface forward in time ("ingression" using Hβ) or backward in time
("egression" using Hα) to a pre-defined target location in the interior in order to image
anomalies in the background medium (e.g. Lindsey and Braun 1990). There exists a close
connection to seismic migration in terrestrial seismology, which re-locates seismic events
on the earth’s surface in time and space, based on the wave equation (e.g. Hagedoorn
1954, Claerbout 1985). Furthermore, similar back-propagators are used in conventional
beamforming in aeroacoustics (Garnier and Papanicolaou 2016, Hohage et al. 2020).

The Lindsey-Braun holographic image (see Lindsey and Braun 2000a) is constructed
by the wave propagatorsHα ∈ L

(
H−1

0 (Ω), L2(Γ1)
)

andHβ ∈ L
(
H−1

0 (Ω), L2(Γ2)
)

such that

ϕα(x) = (H∗αψ)(x) =
∫
Γ1

Hα(x, r)ψ(r) dr, ϕβ(x) = (H∗βψ)(x) =
∫
Γ2

Hβ(x, r)ψ(r) dr,
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where Γ1,Γ2 ⊂ Γ are called pupils. In Lindsey-Braun holography the information is ex-
tracted from the so-called egression-ingression correlation for parameters q ∈ {c, ρ,u, γ}
and the egression power for seismic sources

Iα,β(x) =
1
N

N∑
n=1

ϕn
α(x)ϕn

β(x) =
1
N

N∑
n=1

Diag
(
H∗αψn ⊗H

∗
βψn

)
(x), (2.36)

Eq
[
Iα,β(x)

]
=

∫
Γ

∫
Γ

Hα(r, x)Cv,A,S (r, r1)Hβ(r1, x) dr dr1 = Diag
(
H∗αC[q]Hβ

)
, (2.37)

where ⊗ the standard tensor product, and Cv,A,S is from equation (2.7).
The comparison of equations (2.16) and (2.36) shows that the adjoint of the Fréchet

derivative of the covariance operator is linked to traditional helioseismic holography. De-
noting potential additional dependence of Iα,β on the unknown parameters q through Hα

and Hβ by superscripts, in terms of conventional holography the Newton step (2.18) is a
regularized solution to

Iqn
α,β − Eq

[
Iqn
α,β

]
=

∫
Ω0

Kqn
α,β(·, y) (δqn)(y) dy,

where Kq
α,β are the sensitivity kernel of traditional holography, see (2.20). We will discuss

the sensitivity kernels in more detail in Section 2.8.2.
In traditional helioseismic holography, one has freedom in the choice of the pupils and

back-propagators. For example, the pupils can be chosen such that the hologram intensity
becomes sensitive to specific flow components (Yang 2018). As a further example, Porter-
Bojarski holograms, introduced to the field of helioseismology in Skartlien (2001, 2002),
make use of the normal derivative at the surface in addition to the Dirichlet data. In
contrast, the backward propagators in iterative helioseismic holography are determined
by the wave equation, and the image is improved by iteration.

While many techniques in helioseismology including traditional helioseismic holog-
raphy are limited to linear scenarios, iterative holography naturally allows to tackle non-
linear problems.

Among the commonly used imaging techniques in local helioseismology, hologra-
phy is the only method that uses the complete cross-correlation data. As already dis-
cussed in Section 2.6.1, these data are used only in an implicit manner without the (usu-
ally infeasible) requirement of computing or storing the cross-correlation data explicitly.
Whereas traditional helioseismic holography only provides feature maps (Lindsey and
Braun 1997), iterative helioseismic holography additionally allows to retrieve quantita-
tive information.

2.8.2 Kernels and resolution
In the following, we compute the sensitivity kernels for the normal equation as defined
in eq. (2.19) which are set up explicitly in our current implementation. It is important
to note that sensitivity kernels are typically 3D × 3D operators and should be avoided
in computations. Nevertheless, in the spherically symmetric case or two-dimensional
medium, computation becomes feasible. Therefore, for the purpose of this paper, we
can compute the sensitivity kernels in each iteration and do not study more sophisticated
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approaches. These kernels are infinitely smooth for smooth coefficients, but they are
well localized. It turns out that the width of these kernels is of the order of the classical
resolution limit of half a wavelength. This provides an upper bound on the achievable
resolution. For simplicity, we will assume a spherically symmetric background without a
flow field.

1. Inversion for source strength: It follows from Theorem 2.4 that

∂S C[v,A, S ](∂S ) = HαSM(∂S )H∗βS
,

where the multiplication operator is defined in Lemma 2.2, so

(∂S C[v,A, S ])∗∂S C[v,A, S ](∂S ) = Diag(FαS ,αSM(∂S )FβS ,βS )

with the sensitivity kernel

K(x, y) = ℜ
[
FαS ,αS (x, y)FβS ,βS (y, x)

]
.

The real part comes from the fact that the source strength has to be a real parameter,
it is the adjoint of the embedding of a vector space of real-valued functions into
the corresponding vector space of complex-valued functions. The source forward-
backward kernel takes the form:

FαS ,αS (x, y) = FβS ,βS (y, x) =
∫
Γ

∫
Γ

G(z, x)Dn(z, z′)G(z′, y) dz dz′,

where Dn is the integral kernel of Γn in (2.23). The sensitivity kernel becomes
|KαS ,αS |

2 and is therefore non-negative. Furthermore, there are almost no sidelobes
after averaging over frequency.

2. Inversion for scalar parameters q ∈ {ρ, c, γ}: The operators ∂qv and ∂qA for q ∈
{ρ, c, γ} are computed in equations (2.31) and (2.32). For a flow-free background
medium, we have ∂qA = 0 for all scalar parameters q. It follows from Theorem 2.4
that

∂qC[v,A, S ](∂q) = −2ℜ
[
HαvM(∂qv∂q)H∗βv

]
,

and hence

(∂qC[v,A, S ])∗∂qC[v,A, S ](∂q)

= 2(∂qv)∗Diag
[
Fαv,αvM(∂qv∂q)Fβv,βv + Fαv,βvM((∂qv∂q)∗)Fαv,βv

]
,

where Fαv,αv =
∫
Γ

∫
Γ

Hαv(z, x)Dn(z, z′)Hαv(z′, y) dz dz′ and analogue for Fαv,αv , Fβv,βv .
In particular, for q ∈ {c, γ}, we have ∂qv =M(g0

q), and the kernel takes the form

K(x, y) = 2ℜ
[
g0∗

q (x)Fαv,αv(x, y)Fβv,βv(y, x)g0
q(y)

]
+ 2ℜ

[
g0∗

q (x)Fαv,βv(x, y)Fαv,βv(y, x)g0∗
q (y)

]
.

(2.38)
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3. Inversion for mass-conserved flow field u: The flow field sensitivity kernel takes
the form

Ki, j(x, y) = 2ℜ
[
Fαu,αu(x, y)F i, j

βu,βu
(y, x) + F j

αu,βu
(x, y)F i

αu,βu
(y, x)

]
,

for i, j ∈ {r, θ, ϕ} where Fαu,αu =
∫
Γ

∫
Γ

Hαu(z, x)Dn(z, z′)Hαu(z′, y) dz dz′ and ana-
logue the further kernels.

It is remarkable that we are encountering a gradient in the local correlation (∂uLu)∗. In
Chapter 4 of Yang (2018), enhancements were accomplished by calculating the difference
between two holograms which are spaced apart by half the local wavelength. This can
be understood as an approximation to the gradient in the target direction and is therefore
naturally incorporated in our framework.

In Figures 2.2 and 2.3, we present the sound speed kernel for a uniform and a solar-like
radially stratified medium for four different target positions. The kernels are computed for
spherical harmonic degrees 0 ≤ l < 100 and averaged over 100 evenly spaced frequencies
between 2.75–3.25 mHz. Since there are no strong ghost images on the backside, we
show only half of the geometry. The sound speed kernels are very sharp near the target
location. Therefore, we can expect the holograms to catch the main features of the image.
It is important to highlight that the kernels maintain their sharpness even in deep regions
within the interior. In addition, this result holds true for a radial stratification similar to
that of the Sun. We observe similar behavior for the sensitivity kernels for wave damping,
density, source strength, and the components of the flow field. Similar to the sensitivity
kernels for the source strength, it is important to note that there are only small visible
sidelobes in the sensitivity kernels for sound speed perturbations. This is an additional
advantage compared to traditional techniques used in helioseismology.

Figure 2.4 provides a comparison of the width of the sensitivity kernels for the normal
equation and the local half wavelength λ/2. Note that both are of similar size in all cases,
and similar results hold true in angular direction. Therefore, we can expect a resolution
of (at least) λ/2. However, in the case of a solar-like stratification, the sensitivity kernels
are increasing close to the solar surface.

In helioseismology, and particularly in helioseismic holography, a common issue is
the indistinguishability of various sources of perturbations, which complicates the inter-
pretation of seismic data. The design of a holographic back-propagator holds the promise
of separating different perturbations. In Figure 2.5, we present the sensitivity kernels for a
perturbation in sound speed, a perturbation in damping, and the cross-kernel in a uniform
two-dimensional medium. We show the kernels in a region around the target location.
Note that the sound speed kernel is on one scale bigger than the damping kernel and the
cross-kernel. Furthermore, the cross-kernel exhibits a different shape with positive and
negative maxima around the target location. Therefore, we expect that iterative hologra-
phy can separate different perturbations in the background medium.

2.9 Inversions
In this section, we analyze the performance of iterative holography. The geometry is
meshed with a resolution of 10 internal points per local wavelength. Furthermore, we
impose a Sommerfeld boundary condition throughout the inversions.
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Figure 2.2: The sound speed sensitivity kernel K(x, ·) in the r − θ-plane as defined in
(2.38) for a three-dimensional uniform medium with c0 = 200 km/s and the l-range is
0 ≤ l < 100 for four different target positions x. We have averaged the sensitivity kernels
over 100 frequencies in the frequency regime 2.75–3.25 mHz and normalized with K(x, x)
at the target location x.
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Figure 2.3: The sound speed sensitivity kernel K(x, ·) in the r−θ-plane as defined in (2.38)
in a spherically stratified solar-like background medium and spherical harmonics degrees
0 ≤ l < 100 for four different target positions. We have averaged the sensitivity kernels
over 100 frequencies in the frequency regime 2.75–3.25 mHz and normalized with K(x, x)
at the target location x. For better comparisons, we have multiplied the sensitivity kernels
with the sound speed.
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Figure 2.4: The sound speed sensitivity kernels in a spherically stratified background
medium and the l range is 0 ≤ l < 100. In the top panels we present the kernels for a
uniform medium with c0 = 200 km/s (as in Fig. 2.2), and in the second line the kernels
for a solar-like medium (as in Fig. 2.3). In the first column, we show the kernels in
the radial direction, and in the second column the kernels in the angular direction. We
have averaged the sensitivity kernels over 100 frequencies in the frequency regime 2.75–
3.25 mHz. Furthermore, we compare the width of the sensitivity kernels to the classical
resolution limit of λ/2. For better comparisons, we have multiplied the sensitivity kernels
with the sound speed.
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Figure 2.5: Matrix-valued sensitivity kernel for joint inversion for sound speed c and
damping γ. The left two panels exhibit the diagonal entries, and the right panel the cross-
kernel in a uniform two-dimensional medium in a rectangular box of [0.2 R⊙, 0.4 R⊙]2.
The target location is indexed by a red cross. The kernels are normalized by the maximal
value of the sound-speed kernel.

Throughout the following inversions, we employ a L2-term as the penalty term and
introduce a non-negativity constraint for both sound speed and source strength. The regu-
larization parameter is determined by a power law: αn = α0 ·0.9n, where α0 represents the
maximal eigenvalue of the first iteration. The stopping criterion for the inversions is a ver-
sion of the discrepancy principle for the normal equation, with the noise level determined
by the trace of the covariance operator C4. In more advanced inversions, stopping rules
may be investigated in the hologram space. We set a limit of at most 50 inner conjugate
gradient steps per Newton step. Furthermore, we opt for a spatial resolution of 7 grid
points per local wavelength.

2.9.1 Holographic image for source perturbation
We have performed a numerical test for a uniform, flow-free two-dimensional medium
with source region [0.5, 0.7]2 and 100 uniformly sampled receivers located on ∂B(0, 1)
(see Figure 2.6). We choose a constant sound speed c = 350 km/s, which corresponds
to the solar sound speed at ≈ 0.38R⊙. The frequency is fixed to be ω/2π = 3 mHz,
which corresponds to the solar 5-minute oscillations. In the case of uniform medium, the
differential equation simplifies to a Helmholtz equation, such that the Green’s function
is analytically known (see 2.11.2). Note that Lindsey-Braun holography (Hα = Hβ =

G) provides sharp feature maps in the case of small wave damping. For stronger wave
damping, the quality of these feature maps deteriorates rapidly. Even without damping,
the feature maps are not quantitative at all.

2.9.2 Source strength inversion
Due to its linear nature, inversion for source strength is the simplest case. Therefore, it
is in general possible to work with a much finer grid than in the case of parameter iden-
tification problems. We add a strong perturbation in the source region [0, 0.5 R⊙]2. The
inversion results at 3 mHz are shown in the first row of Figure 2.7 for 10000 realizations.
Note that even very deep source terms can be inverted using only one frequency. The
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Figure 2.6: Lindsey-Braun holographic image intensities in uniform two-dimensional
medium (Helmholtz equation) for different degrees of damping with 100 equidistant re-
ceivers on ∂B(0, 1). The wave number is such that k2 = ω2(1+ iγ)/c2 with constant sound
speed c = 350 km/s and ω/2π = 3 mHz corresponding to a wavelength of ≈ 0.17 R⊙.
Note the different scalings of the color maps illustrating the non-quantitative nature of
Lindsey-Braun holography.

reconstructions exhibit a remarkable quality, strongly improving the results by traditional
Lindsey-Braun holography (see Figure 2.6).

2.9.3 Parameter identification

We add a perturbation in the quadratic region [0.5R⊙, 0.7R⊙]2. Furthermore, we choose
100 evenly spaced frequencies in the frequency range of 2.75 − 3.25 mHz and assume
1000 realizations for each frequency. Note that in helioseismology we have many more
frequencies available.

The inversions are shown in the second row of Figure 2.7. The Newton iteration was
stopped after 15 iterations. The resolution of the reconstruction is again below the classi-
cal limit of half a wavelength. We observed qualitatively similar results in the inversions
for wave damping and density.
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Figure 2.7: Inversions in two-dimensional uniform background with sound speed c =
350 km/s. In the first row, we present inversions for the source strength at 3 mHz and
10000 realizations. In the second row, we present inversions for the sound speed for 100
frequencies evenly spaced in the band 2.75–3.25 mHz and 1000 realizations. The black
cross indicates λ/2.

The total number of Dopplergrams is given by Nω × Nobs, where Nω is the number of
frequencies and Nobs the number of realizations for each frequency. Note that the total
size of Doppler data is fixed by the observation time. We observe that a larger number
of frequencies leads to better reconstructions. On the other hand, the computational costs
scale roughly linearly with the number of frequencies. This becomes particularly impor-
tant for large-scale forward problems like for the Sun. Therefore, the choice of Nω often
is a trade-off between quality of reconstructions and computation time.

2.9.4 Flow fields

The inversion is performed in a solar-like three-dimensional medium. The example flow
field is computed by u = curlψ, where ψ is a stream function. This guarantees conserva-
tion of mass and axisymmetry of the flow field. The stream function is chosen similar to
models of meridional circulation profiles in the Sun (Liang et al. 2018). In the inversion
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Figure 2.8: Inversion for the flow field in solar-like three-dimensional background
medium in the r−θ-plane. The inversion is performed with 100 evenly spaced frequencies
between 2.75–3.25 mHz and 1500 realizations. Due to the symmetry, we show only one
half-space of the flow field.

process, we guarantee conservation of mass through Lagrange multipliers, as discussed in
2.11.3. The inversion for a symmetric flow field is presented in Figure 2.8. We inverted
with 100 evenly spaced frequencies between 2.75-3.25 mHz and assumed 1500 realiza-
tions for each frequency. Since meridional flows are a small perturbation, the iteration is
stopped after one iteration. Because of the symmetry, we show only one half-space of the
flow field. Besides the strength of the flow field at larger depths, there is no difference
visible in the eye-norm.

2.10 Conclusions
We have developed a theoretical framework for quantitative passive imaging problems
in helioseismology. It shows that traditional holography can be interpreted as an adjoint
imaging method. Holographic back-propagation can be seen as part of the adjoint of the
Fréchet derivative of the forward operator mapping physical parameters to the covariance
operator of the observations. In contrast to traditional holography, the backward propaga-
tors are uniquely determined by the wave equation, and the holograms can be improved by
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iteration rather than clever choices of back-propagators. Iterative helioseismic hologra-
phy surpasses traditional helioseismic techniques by the quantitative nature of its imaging
capabilities and its ability to solve nonlinear problems.

We have demonstrated the performance of iterated holography in inversions for the
right hand side of wave equation (source strength), parameters of the zeroth order term
(sound speed, absorption) and of the first order term (flows).

In all three cases, we have achieved reconstructions with a resolution of slightly less
than half of the local wave-length by the iteratively regularized Gauss-Newton method,
even for strong realization noise. This is well below the spatial resolution of traditional
time-distance helioseismology (see Pourabdian et al. 2018).

Inversions in other more challenging solar setups and for real solar oscillation data are
planned as future work and will be presented elsewhere.

In view of the huge size of solar oscillation data, the main bottleneck that prevents
the immediate application of iterative holography to interesting large-scale problems in
helioseismology is computational complexity. The results of this paper encourage fur-
ther algorithmic research on iterative regularization methods tailored to passive imaging
problems, e.g., by more efficient treatments of sensitivity kernels and Green’s functions.

An interesting feature of correlations of Gaussian fields is the structure of the realiza-
tion noise as described in Section 2.6.3. A thorough mathematical treatment will require
further investigation concerning appropriate stopping rules, consistency, and convergence
rates as the sample size tends to infinity.
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2.11 Appendix

2.11.1 Reference Green’s function for the Sun
The Green’s function is usually computed in the frequency domain with background pa-
rameters specified by the spherically symmetric standard Model S (Christensen-Dalsgaard
et al. 1996). Additionally, we have to fix the wave attenuation. We choose a frequency-
dependent wave attenuation model, motivated by the Full Width at Half Maximum
(FWHM) of wave modes (Korzennik et al. 2013, Larson and Schou 2015, Gizon et al.
2017):

γ(r, ω) =
{
γ0 |ω/ω0|

5.77 for ω ≤ 5.3 mHz
2π × 125 µHz for ω ≥ 5.3 mHz

,

where γ0/2π = 4.29 µHz and ω0/2π = 3 mHz. We extend the computational boundary by
500 km above the solar surface (compare with the density scale height of H = 105 km)
and apply the radiation boundary condition "Atmo Non Local" (see Fournier et al. 2017),
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assuming an exponential decay of density and constant sound speed in the solar atmo-
sphere.
In a spherical symmetric background, we can decompose the Green’s function into spher-
ical harmonics:

G(r1, r2) =
∞∑

l=0

l∑
m=−l

Gl(r1, r2)Ylm(r̂1)Y∗lm(r̂2), (2.39)

where the Ylm are spherical harmonics. The functions Gl(r1, r2) satisfy a one-dimensional
differential equation and are computed with NGsolve Schoeberl (1997), Schoeberl (2014).
The computation of the Green’s function is usually expensive, as the stiffness matrix has
to be inverted. The two-step algorithm of Barucq et al. (2020) allows us to obtain the full
modal Green’s function from two computations only. Furthermore, this expansion allows
us to use a low-rank approximation for the Green’s function.

2.11.2 Green’s function in uniform medium
We perform numerical toy examples in uniform flow-free two-dimensional and three-
dimensional background mediums and consider a Sommerfeld boundary condition. The
differential equation (2.25) reduces to the Helmholtz equation

−(∆ + k2)ψ = s, (2.40)

where k is constant. In this setting, the Green’s function is well known (e.g. Colton and
Kress 2013):

G(x, y, k) = i
4 H1

0(k|x − y|), d = 2 (2.41)

G(x, y, k) = exp(ik|x−y|)
4π|x−y| , d = 3, (2.42)

where H1
0 is the Hankel function of first kind.

The Green’s functions are weakly singular at x = y. We will approximate the Green’s
functions around the singularity using asymptotics:

G(x, y) =
1

2π
ln(

1
|x − y|

) +
i
4
−

1
2π

ln(
k
2

) −
C
2π
+ O(|x − y|2 ln(1/|x − y|)), d = 2 (2.43)

G(x, y) =
1

4π|x − y|
+

ik
4π
+ O(|x − y|), d = 3, (2.44)

where the constant C denotes the Euler-Mascheroni constant. In inversions of extended
properties like large-scale flows, it is more feasible to work in an angular basis (spheri-
cal harmonics in three dimensions and trigonometric functions in two dimensions). The
Green’s functions for the uniform medium can be described by

G(x, y) = H1
0(k|x|)J0(k|y|) + 2

∑∞
n=1 H1

n(k|x|)Jn(k|y|) cos(nθx,y), d = 2 (2.45)
G(x, y) = ik

∑∞
n=0

∑m=n
m=−n h1

n(k|x|)Ynm(x̂) jn(k|y|)Y∗nm(ŷ), d = 3, (2.46)

for |x| ≥ |y|. Here, Jn, h1
n, jn denote the Bessel function, spherical Hankel function, and

spherical Bessel function. Moreover, θx,y denotes the angular distance between x and y.
Furthermore, this basis transformation allows a natural implementation of the singularity.
We use this expansion in order to use low-rank approximations for the Green’s function.
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2.11.3 Conservation of mass
For flow inversions, considerable improvements are achieved by incorporating mass con-
servation in the inversion process (Fournier et al. 2018).

An equality constraint Rδuk = 0, where R : X → Z is a bounded linear operator,
can be incorporated by employing the method of Lagrange multiplier. For the iterative
Gauss-Newton method, we solve the normal equation:

δuk = argmin
div(ρδu)=0

∥(Γ1/2
n × Γ

1/2
n )

[
C′[uk](δu) − (Corr−C[uk])

]
∥Y + αk∥δu∥X, (2.47)

with Hilbert spaces X, Y, noise covariance operator Γ defined in (2.23). The Lagrange
function takes the form L(δuk, µ) := ∥(Γ1/2

n × Γ
1/2
n ) [C′[uk](δuk) − (Corr−C[uk])] ∥Y +

αk∥δuk∥X + ⟨µ, αRδuk⟩Z with the Lagrange multiplier µ ∈ Z. The saddle point can be
found by(
C′[uk]∗(Γn × Γn)C′[uk] + α IdX αR∗

αR 0

) (
δuk

µ

)
=

(
C′[uk]∗(Γn × Γn)(Corr−C[uk])

0

)
. (2.48)
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3 Iterative helioseismic holography of
solar axisymmetric flows applied to
synthetic data

3.1 Abstract

Axisymmetric flow fields in the solar interior play a crucial role in solar dynamo theory
and are intensively studied in helioseismology. The solar differential rotation is usually
measured by frequency splitting, giving only access to the symmetric part of the profile.
The meridional circulation is obtained from time-distance helioseismology, and the high
noise level limits our knowledge of the deep structure.

We wish to demonstrate at the example of axisymmetric flows that the full informa-
tion content of cross-correlation data concerning internal solar quantities can be exploited
implicitly in a computationally affordable manner, avoiding the explicit computation of
these high-dimensional data in a preprocessing step. We aim to show that this technique
avoids limitations and reduces the expected errors of conventional methods. Iterative he-
lioseismic holography is an imaging method that extends helioseismic holography, a pow-
erful tool frequently employed for imaging the Sun’s far side, into a quantitative imaging
method.

We consider acoustic waves in the Sun described by a scalar wave equation. The
background medium (in particular axisymmetric flows) is updated at each iteration until
the difference between simulated and observed holograms reaches the noise level. We
apply iterative helioseismic holography to image large-scale flows in the solar interior on
synthetics.

We show that the wave propagators used in traditional helioseismic holography are
related to the gradient of the wave propagation operator. This correspondence gives an
objective way to define the wave propagators associated with the different types of scat-
terers. The obtained averaging kernels are extremely well localized, with an extent cor-
responding to the diffraction limit. Using synthetic data, we demonstrate the ability of
iterative holography to reconstruct the solar differential rotation as well as the meridional
circulation with a noise level about three times lower than time-distance helioseismology.

Iterative helioseismic holography is sensitive to large-scale flows in the solar interior

This chapter reproduces the article Iterative helioseismic holography of solar axisymmetric flows ap-
plied to synthetic data by Björn Müller, Thorsten Hohage, Laurent Gizon and Damien Fournier, to be
submitted to A&A. Author contributions: L.G. and B.M. designed the research. B.M. implemented the
method. All authors contributed to the final manuscript.
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and can improve current inversions in terms of spatial resolution and noise level. The
application of this method to observations should enhance our understanding of the deep
interior of the Sun.

3.2 Introduction
The rotation profile of the Sun is one primary object of interest and has been intensively
studied in helioseismology (e.g. Schou et al. 1998). It is well established that the rotation
rate varies with latitude and depth (see e.g. Schroeter 1985). Two shear layers character-
ized by strong radial gradients are particularly significant for solar dynamo theory. The
first layer, known as the near-surface shear layer (NSSL), is located within the uppermost
35 Mm of the Sun (see e.g. Howe 2009) and is characterized by a substantial decrease in
rotation rate. Besides the NSSL, the tachocline is located at the bottom of the convection
zone (Spiegel and Zahn 1992). While helioseismology has contributed significantly to our
understanding of the solar cycle, several important questions remain unanswered. These
include the behavior of the NSSL at high latitudes, the overall rotation of the inner core,
and potential temporal variations in the tachocline (Howe 2009).
The solar rotation has a significant impact on solar oscillations. In a non-rotating star,
the mode frequencies νnlm are degenerate in m (e.g. Duvall and Harvey 1984). Solar ro-
tation introduces a frequency splitting that breaks down the degeneracy. A more detailed
analysis based on normal mode expansion leads to the kernel equation (e.g. Christensen-
Dalsgaard 2003)

δνnℓm =

∫
Σ

Knℓm(r)Ω(r) d2r,

where δνnℓm describes the frequency splitting, n, ℓ and m are the separation indices w.r.t.
the spherical coordinates r, θ and ϕ, respectively, Knℓm are well-known sensitivity ker-
nels, Ω is the rotation profile and Σ is the surface spanned by radius and latitude. The
symmetry relation of the kernels, K(r, θ) = K(r, π − θ), prevents the measurement of the
antisymmetric component of the solar rotation profile. This limitation arises because the
power spectrum is only affected by second-order terms of the antisymmetric component
(Schad and Roth 2020). Furthermore, the sensitivity kernels do not allow the study of the
solar rotation at a resolution in the order of the classical resolution limit of λ/2.
In addition to differential rotation, there is meridional circulation, a global flow field that
transports material between the poles and the equator. The meridional circulation has
been extensively studied since the first analysis by Duvall (1979). Meridional flows play
a crucial role in solar dynamo theories, as they facilitate the transport of magnetic fields
between the solar equator and poles (e.g. Brun and Rempel 2009, Cameron et al. 2017).
Inversions for the meridional flow, particularly the deep meridional flow, remain challeng-
ing because of the small perturbations to the background medium and the requirement of
long observation times (e.g. Gizon et al. 2020).
Helioseismic holography offers a unique approach to utilize the complete cross-correlation
data by back-propagating the Dopplergrams in a physically motivated manner (e.g. Lind-
sey and Braun 1990, 1997, 2000a). For instance, unlike other techniques, helioseismic
holography incorporates the seismic information from amplitude measurements. This
allows helioseismic holography to capture the antisymmetric component of differential
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rotation. Furthermore, it can potentially enhance the accuracy of meridional circulation
inversions. Recent advancements by Müller et al. (2024) have extended helioseismic
holography to a quantitative regularization method by iterating over holograms. They
demonstrated the feasibility of this approach in a uniform two-dimensional medium as
a proof-of-concept. Furthermore, they demonstrated that iterative holography enables
reconstructions at the spatial resolution limit of half of the local wavelength. In this
manuscript, we further adapt the methods to solar-like models at the example of inver-
sions of large-scale flows.
In this study, we employ an iterative helioseismic holography to tackle the nonlinear pa-
rameter identification problem in helioseismology. It is important to highlight the dis-
tinctions between our approach and the full-waveform inversions presented by Hanasoge
(2014) and Hanasoge and Tromp (2014). In contrast to these studies, we use the wave-
form difference as the misfit function instead of travel-times differences. Because of the
vast size of the surface cross-correlation, it is computationally infeasible to calculate and
store the reference cross-correlation and forward kernels. We overcome this problem by
applying holographic back-propagation to the measured holograms and using a conjugate
gradient descent to compute the iterative update. Furthermore, we use likelihood model-
ing for the penalty function instead of the L2-norm. Our inversion technique is commonly
called the iteratively regularized Gauss-Newton method (IRGNM). This method is known
to converge at optimal rates in many situations.
The plan of the paper is as follows: In Sect. 3.3, we introduce the theoretical background
for solar oscillation and the inverse problem. In Sect. 3.4.1, we introduce helioseismic
holography, with a specific emphasis on holography for flow fields in Sect. 3.4.2. We
then extend the method to iterative holography in Sect.3.4.3. Further, the noise model
is discussed in Sect. 3.5. We discuss the implementation of the algorithm and the for-
ward solver, particularly the computation of Green’s function, in Sect. 3.6. Furthermore,
the impact of leakage is discussed in Sect. 3.7. Next, we explore the numerical results,
starting with the forward modeling and the signal-to-noise ratio in Sect. 3.8. Finally, we
present synthetic tests for the inversion in different setups in Sect. 3.8.

Throughout this paper, we denote with ∗ the complex conjugate, with H the hermitian
conjugate in matrix/operator sense, and with † the Moore-Penrose pseudoinverse. Fur-
thermore, we use ⊗ for the tensor-product: (ψ⊗ϕ)(x, y) := ψ(x)ϕ∗(y). Moreover, as usual,
we denote with Yℓ,m(θ, ϕ) spherical harmonics, which form an orthonormal basis.

3.3 Forward model/Inverse problem

This section introduces the forward and inverse problems considered in this paper.

3.3.1 Forward model

We assume that acoustic modes inside the Sun can be described by a scalar convective
Helmholtz equation (e.g. Gizon et al. 2018)

Luψ := −(∆ + k2)ψ −
2iω
ρ1/2c

ρu · ∇
(
ψ

ρ1/2c

)
= s, (3.1)
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where Lu denotes the differential operator acting on the scalar wavefield ψ = ρ1/2c∇ · ζ,
where ζ is the 3D displacement vector. The potential k2 is given by

k2 =
ω2 + 2iωγ

c2 − ρ1/2∆(ρ−1/2). (3.2)

Here, ω denotes the frequency, ρ the density, c the sound speed, u the background flow,
γ the wave attenuation, and s a stochastic source term. In this formulation, we have
neglected gravity effects and second-order terms in wave attenuation and flow. A com-
prehensive derivation can be found in Gizon et al. (2017).

This equation needs to be complemented by a boundary condition. We assume an
isothermal atmosphere and use the atmospheric radiation boundary condition “Atmo Non-
Local” from Fournier et al. (2017), Barucq et al. (2018), approximating the Sommerfeld
radiation condition on the computational boundary. We emphasize that further boundary
conditions are possible and do not change the scope of the paper.

In local helioseismology, one studies the five-dimensional cross-correlation of Dopp-
lergrams ψ (e.g. Duvall et al. 1993):

Corr(x, y, ω) =
1
N

N∑
j=1

ψ j(x, ω)ψ∗j(y, ω), x, y ∈ A, (3.3)

where the index j runs over different realizations (e.g., different time periods) and A de-
scribes the visible part of the solar surface. We assume a correspondence between the
measured Dopplergrams and the scalar wavefield defined in Eq. (3.1). We denote by cov
the expectation value of the correlations

cov(x, y, ω) := Cov(ψ(x, ω), ψ(y, ω)) = E[ψ(x, ω)ψ∗(y, ω)], (3.4)

where we have used that s and ψ are Gaussian variables centered at 0. The wavefield ψ
can be computed as

ψ(x, ω) =
∫

V
Gu(x, z, ω)s(z, ω) dz, (3.5)

where V denotes the solar interior and G is the Green’s function of the operator L, that
is the solution of Eq. (3.1) with a Dirac right-hand side. To compute cov, we model the
seismic sources as random processes with covariance matrix

E
[
s(x, ω1)s∗(y, ω2)

]
= δ(ω1 − ω2)δ(x − y)S (x, ω1), (3.6)

where S is the source strength that describes the spatial and spectral distribution in the so-
lar interior. This choice ensures that the sources are spatially uncorrelated and stationary,
which is a natural assumption in the context of passive imaging problems (e.g. Gizon and
Birch 2002, 2004, Garnier and Papanicolaou 2016). The covariance becomes

covu(x, y, ω) =
∫

V
Gu(x, z, ω)S (z, ω)G∗u(y, z, ω) dz. (3.7)

We introduce the forward operator

C : u 7→ covu(x, y, ω),

C[u](x, y, ω) =
∫

V
Gu(x, z, ω)S (z, ω)G∗u(y, z, ω) dz,

(3.8)
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where x, y ∈ A ⊂ ∂V .
Under reasonable assumptions on the equipartition of energy between different modes,
the cross-covariance satisfies the relation (Gizon et al. 2017, Note that the definition of
the cross-covariance differs from Eq. (3.4) by a complex conjugation):

C[u](x, y, ω) =
Π(ω)
4iω

[
Gu(x, y, ω) −G∗−u(x, y, ω)

]
, (3.9)

where Π(ω) describes the spectral source power. Throughout this paper, we choose a
Lorentzian profile for the source power:

Π(ω) =
1 + (

|ω| − ω0

Γ/2

)2−1

, (3.10)

where ω0/2π = 3.3 mHz and Γ/2π = 1.2 mHz. The source power can also be chosen to
fit the solar power spectrum. However, for the purpose of this paper, the chosen power
spectrum is sufficient.
We know from seismic reciprocity that Gu(x, y) = G−u(y, x) (Gizon et al. 2017).

For an operator (Kφ)(x) :=
∫

A
k(x, y) dy, x ∈ A with integral kernel k one often defines

its real part byℜK = 1
2 (K + KH). Then, the integral kernel ofℜK is given by

(ℜxyk)(x, y) :=
1
2

(
k(x, y) + k(y, x)

)
. (3.11)

(Note that ℜxyk is typically not real-valued!) With this notation, the forward operator
defined in Eq. (3.8) can be written in the form:

C[u](x, y, ω) = ℜxy

[
Π(ω)
2iω

Gu(x, y, ω)
]
. (3.12)

3.3.2 Inverse problem
The inverse problem addressed in this study consists of estimating axisymmetric flow
fields based on observations of the two-point correlation function between any two loca-
tions r1, r2 on the visible solar surface (see Eq. (3.3)). Besides nonlinearity, this problem
involves two primary challenges:

1. The input data set of five-dimensional correlation data is large and extremely noisy.
HMI provides 4096x4096 Doppler velocity maps at each observation time, which
leads to roughly 1013 independent two-point correlations in space per frequency.
The available frequencies are determined by the observation time according to the
Nyquist sampling theorem.
Although the two-point cross-correlations collectively contain the whole amount
of information on the Sun’s internal structure, the sheer volume of data (even of a
rebinned data set) prohibits a direct study of the data.

2. It is necessary to calculate the Green’s function in a heterogeneous background
medium. The required degrees of freedom are described in Gizon et al. (2017)
for different setups. The vast number of degrees of freedom necessary to model
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the entire Sun impedes three-dimensional inversions. Global axisymmetric flows
such as differential rotation and meridional flows can be studied with a 2.5D code
that decouples in longitudinal wavenumber m. Nevertheless, the calculation of the
Green’s function is computationally highly expensive and needs efficient forward
solvers.

The inverse problem is solved in this work by the iteratively regularized Gauss-Newton
method (IRGNM). This method may be motivated as a homotopy method in the regular-
ization parameter α > 0 for finding a minimizer of the Tikhonov functional

∥Λ−1/2
u (Corr−C[u]) ∥2 + αR(u),

where Λu ≈ Cov(Corr,Corr) is the data cross-covariance, C(u) is the reference cross-
covariance computed from the forward model, and R is a penalty functional. We will
demonstrate that incorporating the data correlation is necessary to achieve high-quality
inversions (see Sect. 3.9.3). The fundamental idea behind Gauss-Newton methods is to
solve the minimization problem by linearization around an approximation un:

C[u] ≈ C[un] +
∂C[un]
∂u

· (u − un). (3.13)

Since the Problem (3.13) is typically ill-posed, we add a regularization term. The iterative
step takes the form

δun = argmin
div(ρδu)=0

{ ∥∥∥∥∥∥Λ−1/2
un

(
C[un] +

∂C[un]
∂u

· δu − Corr
)∥∥∥∥∥∥2

+ αn · R(un + δu)
}
,

un+1 = un + δun.

(3.14)

We emphasize using a conservation of mass constraint in the minimization problems.
Eq. (3.14) is solved by a regularized solution to the normal equation (Bakushinskii 1992):(

∂C[un]
∂u

)∗
· Λ†un

∂C[un]
∂u

· δun =

(
∂C[un]
∂u

)∗
· Λ†un

(C[un] − Corr) . (3.15)

Throughout this study, we choose αn = (0.9)nα0. Iterative inversions are typically stopped
with the discrepancy principle (e.g. Hanke et al. 1995). This principle stops the iteration
at the iteration step when the distance ∥C[un] −Cobs∥ becomes smaller than βδ, where δ
is the noise-level and β > 1 an a priori defined constant. However, this approach is not
feasible since the computation of Cobs should be avoided. Therefore, we stop the iteration
at the iteration step, where ∥

(
∂C[un]
∂u

)∗
· Λ
†
un (C[un] − Corr) ∥ becomes smaller than a pre-

defined value determined by the noise level. The noise level can be approximated using
the statistics in the data, as discussed in Sect. 3.5.

3.4 (Iterative) helioseismic holography
Because of the immense size of the cross-correlation data, it is unfeasible to compute the
cross-correlation data and to store the kernels ∂C[un]

∂u . Nevertheless, traditional hologra-
phy provides a way to compute the action of the operator ∂C[un]

∂u and its adjoint without
explicitly storing the surface cross-correlation data and kernels. In this section, we intro-
duce traditional holography for axisymmetric flows and show the similarities to iterative
regularization methods like IRGNM.
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3.4.1 Holograms
Helioseismic holography is a widely used technique in helioseismology that addresses
the challenge of handling the enormous amount of cross-correlation data obtained from
observations of solar oscillations. It extends the principles of acoustic holography to solar
interior diagnostics (Lindsey and Braun 1990, Braun et al. 1992).
Helioseismic holography has become a standard technique in helioseismology with appli-
cations in various areas. For instance phase-sensitive holography is used in the detection
of active regions on the far side of the Sun (e.g. Lindsey and Braun 2000a, Yang et al.
2023), surface-focused seismic holography is used for studies of active region emergence
(e.g. Birch et al. 2016, Birch et al. 2019, Braun 2019) as well as for the analysis of the
sunspot subsurface structure (e.g. Braun and Birch 2008b, Birch et al. 2009), and acoustic
power holography is used for studies of solar flares (e.g Besliu-Ionescu et al. 2017).
Helioseismic holography is based on local correlations of back-propagated wavefields.
The hologram ϕα takes the form (Lindsey and Braun 1997)

ϕα(x) =
∫

A
H∗α(x, y)ψ(y) dy, (3.16)

where A ⊂ ∂V is the measurement region on the solar surface and H∗α the back-propagator.
The back-propagators are typically related to the Green’s function (e.g. Gizon et al. 2018).

3.4.2 Helioseismic holography for flows
The holographic intensity Iαβ is computed as the local correlation between two holograms

Iαβ(x) = ϕα(x)ϕ∗β(x). (3.17)

In traditional helioseismic holography, the problem is linearized, and one studies the per-
turbations to the hologram intensity

δIαβ(x) = δϕα(x)ϕ∗β(x) + ϕα(x)δϕ∗β(x).

This variation is related to perturbations to the background medium through sensitivity
kernels K i

αβ (e.g. Gizon et al. 2018)

E
[
δIαβ(x)

]
=

∑
i∈{r,θ,ϕ}

∫
V
K i
αβ(x, y) · δui(y) dy. (3.18)

From Eqs. (3.5) and (3.16), we obtain

δϕα(x) =
∫

A
H∗α(x, y)δψ(y) dy =

∫
A

∫
V

H∗α(x, y)δGu(y, z)s(z) dzdy.

By employing the Born approximation for flow-field perturbations, the zeroth and first
order can be expressed as:

Lu δGu(x, y) = −δLu Gu(x, y) =
2iω

(ρ1/2c)(x)
ρ(x)δu(x) · ∇x

(
Gu(x, y)

(ρ1/2c)(x)

)
, (3.19)
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where ∇x is the gradient in x. Therefore, when employing the source model (3.6) and
Eq. (3.7), we observe:

E
[
δϕαϕ

∗
β

]
(x) = −E

[ (∫
A

∫
V

∫
V

H∗α(x, y)Gu(y, z′)δLuGu(z′, z)s(z) dzdz′dy
)

·

(∫
A

∫
V

H∗β(x, ỹ)Gu(ỹ, z̃)s(z̃) dz̃dỹ
)∗ ]

= −

∫
V

(∫
A

H∗α(x, y)Gu(y, z)dy
)
δLu

(∫
A

Hβ(x, y) covu(z, y)dy
)

dz.

We define the forward-backward kernel:

K1,α(x, z) =
2iωρ1/2(z)

c(z)

∫
A

H∗α(x, y)Gu(y, z)dy,

Ki
2,β(x, z) =

∫
A

Hβ(x, y)∇i
z

covu(z, y)
ρ1/2(z)c(z)

dy, i ∈ {r, θ, ϕ}
(3.20)

By comparison with Eq. (3.18), the sensitivity kernel K i
αβ takes the form:

K i
αβ(x, y) = K1,α(x, y)Ki

2,β(x, y) + Ki∗
2,α(x, y)K∗1,β(x, y). (3.21)

The back-propagators are usually chosen in terms of the Green’s function to optimize
the signal-to-noise ratio of the holograms and are dependent on the parameter of interest.
The sensitivity kernels are typically sharply located at the target location with a resolu-
tion approaching the diffraction limit of λ/2 (Gizon et al. 2018). Therefore, helioseismic
holography provides us with feature maps. Nevertheless, it is not a quantitative imaging
method (Lindsey and Braun 1997, Müller et al. 2024).

3.4.3 Iterative holography
Helioseismic holography can be interpreted as the adjoint of the Fréchet derivative of a
suitable forward operator that maps the flow field to the surface cross-correlation (Hohage
et al. 2020, Müller et al. 2024).

The Fréchet derivative from the operator defined in Eq. (3.8) takes the form (compare
with Eq. (3.12))(

∂C[u]
∂u

· δu
)

(x, y) = ℜxy

[
Π(ω)
2iω

∫
V

Gu(x, z)δLu(z)Gu(z, y) dz
]

= ℜxy

[ ∫
V

Hα(x, z)δu(z) ·H∗β(y, z) dz
]
,

(3.22)

with the forward-propagators Hα and Hβ given by (compare with Eq. (3.19)):

Hα(x, y) = Π(ω)Gu(x, y)
ρ1/2(y)

c(y)
, (3.23a)

Hβ(x, y) = ∇y
G∗u(y, x)
ρ1/2(y)c(y)

. (3.23b)
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The adjoint operator takes the form:

[(
∂C[u]
∂u

)∗
· Ĉ

]
(x) =

∫
A

∫
A

H∗α(r1, x)Hβ(r2, x)ℜxy(Ĉ)(r1, r2) dr2 dr1. (3.24)

It will be demonstrated in Sect. 3.5 that Λ†u = Γ ⊗ Γ for some operator Γ. By Eq. (3.3)
and the identityℜxy(ψ ⊗ ψ) = ψ ⊗ ψ, we observe

[(
∂C[u]
∂u

)∗
· Λ†u Corr

]
=

∫
A

∫
A

H∗α(r1, x)Hβ(r2, x)
1
N

N∑
i=1

(Γψi)(r1)(Γψi)∗(r2) dr1 dr2

=
1
N

N∑
i=1

ϕαi (x)ϕβi
∗
(x),

(3.25)

where ϕαi (x) =
∫

A
H∗α(r, x)ψi(r) dr and ϕβi similarly. By comparison with Eqs. (3.16) and

(3.17), we conclude that the hologram intensity can be described by the adjoint of an
appropriate operator mapping to the cross-covariance. This mapping is achieved through
the proper choice of the back-propagator.
By changing the order of local correlation and back-propagation, iterative helioseismic
holography enables the implicit utilization of the entire cross-correlation, eliminating the
need for explicit computation of the cross-correlation (Müller et al. 2024). Unlike tradi-
tional holography, the back-propagators are fixed by the forward model. For a detailed
derivation of the wave-propagator for scalar parameters, we refer to Müller et al. (2024).

It is tempting to compare iterative helioseismic holography with conventional helio-
seismic techniques. The advantages and disadvantages of traditional helioseismic tech-
niques compared to iterative helioseismic holography are summarized in Table 3.1. It-
erative helioseismic holography is the only quantitative imaging method that can tackle
nonlinear problems using the whole cross-correlation data without explicitly computing
the cross-correlation data. Similar to traditional holography, the method initially employs
backward propagation of the Dopplergrams to utilize the complete seismic information
embedded in the cross-correlation without computing the surface cross-correlation ex-
plicitly. This is an essential improvement to normal-mode coupling, which lacks a priori
back-propagation of Dopplergrams. Furthermore, it improves time-distance helioseismol-
ogy, which does not use the whole seismic information. In comparison to helioseismic
holography, our approach is quantitatively correct. Due to the computational expenses
associated with the computation of sensitivity kernels, local helioseismology is predomi-
nantly constrained to linear inversions.

In order to evaluate the right-hand-side of the normal equation (3.15), we also need
to compute

[(
∂C[u]
∂u

)∗
· Λ
†
uC[u]

]
. We will show that C[u] is sparse in spherical harmonics

basis (compare with Sect. 3.6). This sparsity allows for an efficient computation of an
eigenvalue decomposition of C[u]. We can use this singular value decomposition to com-
pute

[(
∂C[u]
∂u

)∗
· Λ
†
uC[u]

]
efficiently by a for-loop over surface sources.

To summarize, the normal equation (3.15), occurring in iterative regularization methods,
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can be equivalently represented in traditional holography as follows:K
ϕϕ Kϕθ Kϕr

K θϕ K θθ K θr

K rϕ K rθ K rr


δu

ϕ

δuθ

δur

 = E
δIϕ

δIθ

δIr


subject to div(ρδu) = 0,

(3.26)

where K i j denotes the sensitivity kernel (see Eq. (3.21)).
Iterative holography is an adjoint method, stepping forward to full-waveform inver-

sions. The algorithm of iterative helioseismic holography is presented in Algorithm 1. For
notational simplicity, we present the algorithm for a L2-data-fidelity term instead of like-
lihood modeling. Each step of the algorithm is discussed in great detail in the following
sections.

The computation of the sensitivity kernels remains to be discussed. This step rep-
resents a computational bottleneck in the algorithm. Nevertheless, it is reasonable to
describe the differential rotation and meridional flows with relatively few coefficients.
Therefore, the sensitivity kernels have low dimensionality and can be computed by brute
force. We give the details of the computation in Sect. 3.6.5 and Algorithm 2. Alterna-
tively, different approaches can be employed to alleviate the computational burden. One
such approach is the frozen Newton method, where it is unnecessary to compute the
sensitivity kernels in each iterative step. Another approach is using conjugate gradient
methods, which avoid the computation of sensitivity kernels.

Algorithm 1 Iterative helioseismic holography
Require: Initial solar model u0, Dopplergrams ψi

while ∥Iαβ − E[Iαβ]∥ ≥ C do
Update Green’s function Gu (Sect. 3.6.6)
Update propagator Hα,Hβ (Eqs. (3.23a), (3.23b))
Compute the hologram: Iαβ = 1

M

∑M
i=1 HαΓψi ⊗ HβΓψi

Compute E[Iαβ] using the forward model
Compute sensitivity kernel Kαβ (Eq. (3.42))
Solve normal equation for δu: Iαβ − E[Iαβ] =

∫
V
Kαβδu

u← u + δu
end while

3.5 Noise and Likelihood modeling
The noise model is a primordial ingredient of the inversion process. It gives us an error
estimate on the reconstruction and can be used as a stopping criterion for our iterative
process. Moreover, it is used during the iterations through likelihood modeling to consider
the noise model. Finally, it is important to create realistic artificial data. In this section, we
make the simplifying assumption that the Dopplergrams are measured on the entire solar
surface. This assumption is relaxed in Sect. 3.7, introducing additional computational
challenges.
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3.5.1 Realization noise
The main noise component consists of realization noise. Similarly to the model presented
in Gizon and Birch (2004), we assume stationarity in time. Therefore, we can model the
Dopplergrams as complex Gaussian random processes characterized by

E
[
ψ(x, ω)

]
= 0,

E
[
ψ(x1, ω1)ψ∗(x2, ω2)

]
= δ(ω1 − ω2)C[u](x1, x2, ω1).

It is important to note that the real and imaginary parts of the Dopplergrams are assumed
to be independent. Furthermore, note that stationarity in time implies that different fre-
quencies are uncorrelated. The usage of Gaussian random variables is justified by the
central limit theorem (e.g. Bass 1966).

Fournier et al. (2014) proved the following relation by using Isserlis theorem (Isserlis
1918):

Λ := Cov
[
ψ(x1, ω1)ψ∗(x2, ω1), ψ(x3, ω2)ψ∗(x4, ω2)

]
= E

[
ψ(x1, ω1)ψ∗(x3, ω2)

]
· E

[
ψ∗(x2, ω1)ψ(x4, ω2)

]
+ E

[
ψ(x1, ω1)ψ(x4, ω2)

]
· E

[
ψ∗(x2, ω1)ψ∗(x3, ω2)

]
= C[u](x1, x3, ω)C[u](x2, x4, ω)δ(ω1 − ω2)

(3.27)

for ω1, ω2 > 0. The second term is zero, as the real and imaginary parts are assumed to
be independent.

3.5.2 Background noise
In addition to realization noise, we introduce a noise term that accounts for the back-
ground noise in the Dopplergram signal. The observed Dopplergram is modeled as fol-
lows:

ψobs = ψ + n,

where n is normally distributed with zero mean and standard deviation N. Furthermore,
we assume that the background noise n and the true signal ψ are uncorrelated. Moreover,
it is reasonable to assume that n is spatially uncorrelated and stationary in time.
The noise power N can be modeled by fitting the background in the solar power spec-
trum. For simplicity, we assume that the noise power is independent of azimuthal order/
harmonic degree and can be described by three main components: convection, supergran-
ulation, and photon noise, following Stahn (2010). The noise power takes the form:

N(ω) =
2∑

i=1

Ai

1 + (τiω)4 + PWN(ω),

where PWN describes the photon noise, A1 = 1.607 ppm2µHz, A2 = 0.542 ppm2µHz are
the amplitudes and τ1 = 1390 s, τ2 = 455 s are the characteristic time-scales. Note that
the photon noise usually is small compared to other systematics. The p-mode signal and
the background noise are presented in Figure 3.1.
Since the additional background noise introduces an additional term, we have to replace
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Figure 3.1: Model of the background noise. The p-mode power is described by Eq. 3.10,
and the background noise follows Stahn (2010). For simplicity, we assume that the noise
power is independent of azimuthal order and harmonic degree.

the covariance operator (see Eq. (3.8)) in the presence of background noise. The modified
covariance operator becomes:

C[u](x, y, ω) =
∫

V
Gu(x, z, ω)S (z)G∗u(y, z, ω) dz + N(x, y, ω).

Since we assume that the noise power is spatially uncorrelated, computing the back-
propagation of the noise power is computationally efficient. Therefore, background noise
does not add any theoretical complexity to the problem and only increases the noise level.

3.6 Efficient computation of flow kernels

In this section, we discuss the perturbations of axisymmetric flow fields like differential
rotation and meridional circulations in spherical harmonics basis. We assume density,
sound speed, and damping rate are spherically symmetric. This section aims to provide
the theoretical background for the efficient computation of the back-propagators and sen-
sitivity kernels, overcoming the bottleneck of Algorithm 1. It gives an efficient algorithm
to compute and evaluate the sensitivity kernels using an expansion in spherical harmonics
basis.
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3.6.1 Flow field decomposition
We assume that the flow field can be represented as

u(r, θ) = umer(r, θ) + r sin(θ)Ω(r, θ)êϕ, (3.28)

where umer = urêϕ + uθêθ describes the meridional flow and Ω the rotation profile. We as-
sume that these large-scale flows can be accurately described using axisymmetric spheri-
cal harmonics up to a maximum degree Ns:

Ω(r, θ) =
Ns∑
s=0

Ωs(r)Ys0(θ), (3.29a)

umer(r, θ) =
Ns∑
s=0

ur
s(r)Ys0(θ)êr + uθs(r)∇hYs0(θ), (3.29b)

where ∇h denotes the horizontal gradient. Similar decompositions of differential rotation
into a small number of basis functions are commonly used in helioseismic inversions (e.g.
Schou et al. 1998). Furthermore, this model includes the usual three-term expansion of the
surface differential rotation used for tracking and commonly used meridional flow models
such as those described in Liang et al. (2018). Conservation of mass can be expressed in
the form

div(ρu) = 0⇒ uθs =
∂r(ρr2ur

s)
rρs(s + 1)

. (3.30)

The relation is proved in Appendix 3.12.1 and will play a vital role in the inversions of
meridional flows.

3.6.2 Spherical harmonic decomposition of the Green’s function
In the case of an axisymmetric problem, the Green’s function and covariance also become
axisymmetric. Dropping the frequency from the list of parameters for simplicity, we
decompose the Green’s function and covariance in the spherical harmonics basis as

Gu(r1, r2) =
Nℓ∑

ℓ,ℓ1=0

m=min(ℓ,ℓ1)∑
m=−min(ℓ,ℓ1)

Gu
ℓℓ1m(r1, r2)Yℓm(θ1, ϕ1)Y∗ℓ1m(θ2, ϕ2), (3.31)

where Nℓ is the maximal harmonic degree. Here, Gu
ℓℓ1m is the decomposition of the 2.5D

Green’s function

Gu
m(r1, θ1, r2, θ2) =

∑
ℓ1,ℓ2

Gu
ℓ1ℓ2m(r1, r2)Pℓ1m(cos θ1)Pℓ2m(cos θ2),

where Pℓm are the normalized associated Legendre polynomials, and ψm := Gu
m(·, r2, θ2) is

the solution to

−(∆̃ + k2
m)ψm −

2iω
ρ1/2c

ρũ · ∇̃
(
ψm

ρ1/2c

)
=

1
r2

1 sin θ
δ [· − (r2, θ2)] , (3.32)
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and the mode-dependent wavenumber km is

k2
m = k2 +

2mωΩ
c2 −

m2

r2
1 sin θ

. (3.33)

Furthermore, ∇̃, ∆̃, ũ describe the gradient, the Laplacian and the flow field in (r, θ)-space.
For more details on the 2.5D problem, we refer to Gizon et al. (2017).

3.6.3 Spherical harmonic decomposition of the covariance
Assuming axisymmetry, the covariance can be decomposed similarly to the Green’s func-
tion as

C[u](r̂1, r̂2) =
Nℓ∑

ℓ,ℓ1=0

m=min(ℓ,ℓ1)∑
m=−min(ℓ,ℓ1)

Cu
ℓℓ1mYℓm(θ1, ϕ1)Y∗ℓ1m(θ2, ϕ2). (3.34)

For notational simplicity, we use in the following the short notation Gu
ℓℓm for Gu

ℓℓm(R⊙,R⊙).
Using the convenient source of excitation, the expectation value of the covariance (Eq. (3.9))
can be expressed in the spherical harmonics basis as

C[u](r̂1, r̂2, ω) =
Π(ω)
4iω

∑
ℓ1,ℓ2,m

Gu
ℓ1ℓ2mYℓ1m(r̂1)Y∗ℓ2m(r̂2) −G−u∗

ℓ1ℓ2mY∗ℓ1m(r̂1)Yℓ2m(r̂2)

=
Π(ω)
4iω

∑
ℓ1,ℓ2,m

[
Gu
ℓ1ℓ2m −G−u∗

ℓ1ℓ2−m

]
Yℓ1m(r̂1)Y∗ℓ2m(r̂2).

If we consider only differential rotation, then

C[u](r̂1, r̂2, ω) =
Π(ω)
2ω

∑
ℓ1ℓ2m

ℑ(Gu
ℓ1ℓ2m)Yℓ1m(r̂1)Y∗ℓ2m(r̂2), (3.35)

where we have used G−u
ℓ1ℓ2−m = Gu

ℓ1ℓ2m, which follows from flipping the azimuthal direction
in the two-dimensional differential Eq. (3.32). In this case, it follows

Cu
ℓ1ℓ2m =

Π(ω)
2ω
ℑ(Gu

ℓ1ℓ2m), (3.36)

which shows that the coefficients are real (as already stated in Woodard et al. 2013).

3.6.4 Spherical harmonic decomposition of the noise covariance ma-
trix

As stated in the previous section, the cross-covariance is diagonal in azimuthal order.
Therefore, the noise covariance matrix (Eq. (3.27)) transforms to

Cov[ψℓ1m1ψ
∗
ℓ2m2

, ψℓ3m2ψ
∗
ℓ4m2

] = Cu
ℓ1ℓ3m1

Cu
ℓ2ℓ4m2

δ(m1 − m2),

where we have used that spherical harmonics form a complete orthonormal basis on the
solar surface.
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To create artificial data, it will be necessary to compute a Cholesky decomposition of
the cross-covariance Cu

ℓ1ℓ2m. In spherical harmonics basis, the Cholesky-decomposition
takes the form Cu

ℓ1ℓ2m =
∑Ns

s=0 Aℓ1 smA∗ℓ2 sm. The artificial Dopplergrams are created by the
term

∑
s Aℓsmnsm, where nsm follows a standard normal distribution.

Additionally, for constructing the likelihood functional, we require Cov†, the pseu-
doinverse of the covariance operator. It can be shown that the pseudoinverse has the form

Cov[ψℓ1m1ψ
∗
ℓ2m2

, ψℓ3m2ψ
∗
ℓ4m2

]† = Cu†
ℓ1ℓ3m1

Cu†
ℓ2ℓ4m2

δ(m1 − m2),

where
∑
ℓ2

Cu
ℓ1ℓ2mCu†

ℓ2ℓ3m = 1. The computation of Cu† is relatively cheap due to the diag-
onalization properties of the forward operator. In particular, we observe that

Cov[ψℓ1m1ψ
∗
ℓ2m2

, ψℓ3m2ψ
∗
ℓ4m2

]†(ψ ⊗ ψ) = Cu†
ℓ1ℓ3m1

ψ ⊗Cu†
ℓ2ℓ4m2

ψ. (3.37)

This indicates that likelihood modeling is incorporated into the computation of the holo-
gram by modifying the wave propagator. Typically, the surface cross-covariance is ill-
posed, and we are using a computable approximation to the pseudoinverse.

3.6.5 Forward kernels/sensitivity kernels
In the case of axisymmetric flow fields, we observe that the surface cross-correlation
Cu
ℓ1ℓ2m strongly decreases for increasing |ℓ1 − ℓ2|, e.g. becomes close to a sparse band

matrix in spherical harmonics basis decomposition. Therefore, it is feasible to compute
and store a forward kernel defining the Fréchet-derivative

δCu
ℓ1ℓ2m =

∑
i∈{r,θ,ϕ}

Ns∑
s=0

∫ R⊙

0
Ki
ℓ1ℓ2m;s(r) · δui

s(r)r2 dr. (3.38)

The forward kernels, computed in Appendix 3.12.2, take the form:

Kϕ
ℓ1ℓ2m;s(r) = −ℜℓ1ℓ2

[∑
ℓ3,ℓ4

Gu
ℓ1ℓ3m(R⊙, r)Gu

ℓ4ℓ2m(r,R⊙)Ms[ℓ3,m, ℓ4,m]
Π(ω)m
c2(r)

]
, (3.39a)

Kθ
ℓ1ℓ2m;s(r) = −

1
2
ℜℓ1ℓ2

[∑
ℓ3,ℓ4

Gu
ℓ1ℓ3m(R⊙, r)Gu

ℓ4ℓ2m(r,R⊙)
Π(ω)
rc2(r)

]
·

(
M̃s[ℓ3,m, ℓ4,m] − M̃s[ℓ4,m, ℓ3,m]

)
, (3.39b)

Kr
ℓ1ℓ2m;s(r) = −

1
2
ℜℓ1ℓ2

[∑
ℓ3,ℓ4

Π(ω)
c2(r)

Ms[ℓ3,m, ℓ4,m]

·

(
Gu
ℓ1,ℓ3,m(R⊙, r)∂rGu

ℓ4ℓ2m −Gu
ℓ4ℓ2m∂rGu

ℓ1ℓ3m(R⊙, r)
)]
, (3.39c)

where (ℜℓ1ℓ2 A)ℓ1ℓ2m =
1
2 (Aℓ1ℓ2m + A∗ℓ2ℓ1m) in analogy to Eq. (3.11) and R⊙ the solar radius.

Here, we have introduced the (Gaunt) integrals

Ms[ℓ1,m1, ℓ2,m2] =
∫ 2π

0

∫ π

0
Yℓ1m1(θ, ϕ)Ys0(θ, ϕ)Y∗ℓ2m2

(θ, ϕ) sin θ dθ dϕ. (3.40)
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The integrals Ms[ℓ1,m1, ℓ2,m2] can be computed recursively using Wigner-3j symbols
(see Appendix 3.12.3). The selection rules state that Ms[ℓ1,m1, ℓ2,m2] is proportional to
δ(m1 − m2) and further on it is real-valued.
Furthermore, we need the integrals

M̃s[ℓ1,m1, ℓ2,m2] =
∫ 2π

0

∫ π

0
Y∗ℓ1m1

(θ, ϕ) (∂θYs0(θ, ϕ))
(
∂θYℓ2m2(θ, ϕ)

)
sin θ dθ dϕ. (3.41)

These integrals are computed in Appendix 3.12.4. In particular, we show that M̃ = 0 for
m1 , m2. This allows a parallelized setup in azimuthal order. Furthermore, M̃ is real, and
the forward kernels are smooth in radius.
We observe that the argument of ℜℓ1ℓ2 in Eq. (3.39a) is symmetric in ℓ1 and ℓ2, which
implies that Kϕ

ℓ1ℓ2m;s(r) is always a real-valued quantity. In contrary, the argument ofℜℓ1ℓ2

in Eq. (3.39b) and (3.39c) are antisymmetric in ℓ1 and ℓ2, which implies that Kr
ℓ1ℓ2m;s(r),

Kθ
ℓ1ℓ2m;s(r) are purely imaging. Consequently, meridional flows do not influence the power

spectrum and the frequency splittings at first order (Schad and Roth 2020).
We introduce weighting matrices W in the observation space to describe the computation
of sensitivity kernels in the most general setup. Usually, in the context of likelihood
modeling, the data space weights account for the inverse of the surface covariance matrix
(see Eq. (3.37)). The sensitivity kernels K i j

s1 s2 take the form

K i j
s1 s2

(x, y) =
∑

ℓ1,ℓ2,m1

∑
ℓ3,ℓ4,m2

(Ki
ℓ1ℓ2m1;s1

)∗(x)Wℓ3m2
ℓ1m1

Wℓ4m2
ℓ2m1

K j
ℓ3ℓ4m2;s2

(y), (3.42)

where i, j ∈ {r, θ, ϕ}, 0 ≤ s1, s2 ≤ Ns. We have used two indices in azimuthal order to con-
sider leakage due to partial observations (see Sect. 3.7). In principle, there is flexibility in
the choice of the weighting matrices. In the simplest case, considering information on the
whole surface and a L2-data fidelity term, the matrices reduce to the identity matrix.
Since the forward kernel (see Eq. (3.38)) Kϕ is real-valued and Kθ,Kr have vanishing real
part, we obtain Kϕr = 0,Kϕθ = 0. Hence, there is no first-order coupling between merid-
ional flows and differential rotation.

The algorithm for evaluating a computation δIi
αβ =

∑
j∈{r,θ,ϕ}

∫
Σ
K

i j
αβ · δu

j d2Σ is pre-
sented in Algorithm 2. It assumes that the Green’s function and the back-propagators
have already been computed. The algorithm consists of the following steps:

1. Compute the forward kernel: This step can be parallelized over the azimuthal order
m due to the axisymmetry. The forward kernels can be stored because of their sparse
representation in spherical harmonics coefficients.

2. Compute δC and perform an eigenvalue decomposition: Since δC has a block diag-
onal form, the eigenvalue decomposition can be efficiently executed. We use only
the largest eigenvalues for the computation of the sensitivity kernels.

3. Evaluate the adjoint operator using holographic back-propagation using the princi-
ples of Sect. 3.4.3.
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Algorithm 2 Sensitivity kernel: δIi
α,β =

∑
j∈{r,θ,ϕ}

∫
Σ
K

i j
αβδu

jdΣ.
Require: Initial solar model u0, Green’s function Gu, back-propagator Hm

for m do
Compute forward kernel Ki[m, ...] (Eq. (3.39))

end for
δIαβ ← 0
for m do

Compute δC[m, ...] =
∑

j∈{r,θ,ϕ} K j[m, ...]δu j (Eq. (3.38))
Find decomposition: δCu[m, ...] =

∑
n ψn ⊗ ψn

Compute holograms: ϕ j
α,n = H j

α[m, ...]Wψn (Eq. (3.42))
Compute the intensity: δIi

αβ = δIi
αβ +

∑
n ϕ

i,n
α ⊗ ϕ

i,n
β

end for

3.6.6 Efficient Computation of Green’s Functions
In each outer iteration step of the inversion scheme (Alg. (1)), it is necessary to com-
pute the Green’s function. This step requires enormous computational resources. For
example, the 2.5D solver described in Gizon et al. (2017) takes 141 s of CPU time to
compute the Green’s function for one frequency and mode. Our numerical example uses
roughly 300 modes and 400 frequencies, resulting in approximately 4700 CPU hours per
iteration. Furthermore, the memory requirements can be challenging. The substantial
computational costs and memory requirements highlight the need for efficient techniques
to compute the Green’s function.

In the following, we describe the forward solver for the Green’s function. We intro-
duce the volume potential operator:

(Gus)(x) =
∫

V
Gu(x, y)s(y) dy.

There is a one-to-one correspondence between Green’s function and the volume potential
operator. We have

Gu = (L0 + δLu)−1 = (Id+G0δLu)−1G0,

where L0 and G0 are the unperturbed wave operator and Green’s function. Therefore, the
perturbed Green’s function is given by

Gu = (Id+G0δLu)−1G0, (3.43)

Expressed in spherical harmonics, G0 is diagonal in the harmonic degree ℓ and the az-
imuthal order m:

Gu
0;ℓ1ℓ2m1

(r1, r2) = Gu
0;ℓ1

(r1, r2)δ(ℓ1 − ℓ2).

We decompose the variation to the differential operator into a diagonal and non-diagonal
part corresponding to the harmonic degree ℓ:

δLu = δLd
u + δLnd

u ,

δLd
u = δ(r1 − r2)δ(m1 − m2)δ(ℓ1 − ℓ2)δL̃d

ℓ1m1
(r1).

(3.44)
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As a result of Sect. 3.6.5, we observe that meridional flows do not contribute to δLd.
Therefore, it follows

δL̃d
ℓ1m1

(r1) =
2m1ω

c2(r1)

Ns∑
s=0

Ωs(r1)Ms[ℓ1,m1, ℓ1,m1].

Let us introduce the operator B = Id+G0δLd
u. It follows

(Id+G0δLu)−1 =
(
B + G0δLnd

u

)−1
=

(
Id+B−1G0δLnd

u

)−1
B−1. (3.45)

The operator B represents the self-coupling, capturing the change in the power spectrum,
and can be seen as a preconditioner for the inversion. This approach uses the fact that the
spherically symmetric part of the differential rotation is the dominant flow component. It
turns out that for differential rotation, the corresponding matrix inversion (3.45) can be
evaluated using the fix-point iteration:

G(n+1)
u := −B−1G0δLnd

u G(n)
u + B−1G0, G(0)

u := B−1G0. (3.46)

This fixed point iteration converges if and only if ∥B−1G0δLnd
u ∥ < 1 by the Banach

fixed point theorem (e.g. Rudin 1976, Theorem 9.23). The contraction factor depends on
the azimuthal order and the maximal harmonic degree and is smaller than 0.07 throughout
the inversion. This leads to the speed of convergence:

∥Gn
u −Gu∥ ≤ 0.07n∥G0

u −Gu∥ = 0.07n∥
(
Id+B−1G0δLnd

u

)−1
B−1G0δLnd

u G0
u∥ ≤

0.07n+1

0.93
∥G0

u∥.

This formula fixes the number of iterations to achieve the desired accuracy. The pre-
conditioning using δLd is necessary, since ∥G0δLu∥ ≈ 5 > 1, such that the fixed-point
iteration (3.46) would not converge. Moreover, this computation demonstrates that the
North-South antisymmetric component of differential rotation can be incorporated as a
first-order perturbation.

Since δLd
u is diagonal in azimuthal order, harmonic degree, and radial point (m, ℓ, r)

and G0 is diagonal in azimuthal order and harmonic degree, it is computationally cheap to
compute B. Similarly, δLnd

u is diagonal in azimuthal order and has a band matrix structure
in the radial component. Hence, it is relatively cheap to compute the action of G0 and δLnd

u
and consequently to solve Eq. (3.46). Note that we only need to compute the Green’s
function for sources on the solar boundary, reducing computational costs and memory
requirements.
The inversion process can be further improved by limiting the source region to a specific
region of the solar interior. For example, the inversion can be reduced to the convection
zone for meridional flows. Similarly, in the case of differential rotation, assuming a solid-
body rotation below the tachocline allows for a reduction of degrees of freedom in the
inversion region. The details of this approach are presented in Appendix 3.12.6.
Our approach offers several advantages compared to traditional finite element solvers.

• The method benefits from the diagonalization properties of the involved matrices,
resulting in fast, highly parallelized computations with low memory requirements.
This efficiency allows for significant reductions in computation time compared to
the 2.5D code presented in Gizon et al. (2017).
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Table 3.2: Computational time and memory usage for single-frequency runs for traditional
2.5D-code and the presented 1.5D-code at 3 mHz. The computations are on one core and
for ℓmax = 200. The values for the 2.5D-inversion are from Gizon et al. (2017).

Simulation Radial Nodes CPU Time Memory Usage
2.5D - 141 s 6.6 GB
1.5D 200 11 s 2.3 GB
1.5D 500 39 s 5 GB

• Only the spherically symmetric Green’s function G0 needs to be computed on a fine
finite element grid. The computation of the Green’s function can be decoupled into
one-dimensional differential equations that depend on the harmonic degree. The
calculation of the Green’s function is discussed in Appendix 3.12.5.

• The method utilizes Slater integrals and Wigner 6-symbols, ensuring analytical cor-
rectness in the computation of angular integrals.

It is important to note that this method is specifically designed for cases where the per-
turbations, such as differential rotation and meridional flows, are small compared to the
local sound speed. This assumption is well-suited for the solar case. Furthermore, this ap-
proach is not applicable for general perturbations to the reference medium, as the method
relies on the specific structure of the flow fields and the diagonalization properties of the
matrices.
To validate the strategy for computing the Green’s function, we have compared our ap-
proach to a traditional 2.5D code. First, we have employed our 1.5D code to compute the
Green’s function on a realistic rotation profile as background. Additionally, we have used
a traditional 2.5D solver on a finite element grid with a resolution of 20 grid points per
local wavelength. Even with a radial discretization of 200 grid points, we have observed
an impressive relative error of less than 10−3 for frequencies below the acoustic cutoff fre-
quency. Based on this analysis, we fix the radial grid to 200 radial nodes in our numerical
examples. This choice offers a remarkable speed improvement, approximately ten times
faster than traditional finite element solvers. The computational times and the necessary
memory are summarized in Table 3.2.
The algorithm used for computing the Green’s function in the presence of flows is pre-
sented in Algorithm 3.

Algorithm 3 Computation of perturbed Green’s function Gu

Require: Unperturbed Green’s function G0, differential operator L0, flow field model u
for m do

Compute δLd
m, δLnd

m (Eq. (3.44))
Compute B = Id+G0δLd

m and invert B
Approximate Gm

u by Gm
u =

∑Nit
i=1(−1)i(B−1G0δLnd

m )iB−1G0

end for
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3.7 Impact of spatially-limited observation coverage

3.7.1 Leakage matrix
The observations are only on a part of the solar surface, so the spherical harmonics do
not form an orthonormal basis system. This leads to significant leakage between nearby
modes. This effect is usually modeled in a leakage matrix (e.g. Schou and Brown 1994,
Hill and Howe 1998). Leakage matrices typically exhibit a noticeable reduction in mag-
nitude as the differences between ℓ1 and ℓ2, as well as between m1 and m2, increase (e.g.
Kashyap and Hanasoge 2021).
In our numerical tests, we approximate the leakage matrix by computing the scalar prod-
uct of two spherical harmonics over the observable part of the solar surface Ar. This area
is fixed by a maximal angular distance to the disk center of sin θ = 0.95. The leakage
matrix is given by:

L
ℓ2m2
ℓ1m1
=

∫
Ar

Yℓ1m1(θ, ϕ)Y∗ℓ2m2
(θ, ϕ) sin θ dθ dϕ.

It is important to note that this approach does not consider certain factors, such as in-
strumental effects, the impact of restricted window functions, or the center-to-limb effect.
Moreover, we assume that the Dopplergrams have been corrected for the inclination angle
in an a priori step.

3.7.2 Likelihood modeling with leakage
Beforehand, we have observed that the kernels and the covariance are diagonal in az-
imuthal order, effectively reducing the dimensionality by one dimension (Sect. 3.6.2-
3.6.5). This has allowed us to compute kernels that describe the Fréchet derivative of the
covariance operator (see Eq. (3.38)). The presence of leakage destroys this separability
and makes it infeasible to store kernels describing the variations. Furthermore, likelihood
modeling becomes more complicated as calculating the pseudoinverse of the covariance
matrix becomes impracticable.

It is not feasible to invert the leakage in an a priori step. Since the leakage matrix
lacks information about the non-observed part of the solar surface, the inversion would be
non-unique and ill-posed. Therefore, we add the leakage operator on top of the forward
operator at the expense of increased computational costs. The forward operator takes the
following form (operator involving partial surface measurements are denoted with tilde):

C̃ℓ2m2
ℓ1m1
=

∑
ℓ3,ℓ4,m3

L
ℓ3m3
ℓ1m1

Cℓ3ℓ4m3L
ℓ2m2
ℓ4m3

,

δC̃ℓ2m2
ℓ1m1
=

∑
ℓ3,ℓ4,m3

L
ℓ3m3
ℓ1m1

δCℓ3ℓ4m3L
ℓ2m2
ℓ4m3

,

K̃i
ℓ1ℓ2m1m2;s(r) =

∑
ℓ3,ℓ4,m3

L
ℓ3m3
ℓ1m1

Ki
ℓ3ℓ4m3;s(r)Lℓ2m2

ℓ4m3
, i ∈ {r, θ, ϕ}.

To simplify the following discussion, we use the notations: (Lψ)ℓ1m1 =
∑
ℓ2m2
L
ℓ2m2
ℓ1m1

ψℓ2m2 ,
(Cψ)ℓ1m =

∑
ℓ2

Cℓ1ℓ2mψℓ2m. Note that the leakage matrix is a projection onto the visible
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part of the solar surface. Hence, it is LL = L and Lψ = ψ for ψ continued by 0 on the
non-visible part. For likelihood modeling, the hologram intensity is computed by

Ĩαiβi(x) =
1
N

N∑
j=1

(H̃∗αi
C̃†ψ j)(x) · (H̃βiC̃

†ψ j)∗(x)

=
1
N

N∑
j=1

(H∗αi
Wψ j)(x) · (HβiWψ j)∗(x),

(3.47)

where W := L(LCL)†L in matrix form. Here, we have used the transformations H̃∗α =
H∗αL, H̃β = HβL. The matrix LCL is typically a dense matrix of dimension Nℓ · Nm ×

Nℓ · Nm, making a direct computation of its pseudoinverse infeasible. Instead, we employ
computable approximations to the pseudoinverse. In our numerical tests, we choose the
approximation W ≈ LC†L. This approximation is exact in exceptional cases, e.g., if L
and C† have a similar eigenbasis. This approach is computationally feasible because both
C and Ka are diagonal in m and, therefore, of block-diagonal form and can be inverted
efficiently. Nevertheless, a further discussion of computationally cheap and exact data
space weighting is advisable and left for future work.

3.8 Numerical results: forward modeling
This section presents the numerical results in terms of forward modeling. We first present
the synthetic flow profiles for differential rotation and meridional circulation in Sect. 3.8.1
before discussing the sensitivity kernels in Sect. 3.8.2. We then characterize the ill-
posedness of the passive imaging problem using the singular values in Sect. 3.8.3 before
characterizing the signal-to-noise ratio in Sect. 3.8.4.

3.8.1 Background parameters and synthetic flow profiles
The background parameters are described by the solar Model S (Christensen-Dalsgaard
et al. 1996), which characterizes the solar background up to a height of 500 km above
the surface. The damping rates follow a power law with frequency to fit the observed
linewidths (Gizon et al. 2017). Above 500 km, we assume a constant sound speed and
an exponentially decaying density with density scale height H = 125 km and apply a
radiation boundary condition as prescribed by Barucq et al. (2018).

The symmetric rotation profile is obtained from Larson and Schou (2018). This inver-
sion result was achieved with global helioseismology using the vw_V-data with apodiza-
tion between 0.83 − 0.87 and includes a polar jet. Although this feature was found to
be due to the apodization (Larson and Schou 2018), we kept this profile for our test to
check the capability of holography to image high-latitude features. The antisymmet-
ric rotation profile is created by adding to the symmetric profile a large-scale cell with
Ω1(r)/2π = 10 nHz in the convection zone (see Eq. (3.29a) for the definition of Ω1 and
the left panel of Fig. 3.8 for an illustration).

The meridional flow model is the global cell model MC1, proposed by Liang et al.
(2018). It relies on writing the stream function as a product of two one-dimensional
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Figure 3.2: Sensitivity kernels Kϕϕ
ℓℓ for differential rotation and K θθ

ℓℓ ,K
rr
ℓℓ for meridional

circulation at the target rt = 0.8 R⊙, rt = 0.9 R⊙ in spherical harmonics basis. The cross-
kernel K θr is two orders of magnitude smaller and is not shown here. The sensitivity
kernels are averaged over 100 evenly sampled frequencies in the frequency range 2.75 −
3.25 mHz and computed with maximal harmonic degree ℓ = 150 for differential rotation
and harmonic degree ℓ = 180 for meridional flows. We present the sensitivity kernels
for the first basis functions. However, the sensitivity kernels are qualitatively similar for
other coefficients.

functions, depending on latitude and depth. This model includes a strong backflow at the
base of the convection zone. Testing the sensitivity of iterative helioseismic holography
to a strong backflow at the base of the convection zone is crucial in evaluating the model.

3.8.2 Sensitivity kernels

Figure 3.2 presents radial cuts of the sensitivity kernels for differential rotation (Kϕϕ)
and meridional flows (K θθ,K rr) in spherical harmonics basis for the first basis functions.
They have been computed according to Eq. (3.42) using an approximation of the rota-
tion profile from Larson and Schou (2018) so that these kernels correspond to the last
iteration of the inversion process. The results are averaged over the frequency range of
2.75 − 3.25 mHz using 100 evenly spaced frequencies. Additionally, we apply a filter
with a maximum harmonic degree of ℓ = 150 for differential rotation and harmonic order
ℓ = 180 for meridional flows. The kernels are computed for likelihood modeling fol-
lowing the approaches described in Sects. 3.5 and 3.7. Notably, the sensitivity kernels
are qualitatively similar for full-surface data and are therefore not shown. Furthermore,
the sensitivity kernels at different components have similar behavior in terms of spatial
resolution and sidelobes and, therefore, are excluded from the plots.

The sensitivity kernels for differential rotation and meridional flows peak at the target
location and exhibit sharpness in the radial direction with a resolution close to half of the
local wavelength. It suggests that iterative helioseismic holography is a diffraction-limited
imaging method, as previously proposed by Lindsey and Braun (2000a). This represents
an advantage over time-distance helioseismology, which typically yields lower resolution
(Pourabdian 2020). In particular, the resolution allows an imaging of smaller structures,
for example, the tachocline region or the near-surface shear layer (NSSL).
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In addition to the signal around the target location, we observe strong variations and
amplitudes close to the solar surface. These surface signals can be partially attributed to
the back-propagation process, which involves an additional factor of 1/c2 compared to
traditional holography.

The resolution in the angular direction is limited by the maximum number of angu-
lar basis functions. This constraint is not a drawback of the method, provided the flow
fields in the angular direction can be efficiently decomposed using a limited set of basis
functions. A high resolution in the latitudinal direction is also possible if one considers
spherical harmonics of higher degrees. Replacing the straight averaging of frequencies
with an averaging based on the noise properties would also improve the resolution.

Furthermore, the cross-kernel K θr is about two orders of magnitude smaller than
K θθ,Kϕϕ,K rr. This indicates that the poleward flow only weakly affects the hologram
intensity for radial flows. Hence, the leakage of radial and poleward flow is mainly be-
cause of the conservation of mass constraints. Furthermore, since K θϕ,Kϕθ = 0 by sym-
metry (compare with Sect. 3.6.5), we observe that the different flow fields can be nearly
decoupled, resulting in a roughly diagonal sensitivity kernel

K
ϕϕ Kϕθ Kϕr

K θϕ K θθ K θr

K rϕ K rθ K rr

 ≈
K

ϕϕ 0 0
0 K θθ 0
0 0 K rr

 .

3.8.3 Ill-posedness of the problem

The ill-posedness of a linear inverse problem can be studied by analyzing the decay of
the singular values (Christensen-Dalsgaard et al. 1993). In Figure 3.3, we compute the
singular values of the sensitivity kernels for likelihood modeling, represented as Kϕϕ =

U diag(σ)UH for some unitary matrix U. The sensitivity kernels are computed using the
reference rotation, but a different profile will not change the qualitative characteristics of
the plot. The cross-correlation is truncated at a specific maximal harmonic degree, and the
kernels are averaged over a predefined number of frequencies below the acoustic cutoff
frequency. The exponential decay of the singular values is of particular interest, indicating
that the inverse problem is exponentially ill-posed.

As expected from theory, we observe an improvement for full-surface data compared
to partial data. This improvement is attributed to the higher information content in the
full-surface case. These observations highlight the importance of carefully accounting for
the effects of leakage in the inversion process. Additionally, we investigate the impact of
the maximal harmonic degree in the data. As expected, the singular value decomposition
becomes more flattened for higher maximal harmonic degrees, indicating that the ill-
posedness of the inverse problem is weaker compared to the case of smaller harmonic
degrees. A similar behavior is observed when we increase the number of frequencies.
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Figure 3.3: In the left panel, we show the singular values for differential rotation on a
background which follows the input model vw_ap83 of Larson and Schou (2018). The
decay of the singular values can be understood as a measure of ill-posedness of the inver-
sion problem (e.g., Christensen-Dalsgaard et al. 1993).

3.8.4 Signal-to-noise ratio
The signal-to-noise ratio can be computed using the theoretical framework introduced in
Gizon et al. (2018). The expression is given by:

SNR(x) =
E

[
δIαβ(x)

]
√

Iαα(x)Iββ(x)
. (3.48)

We use the symmetric rotation profile as background and perform calculations to ob-
tain the holographic signal, variance, and signal-to-noise ratio for the antisymmetric ro-
tation profile in the convection zone. The signal is derived for meridional flows as the
difference between the hologram intensity computed with and without meridional flows.
We compute the signal-to-noise ratios in the frequency range 2 mHz-5 mHz using 600
evenly spaced frequencies. To ensure comparability with the synthetic tests presented in
Sect. 3.9, we compute the signal-to-noise in the likelihood framework and use the same
decomposition in angular basis functions.

The left panel of Figure 3.4 displays the signal-to-noise ratio for differential rotation
at 0.8 R⊙ for likelihood modeling and the antisymmetric rotation profile (compare with
Sect. 3.9.2), considering a 10-year observation period and a maximum harmonic degree
of ℓ = 150. Since the signal consists of an antisymmetric flow, described by the s = 1
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component in the basis expansion (3.29a), we present the signal-to-noise ratio for this
component. The signal-to-noise ratio is very oscillatory at small frequencies because of
the substantial variations of the Green’s function as a function of radius. A similar pat-
tern was observed in the case of traditional holography in Gizon et al. (2018). The peak
signal-to-noise ratio occurs at approximately 2.5 mHz, which is a slight offset from the
5-minute oscillation. Frequencies beyond the solar acoustic cutoff are not expected to
yield noticeable improvements. Therefore, it is reasonable that we do not use frequen-
cies above the solar acoustic cutoff frequency in our inversions. In holography, we have
complete freedom in choosing different frequency weights. The provided plot indicates
that incorporating frequency weights based on principal component analysis or optimal
design approaches can enhance holography. Based on the signal-to-noise ratio, we antici-
pate reliable inversions for the antisymmetric component of differential rotation at 0.8 R⊙.
Notably, we observe qualitatively similar results for a symmetric rotation rate.

The central and right panel of Figure 3.4 illustrate the signal-to-noise ratio for merid-
ional flows at a depth of z = 0.8 R⊙. Since the input meridional flow is a one-cell profile,
which is dominantly described by the s = 2 component in the basis expansion (3.29b), we
present the signal-to-noise ratio for this component. Similarly to differential rotation, we
do not expect noticeable improvements using frequencies above the acoustic cutoff fre-
quency. The largest signal-to-noise ratio is achieved at roughly 2.5 mHz for the angular
part of meridional flows and 3.3 mHz for the radial part of meridional flows. It is impor-
tant to note that no conservation of mass constraint has been applied in the calculations.
As expected from the typical amplitudes of uθ and ur, we observe that the signal-to-noise
ratio is approximately one scale smaller for ur compared to uθ. Based on this analysis
of the signal-to-noise ratio, we expect that the angular part of the meridional circulation
can be studied deep in the solar convection zone. However, this does not hold for the
radial component ur of the meridional flow. Hence, we conclude that the reconstruction
of the meridional flow requires additional assumptions, such as a conservation of mass
constraint or boundary conditions at the bottom of the solar convection zone and the solar
surface.

Because the spectral source powerΠ(ω) is centered at the solar five-minute oscillation
and the variance is primarily described by realization noise, we observe that both the
signal and the noise peak at the five-minute oscillation.

The signal-to-noise ratio provides an estimation of the minimal reconstruction error
achievable through iterative holography. It can be enhanced by averaging over Nω fre-
quencies and Nobs realizations (proportional to the observation time). The minimal re-
construction error can be estimated by the signal strength, where the signal-to-noise ratio
drops below a proper value.

Furthermore, we examine the radial variation of the signal-to-noise ratio for differ-
ential rotation and meridional flows, averaged over 100 frequencies around four central
frequencies (see Figure 3.5). In contrast to the findings in Gizon et al. (2018), we ob-
serve a strong radial dependence of the signal-to-noise ratio for Ω and uθ and significant
variations close to the solar surface. These irregularities can be attributed to the specific
behavior of the Green’s function and disappear for larger frequencies. Furthermore, the
signal-to-noise ratio drastically drops deep in the solar interior. This can partly be at-
tributed to the perturbation not being proportional to the local wavelength, as proposed
in Gizon et al. (2018). We expect that stronger averages in frequency space will reduce
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Figure 3.4: The signal-to-noise ratio at the equator at z = 0.8 R⊙ for differential rotation
with maximal harmonic degree of ℓ = 150 and meridional flows with maximal harmonic
degree of ℓ = 150. The signal consists of the antisymmetric rotation profile and the
input meridional flow profile. The red line describes the running mean averaged over 100
frequencies around the central frequency. The signal-to-noise ratio is calculated for ten
years of synthetic observation and includes background noise. We present the s = 1-
component for differential rotation and s = 2-component for meridional flows (compare
with (3.29)).

these variations.
Both the angular and radial parts exhibit a significant decrease in the signal-to-noise

ratio at 0.9 R⊙, indicating low sensitivity in that region. These findings highlight the
challenges associated with inverting for deep meridional circulation, as the reliability of
the inversions appears to be compromised at the bottom of the convection zone. This
result is consistent with our observations of inversions on synthetics in Sect. 3.9.3. It
should be noted that the inclusion of mass conservation in the analysis is expected to
increase the signal-to-noise ratio.

We highlight a specific pattern in the signal-to-noise ratio, which is most pronounced
for the radial component of the solar meridional flow. Lower frequencies result in the
highest signal-to-noise ratio near the solar surface, but their effectiveness diminishes more
rapidly in the solar interior. Consequently, in deeper regions, higher frequencies may be
more dependable.

3.9 Inversion on synthetics

In this section, we study inversions of synthetics for differential rotation (including the
North-South antisymmetric component) and meridional flows (Sects. 3.9.1-3.9.3). We
add realistic noise as described in Sect. 3.5 and assume partial data such that the angle
to the disk center sin(θ) ≤ 0.95. Next, we discuss the quality of the reconstructions with
reduced observation times (Sect. 3.9.4). Finally, we investigate the reliability of the inver-
sions by looking at the averaging kernels (Sect. 3.9.5).
We compute the synthetic cross-covariance on a grid with 20 grid points per local wave-
length to avoid an inverse crime. We fixed the color scheme of the following images so
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Figure 3.5: The radial dependence of the signal-to-noise ratio for differential rotation and
meridional flows, averaged in four different frequency bands. In the left panel, we present
the signal-to-noise ratios for the antisymmetric component of the solar differential rota-
tion. In the middle and the right panel, we present the signal-to-noise ratios for meridional
flows without conservation of mass. The signal-to-noise ratios are computed for ten years
of data. We present the s = 1-component for differential rotation and s = 2-component
for meridional flows (compare with (3.29)), as these components capture most of the in-
put profiles.

that red means upward and northward flow, whereas blue indicates downward and south-
ward flow.

3.9.1 Differential rotation

We have the freedom to choose the penalty term in the convex minimization Eq. (3.14).
In our toy inversions, we penalize second-order derivatives. This choice of the regular-
ization term is motivated by the inverted differential rotation profile obtained from global
helioseismology and is commonly used in global mode analysis (see for example Schou
et al. 1994). The regularization parameters αk are fixed by a power law αk = α0 · (0.9)k,
where α0 is fixed by the maximal eigenvalue of the sensitivity kernel of the first iteration.
In our inversions, we aim to find a balance between the computational costs and bene-
fits gained from employing more sophisticated forward models. The computational re-
quirements and memory usage are directly proportional to the number of frequencies and
modes utilized during the inversion process. It should be noted that, due to the iterative
nature of the approach, the sensitivity kernels need to be computed dynamically during
the inversion.
To deal with the large computational costs and memory requirements, we have developed
an inversion strategy consisting of several steps:

1. To obtain a reasonable initial guess, we employ an approximation of the differ-
ential rotation profile using a domain with lower spatial resolution constrained to
[0.6R⊙, 0.7R⊙, 0.75R⊙, 0.95R⊙, 1R⊙], referred to as the "low-resolution radial grid"
hereafter. We focus on inverting the cross-correlation spectrum for 100 frequen-
cies evenly distributed within the range of 2.75 mHz-3.25 mHz, starting from a
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solid-body rotation of 450 nHz. This initial inversion step is performed with fewer
azimuthal orders and harmonic degrees, specifically Nℓ = 100 and −50 ≤ m ≤ 50m.
Furthermore, we employ a L2-penalty term and L2-data fidelity term. This step can
be executed very fast because of the lower dimensionality of the problem. Addi-
tionally, we adopt frequency weights proportional to the inverse of the largest eigen-
value to ensure equal contributions from each frequency. This approach is compa-
rable to a principal component analysis, which is known to improve the quality of
holographic images.

2. We extend the inversion to incorporate a finer radial grid with ten grid points per lo-
cal wavelength. To prevent interpolation between different radial grids, we take
for all frequencies the grid used for 2 mHz. Throughout the iteration process,
we increase the maximum harmonic order and harmonic degree to Nℓ = 150 and
mmax = 150. Additionally, we incorporate the H2-norm as a regularization term,
penalizing second-order derivatives. Similarly to the previous step, each frequency
contributes with the same weight.

3. Next, we extend the inversion to incorporate likelihood modeling. We adopt a
frozen Newton approach because of the immense computational costs, particularly
for estimating sensitivity kernels. This approach effectively reduces the number of
sensitivity kernels that must be computed.

This strategy allows us to invert the differential rotation from an input solid body rotation.
The inversion strategy is summarized in Table 3.3. One might add an extra step, where
we extend the number of frequencies. In principle, increasing the number of azimuthal
orders and harmonic degrees is also possible. The aim is to carry out only one iteration
with the complete data set.
In Figure 3.6, we show the inversion results for differential rotation using the symmetric
rotation profile as input. In terms of visual perception, there is no discernible difference
between the input and reconstructed profiles, even in regions close to the poles and deep
within the solar interior. In the right panel, we show slices at latitudes of 0◦, 30◦, and
75◦, where the "low resolution" reconstruction refers to the first step of the inversion
procedure (compare with Table 3.3). We assume solid-body rotation below 0.5 R⊙ as the
iterative reconstruction progresses. We incorporate this constraint using the method of
Lagrangian multiplier (see Appendix 3.12.7). We do not use a surface constraint because
of the substantial variations in the solar rotation profile.

Typically, the reconstruction error can be estimated using a Monte Carlo procedure.
This technique is not applicable to iterative helioseismic holography because of the im-
mense computational costs for one complete inversion (roughly one day). Instead, we
estimate the error in the final iteration through a conventional Monte Carlo setup. The
noise level is sufficiently small to image the solar differential rotation and could be further
reduced using a wider frequency range and more harmonic degrees. A direct comparison
with the noise level of frequency splitting is not useful because of the differences in the
used data sets. Instead, we compare the noise level of iterative holography with the noise
level of time-distance helioseismology in Sect. 3.9.3.

The agreement between the reconstructed rotation rate and the input rotation profile,
particularly near the solar surface, is remarkable. Even at higher latitudes, we observe
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Table 3.3: Summary of the steps to invert differential rotation starting from a solid-body
rotation. A detailed description of each step is presented in Sect. 3.9.1.

Step Nℓ mmax Nω data-fidelity radial grid
1 100 50 100 weighted L2 low resolution
2 100 100 100 weighted L2 full resolution
3 150 150 100 Likelihood full resolution

Figure 3.6: Left: Input differential rotation profile. Middle: Inversion result for a noise
level corresponding to 10 years of observations. Right: Cuts at the equator and latitudes
30◦ and 60◦. The inversion is performed using the steps of Table 3.3. The dashed blue
lines represent the result of the small inversion (step 1) that is then used as an initial guess.

reconstructions of good quality. In principle, iterative helioseismic holography appears to
have the capability to measure the polar jet at 75◦ latitude. At the bottom of the convec-
tion zone, the reconstruction aligns more closely with the results obtained from the "low
resolution" inversion. The inversion becomes less reliable in the radiative zone and the
solar core. This can be attributed to the significant reduction in the absolute values of the
sensitivity kernels with decreasing depth (compare with Figure 3.2). As a consequence,
the sensitivity is not sufficient in the solar core.
In Figure 3.7, we present the reconstruction error as a function of the iteration step for
noisy and noiseless data. It is visible that only nine iterations are required when utiliz-
ing the complete inversion problem, given an appropriate initial guess. This effectively
reduces the computational costs of the inverse algorithm. Furthermore, the convergence
is significantly faster for inversions that incorporate frequencies below the acoustic cut-
off frequency. We observe that the most substantial improvement is achieved in the first
iteration in each step of the algorithm, summarized in Table 3.3.
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Figure 3.7: The convergence for inversions for differential rotation with iterations.

3.9.2 Antisymmetric part of differential rotation

Unlike traditional frequency splitting, iterative helioseismic holography also exhibits sen-
sitivity to the antisymmetric component of the differential rotation. When considering
a symmetric background medium, the sensitivity kernels are restricted to the symmetry
relation K(r1, θ1, r2, θ2) = K(r1, π − θ1, r2, π − θ2). Consequently, these sensitivity ker-
nels vanish unless the sum of ℓ1 and ℓ2 is an even number. Similarly, the surface cross-
correlation data on a symmetric background vanishes unless ℓ1 + ℓ2 is even, whereas the
antisymmetric component of differential rotation introduces coupling terms with ℓ1 + ℓ2

being odd. We can separate the inversions for the symmetric and antisymmetric compo-
nents of differential rotation by employing the first-order Born approximation.
Figure 3.8 shows the inversion results obtained from 10 years of synthetic data, specifi-
cally focusing on the antisymmetric component. The inversion process incorporates 100
evenly distributed frequencies ranging from 2.75 mHz to 3.25 mHz, with a maximum
value of ℓ = 150. The inversion of the antisymmetric part of differential rotation is per-
formed with a single iteration on top of the inversion result for symmetric differential
rotation. This also explains the slightly different noise levels between Figure 3.6 and Fig-
ure 3.8. Because of the constraint of no angular dependence below 0.6 R⊙, we restrict
the images to these regions. The antisymmetric rotation profile is recovered at a quality
comparable to the results achieved for symmetric rotation profiles. Only the splitting in
differential rotation at 60◦ latitude at the base of the convection zone is smoothed com-
pared to the input profile. We can conclude that iterative helioseismic holography is a
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Figure 3.8: Inversion results for the antisymmetric rotation profile using 10 years of syn-
thetic data. We use 100 frequencies centered around 3 mHz and a maximum harmonic
order of ℓ = 150. The inversion result is obtained with a single iteration on top of the
inversion of the symmetric rotation profile.

valid technique to measure the antisymmetric component of solar differential rotation.
This is a significant advantage compared to global-mode helioseismology.

3.9.3 Meridional flows

Furthermore, we perform inversions for solar meridional circulation. Because of the dis-
tinguishability of meridional flows and differential rotation, we can invert for meridional
flows on top of solar differential rotation. Since meridional flows are small perturbations,
we do not require an iterative inversion strategy as presented in Sect. 3.9.1. As the correla-
tion data remains real-valued for differential rotation (background medium) and the kernel
is imaginary-valued, we obtain

(
∂C[u0]
∂u

)∗
· Λ−1

u0
C[u0] = 0. Therefore, the normal Eq. (3.15)

reduces to the simplified form:(
∂C[u0]
∂u

)∗
· Λ−1

u0

(
∂C[u0]
∂u

)
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(
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)∗
· Λ−1

u0
(C[u0] − Corr)

=

(
∂C[u0]
∂u

)∗
· Λ−1

u0
Corr .

(3.49)

We solve the reduced normal equation (3.49) with likelihood modeling. We choose first-
order derivatives in radial and azimuthal directions for the regularization term. This ap-
proach is comparable to the studies of Rajaguru and Antia (2015) and Gough and Thomp-
son (1991), which used second-order derivatives in the stream function. It is reasonable
to assume that no flow term crosses the computational domain. Therefore, we add strong
penalty terms for the radial part of the meridional circulation close to the solar surface and
at the bottom of the convection zone. The choice of basis functions ensures that uθ = 0 at
the poles.
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We add conservation of mass by Lagrange multiplier (see Appendix 3.12.7). In a
spherical harmonics setting, the conservation of mass constraint is specified by Eq. (3.30).

The inversion results incorporating the conservation of mass constraint are presented
in Figure 3.9. Here, we have used ten years of synthetic data with maximal azimuthal or-
der and harmonic degree of 180. Additionally, we employed 300 equidistant frequencies
within the range of 2.5 to 4 mHz, and we applied likelihood modeling. The reconstruc-
tion errors are computed by a Monte Carlo approach. As expected, the conservation of
mass constraint significantly improves the reconstruction. The inversion for uθ is close to
the input flow field. Furthermore, the radial flow ur is qualitatively reconstructed, with in-
creasing inaccuracies close to the bottom of the solar convection zone and at mid-latitudes.
Based on these results, we conclude that helioseismic holography is sensitive enough to
measure the solar meridional circulation.

In Figure 3.10, we compare the noise level of holography with the noise level of
time-distance helioseismology for the time period of one solar cycle. The noise level for
time-distance is obtained from Gizon et al. (2020), whereas the noise level for holography
is approximated using a Monte Carlo method. It is evident that the noise is significantly
lower for holography, approximately by a factor of 3. A further interesting observation is
the lower noise level for holography closer to the poles and at the surface, with increased
noise at the bottom of the convection zone.

In Figure 3.11, we compare the inversion results for likelihood modeling and flat
averaging in space and frequency. We observe substantial improvements when using like-
lihood modeling, particularly in the radial flow and regions closer to the poles, justifying
the additional computational costs for approximating the pseudoinverse on the solar sur-
face.

3.9.4 Effect of observation time
Understanding the temporal variations of solar differential rotation and meridional flows
is crucial for capturing the mechanisms behind the solar magnetic cycle. Therefore, it is
preferable to map the interior flows using less data. In this section, we investigate the im-
pact of the observation time on the quality of the reconstructions for differential rotation
and meridional flows.
Figure 3.12 displays the error between the reconstruction and the input symmetric ro-
tation profile for one year, three years, and ten years of synthetic data. The inversion
results are obtained using the same strategy as outlined in Sect. 3.9.1. Note that the ob-
servation time is proportionally linked to the number of realizations for each frequency
and fixes the noise level. To enhance visibility, we exclude the solar core from the plots
and saturate the plots at a maximal distance of Ω/2π = 10 nHz. It is important to note
that we assume no latitudinal dependencies below 0.5 R⊙. The inversion results exhibit
similar behavior across the three synthetic tests, wherein the surface terms are nearly per-
fectly reconstructed. At the same time, the quality of reconstructions deteriorates near the
bottom of the solar convection zone and close to the solar poles. Overall, as expected,
the reconstruction quality improves with increasing data. Nevertheless, even with a small
amount of data, the inversions show promising results, indicating that iterative holography
can effectively utilize relatively short time intervals to measure solar differential rotation.
Hence, we can study differential rotation in different time segments throughout one solar
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Figure 3.9: Inversions for uθ (top) and ur (bottom) using ten years of partial surface data.
We use 300 frequencies evenly spaced in the frequency range 2.5− 4 mHz and a maximal
azimuthal order/ harmonic degree of 180. The inversions are performed with conservation
of mass. The input data meridional circulation profile is the global-cell profile MC1 from
Liang et al. (2018).
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Figure 3.10: Comparison of the noise level of holography and time-distance helioseis-
mology (Gizon et al. 2020) for meridional flows for an observation time of 11 years, cor-
responding to one solar cycle. The noise level for holography is roughly 3 times smaller
than the noise level of time-distance helioseismology.
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Figure 3.11: This figure shows the improvements between likelihood modeling and flat
averaging for meridional circulation. The figure is created from ten years of synthetic
data. The input data meridional circulation profile is the global-cell profile MC1 from
Liang et al. (2018).

cycle.
In Figure 3.13, we examine the impact of observation times on the inversion results for
meridional flows for synthetic data spanning ten years, three years, and one year. The
integration of mass conservation is executed in a manner analogous to the inversions out-
lined in Sect. 3.9.3. The improvements resulting from longer observation times are clearly
evident, in particular for the radial part of the flow field. The inversions using only one
year of synthetic data significantly deviate from the input synthetics, leading to the gen-
eration of artificial flow cells in the northern hemisphere. However, even with a smaller
amount of data, it is still possible to recover the poleward flow and the depth of the return
flow. Nonetheless, it is visible that the flow field near the bottom of the convection zone
and close to the solar poles is challenging in terms of accurate inversion. From visible in-
spection, it seems like the solar meridional circulation can be reconstructed qualitatively
with three years of observation.
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Figure 3.12: Error between the reconstructed and the input symmetric rotation profile for
different observation times.

3.9.5 Averaging kernel

In addition to the inversion results obtained on synthetic data, we are also interested in
exploring the averaging kernels. Averaging kernels provide comprehensive information
about the resolution and offer a deeper understanding of the reconstructions and areas
of trust. In Figure 3.14, we present the averaging kernels for differential rotation and
meridional flows. It is important to note that the averaging kernels strongly depend on
the chosen inversion technique and trade-off parameters. The presented averaging kernels
are averaged over a frequency range of 2.75 − 3.25 mHz and maximal harmonic order
ℓ = 150 for differential rotation, while for meridional circulation, ℓ = 180 is consid-
ered. This ensures direct comparability with the sensitivity kernels (see Figure 3.2) and
represents the last step of the iterative inversion (see Table 3.3). Note that the averaging
kernels for meridional flows are computed with a conservation of mass constraint. An al-
ternative approach would be to employ mass-conserved averaging kernels, as introduced
in Fournier et al. (2016). Since we present the averaging kernels of the last iteration, the
presented averaging kernels are most comparable to the averaging kernels achieved with
RLS in global helioseismology.

Compared to the sensitivity kernels, the averaging kernels exhibit a reduction in am-
plitude near the solar surface. Additionally, the averaging kernels effectively peak at the
target location. The averaging kernels demonstrate sharpness in the radial direction, even
at deeper locations in the convection zone. The width in the radial direction is similar
to the lower resolution limit, typically half of the local wavelength. Like the sensitivity
kernels, the spatial resolution of the averaging kernels in the angular direction is restricted
by the basis expansion. However, this is not a significant issue as the angular part is de-
composed into a small number of basis functions ((3.29a) and (3.29b)). It is essential to
highlight that both the sensitivity and averaging kernels become sharper with an increased
maximum harmonic degree, particularly near the solar surface.
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Figure 3.13: In this figure, we present the inversion results for meridional flows using a
mass conservation constraint for three different observation times. The input data merid-
ional circulation profile is the global-cell profile MC1 from Liang et al. (2018).

Furthermore, we observe the presence of negative sidelobes in the radial direction.
These sidelobes for Kϕϕ can be attributed to the regularization technique, which favors
radially linear profiles due to the incorporation of second derivatives in the regularization
term. Similar behavior has been observed in RLS inversions in global helioseismology,
as demonstrated in studies such as Schou et al. (1998). Moreover, the conservation of
mass constraint leads to backflows, which can explain negative sidelobes for meridional
circulation. It is important to note that these sidelobes can have significant effects on
the reconstruction, particularly in regions characterized by strong radial gradients like the
tachocline and the near-surface shear layer.

3.10 Conclusion

Iterative helioseismic holography is a technique that uses the whole amount of avail-
able seismic information on the solar surface and images the solar interior through back-
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Figure 3.14: Averaging kernels at a target depth of 0.8 and latitude 36◦ for differential
rotation and meridional flow. The kernels are computed by averaging over 100 evenly
spaced frequencies in the frequency range 2.75−3.25 mHz and with a maximal harmonic
degree ℓ = 150 for differential rotation and ℓ = 180 for meridional flows.

propagation. In contrast to traditional helioseismic holography, which is not a modeling
technique (Lindsey and Braun 1997) and only provides feature maps, iterative helioseis-
mic holography is a quantitative imaging method based on Gauss-Newton methods. This
way, iterative helioseismic holography can be used for nonlinear inversions in helioseis-
mology (Müller et al. 2024).
Our study specifically investigates the application of iterative holography for inverting
axisymmetric flow fields such as solar differential rotation and meridional flows. We
have developed the theoretical background and showed the similarities between helio-
seismic holography and Gauss-Newton methods. In the first step, we have developed a
forward solver, which significantly improves computational efficiency compared to tra-
ditional 2.5D finite element codes. This forward solver is necessary due to the immense
computational costs and the necessary memory. The key idea is to use the sparseness of
the Green’s function and the cross-covariance in spherical harmonics basis.
Next, we have studied the forward problem. We have proved that the inverse problem is
exponentially ill-posed, with increasing complexity in the case of partial data. The sensi-
tivity kernels act as smoothing operators and have radial widths comparable to half of the
local wavelength. Moreover, holography allows us to decouple rotation and meridional
flows, as well as the symmetric and antisymmetric components of differential rotation in
the first order.
Furthermore, we have studied the signal-to-noise ratio. Similar to Gizon et al. (2018), we
observe highly oscillatory signal-to-noise ratios due to the strong radial dependence of
Green’s function. Therefore, a proper weighting in frequency space becomes necessary.
Overall, the maximal signal-to-noise ratio is slightly shifted to smaller frequencies around
2.5 mHz. Notably, frequencies above the solar acoustic cutoff frequency do not improve
the reconstruction results. In contrast to the signal-to-noise ratio for sound speed obser-
vations in Gizon et al. (2018), we observe that the signal-to-noise ratio strongly depends
on radius. For instance, the signal-to-noise ratio for meridional flows strongly decays at
the bottom of the convection zone. We proved that the signal-to-noise ratio for iterative
holography is considerably higher than for time-distance helioseismology.
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We employed iterative helioseismic holography for inversions on synthetic data. The re-
sults demonstrate the successful inversion of the differential rotation within the convection
zone, with only minor reconstruction errors. One of the most striking findings is the abil-
ity of helioseismic holography to map the antisymmetric component of the differential
rotation. Nevertheless, the understanding of the rotation in the solar core based solely
on helioseismic holography remains challenging. We have provided convincing evidence
that the differential rotation can be accurately mapped using only a limited amount of
data.
By incorporating a conservation of mass constraint, we have achieved remarkable quality
in reconstructing the meridional circulation in the solar convection zone. Nevertheless,
reconstructing meridional flows at the lower boundary of the convection zone remains
challenging. We have determined that three years of observation are sufficient to accu-
rately map the meridional circulation above 0.8 R⊙.
The findings in the synthetic inversions are compatible with the averaging kernels for the
different flow components. The averaging kernels have local widths comparable to half
of the local wavelength.
In the near future, we aim to apply iterative helioseismic holography to real data. In con-
trast to time-distance helioseismology, the advantage of iterative helioseismic holography
is that tracking Dopplergrams is unnecessary. It is essential to understand the systematics
of our approach, in particular, the center-to-limb effect. Furthermore, it should be stud-
ied if there are further significant improvements by incorporating higher values of ℓ and
broader frequency bands.
Due to the computational complexities of solving the forward differential equation, we are
currently limited to addressing 2D problems, such as axisymmetric flows. Nevertheless,
we plan to step towards three-dimensional full-waveform inversions using our methodol-
ogy on small-scale three-dimensional objects. This problem is more challenging as there
is a need for an efficient three-dimensional solver for the solar medium.

It’s worth noting that the concepts of iterated helioseismic holography are not limited
to inverse problems related to the Sun. They can be readily adapted for various other
passive imaging problems.
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3.12 Appendix

3.12.1 Conservation of mass
Conservation of mass reads as div(ρumer) = 0. The divergence of a field F = Frêr + Fθêθ
in spherical harmonics takes the form:

div(F) =
1
r2∂rr2Fr +

1
r sin(θ)

∂θ sin(θ)Fθ. (3.50)

First of all, note that:

1
sin(θ)

∂θ sin(θ)∂θYℓm(θ, ϕ) = −ℓ(ℓ + 1)Yℓm(θ, ϕ) +
m2

sin(θ)2 Yℓm(θ, ϕ). (3.51)

We omit the arguments θ, ϕ of the spherical harmonics. After combining Eqs. (3.50),
(3.29b) and (3.51), we have:

0 = div(ρumer) =
Ns∑
s=0

1
r2∂r(r2ρur

s)Ys0 +
ρuθs

r sin(θ)
∂θ sin(θ)∂θYs0

=

Ns∑
s=0

1
r2∂r(r2ρur

s)Ys0 −
ρuθs
r

s(s + 1)Ys0.

Since the spherical harmonics Ys0(θ) (which do not depend on ϕ) are orthonormal func-
tions in L2((0, π), sin θ dθ), it follows

1
r2∂r(r2ρur

s) =
ρuθs
r

s(s + 1).

This is equivalent to Eq. (3.30).

3.12.2 Forward kernel
In this section, we express the derivative of the differential operator L in Eq. (3.1) w.r.t.
the flow u (which is trivial by affine linearity) for a perturbation δu of the form (3.28) in
a spherical harmonics basis.

For the differential rotation part, δurot(r, θ) = r sin(θ)δΩ(r, θ)êϕ, we have for test func-
tions ψ

(δuLδurot)ψ = − 2iω
ρ1/2

c
ρδurot · ∇

ψ

ρ1/2c
=
−2iω

c2 δΩ∂ϕψ,

or in the spherical harmonics basis with δΩ(r, θ) =
∑Ns

s=0Ωs(r)Ys0(θ) and ψ(r, θ, ϕ) =∑
ℓ,m ψℓm(r)Yℓm(θ, ϕ):

(δuLδurot)ψ =
∑
ℓ1,m

−2iω
c2

 Ns∑
s=0

Ωs(r)Ys0(θ)

ψℓ1m(r)∂ϕYℓ1m(θ, ϕ)

=
2ω

c2(r)

∑
ℓ1,ℓ2,m

Ns∑
s=0

m · Ms[ℓ1,m, ℓ2,m]Ωs(r)ψℓ1m(r)Yℓ2m(θ, ϕ),
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where the matrix Ms is defined in Eq. (3.40). Therefore, we have in matrix/kernel form:

(δuLδurot) [r1, ℓ1,m1; r2, ℓ2,m2] = δ(r1 − r2)δ(m1 − m2)
2ωm1

c2(r1)

Ns∑
s=0

Ωs(r1)Ms[ℓ1,m1, ℓ2,m2]

=: δ(r1 − r2)δ(m1 − m2)δLm1ℓ1ℓ2(r1).
(3.52)

The operator δuLδurot is diagonal in azimuthal order m and radial distance r. After com-
bining Eq. (3.22) and Eq. (3.52), we obtain Eq. (3.39a).

For a meridional flow perturbation δumer =
∑Ns

s=0 Ys0(uθsêθ + ur
sêr) with ur

s(R⊙) = 0
satisfying mass conservation (3.30), the Fréchet derivative of the differential operator
takes the form:

(δuLδumer)ψ = −
2iω
ρ1/2c

ρδumer · ∇

(
ψ

ρ1/2c

)
.

In weak form this equation transforms to (φ, ψ test functions) (Gizon et al. 2017)

⟨φ, (δuLδumer)ψ⟩ = −2iω
∫

V

φ∗

ρ1/2c
ρδumer · ∇

(
ψ

ρ1/2c

)
r2 dr sin(θ) dθ

= −iω
∫

V

1
c2 δumer ·

[
φ∗∇ψ − ψ∇φ∗

]
r2 dr sin(θ) dθ,

where we have used conservation of mass and n · δumer = 0 on ∂V with outer normal
vector n. In the basis of spherical harmonics, with φ(r, θ, ϕ) =

∑
ℓm φℓm(r)Yℓm(θ, ϕ), we

obtain Eq. (3.39b) and Eq. (3.39c) using Eq. (3.22) and the transformation

⟨φ, (δuLδumer)ψ⟩ = − iω
∑
ℓ1,m1

∑
ℓ2,m2

Ns∑
s=0

(M̃s[.] − M̃T
s [.])

∫ R⊙

0

ruθsφ
∗
ℓ1m1

(r)ψℓ2m2(r)

c2 dr

− iω
∑
ℓ1,m1

∑
ℓ2,m2

Ns∑
s=0

Ms[.]
∫ R⊙

0

r2ur
s

c2 (φ∗ℓ1m1
∂rψℓ2m2 − ψℓ2m2∂rφ

∗
ℓ1m1

) dr,

where M̃s is defined by Eq. (3.41). Here the arguments of M̃s and Ms coincide with those
in (3.39b) and (3.39c).

3.12.3 M-integrals
The M-integrals can be written using Wigner-3j symbols:

Ms[ℓ1,m, ℓ2,m] : =
∫

S 2
Y∗ℓ1m(θ, ϕ)Ys0(θ, ϕ)Yℓ2m(θ, ϕ) dS 2

= (−1)mAsℓ1ℓ2

(
ℓ1 s ℓ2

−m 0 m

) (
ℓ1 s ℓ2

0 0 0

)
,

where dS 2 := sin(θ) dθdϕ and Asℓ1ℓ2 =

√
(2s+1)(2ℓ1+1)(2ℓ2+1)

4π . We can define the Wigner
symbols by iterations. As shown by Schulten and Gordon (1975), it yields the recursion
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formula:

C(m2 + 1)
(

j1 j2 j3

m1 m2 + 1 m3 − 1

)
+ D(m2)

(
j1 j2 j3

m1 m2 m3

)
+C(m2)

(
j1 j2 j3

m1 m2 − 1 m3 + 1

)
= 0,

C(m2) =
[
( j2 − m2 + 1)( j2 + m2)( j3 + m3 + 1)( j3 − m3)

]1/2 ,

D(m2) = j2( j2 + 1) + j3( j3 + 1) − j1( j1 + 1) + 2m2m3.

As the wavefields studied in this paper have no crossing terms in different azimuthal order,
we can choose m1 = 0. The Wigner-3j symbols obey a list of selection rules, for example,
Ms[ℓ1,m, ℓ2,m] = 0 for uneven ℓ1 + ℓ2 + s.

3.12.4 M̃-integrals

For notational simplicity, we omit the arguments θ, ϕ of the spherical harmonics and use
the notation dS 2 := sin(θ) dθdϕ. By using partial integration and Eq. (3.50) several times,
we obtain

M̃s[ℓ1,m, ℓ2,m] =
∫

S 2
Y∗ℓ1m(∂θYs0)(∂θYℓ2m) dS 2

= −

∫
S 2

(∂θY∗ℓ1m)Ys0(∂θYℓ2m)dS 2 + ℓ2(ℓ2 + 1)
∫

S 2
Y∗ℓ1mYs0Yℓ2m dS 2

− m2
∫

S 2
Y∗ℓ1mYs0Yℓ2m

1
sin(θ)2 dS 2

=

∫
S 2

(∂θY∗ℓ1m)(∂θYs0)Yℓ2m dS 2

+ [ℓ2(ℓ2 + 1) − ℓ1(ℓ1 + 1)] Ms[ℓ1,m, ℓ2,m]
= M̃s[ℓ2,m, ℓ1,m] + [ℓ2(ℓ2 + 1) − ℓ1(ℓ1 + 1)] Ms[ℓ1,m, ℓ2,m],

where we have used that M̃s[ℓ2,m, ℓ1,m]∗ = M̃s[ℓ2,m, ℓ1,m]. Furthermore, we have

M̃s[ℓ2,m, ℓ1,m] =
∫

S 2
Y∗ℓ2m(∂θYs0)(∂θYℓ1m) dS 2

= −

∫
S 2

(∂θY∗ℓ2m)(∂θYs0)Yℓ1m dS 2 + s(s + 1)
∫

S 2
Y∗ℓ2mYs0Yℓ1m dS 2

= −M̃s[ℓ1,m, ℓ2,m] + s(s + 1)Ms[ℓ1,m, ℓ2,m],

and after combining these two results, we obtain

M̃s[ℓ1,m, ℓ2,m] =
s(s + 1) + ℓ2(ℓ2 + 1) − ℓ1(ℓ1 + 1)

2
Ms[ℓ1,m, ℓ2,m].

Therefore, M̃ can be computed directly from M. Furthermore, the selection rules for
Wigner-3j symbols lead to M̃ = 0 for uneven ℓ1 + ℓ2 + s.
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3.12.5 Green’s function in 1.5D code

In the spherically symmetric case with vanishing flow fields, the Green’s function takes
the form:

Gu(r1, r2) =
Nℓ∑
ℓ=0

Gu
ℓ (r1, r2)Yℓm(θ1, ϕ1)Y∗ℓm(θ2, ϕ2).

We have to solve the one-dimensional differential equation (Barucq et al. 2020)[
∂rr2∂r +

(
ℓ(ℓ + 1)

r2 −
ω2 − 2iωγ + ω2

c

c2

)]
Gu
ℓ (r, ·) = δ(r − ·),

∂rGu
ℓ (r, ·)|R⊙ = iknGu

ℓ (r, ·)|R⊙ ,

lim
r→0

r−ℓ−1Gu
ℓ (r, ·) = 1.

Here, we use an atmospheric boundary condition, "Atmo Non-Local", as defined in
Fournier et al. (2017). For detailed discussions of the boundary condition, we refer to
Barucq et al. (2018).
The sound speed and density follow the usual solar Model S, which is smoothly extended
to 500 km above the solar surface. The damping rate is fixed by the FWHM of wave
modes and assumed to be independent of radius (Gizon et al. 2017, Korzennik et al. 2013,
Larson and Schou 2015):

γ(r, ω) = γ0|
ω
ω0
|5.77, ω ≤ 5.3 mHz,

γ(r,ω)
2π = 125 µHz, ω ≥ 5.3 mHz,

where γ0
2π = 4.29 µHz and ω0

2π = 3 mHz.
We compute the Green’s function using the finite element solver NgSolve (Schoeberl
2014). To avoid the inversion of the full stiffness matrix, the two-step algorithm pre-
sented in Barucq et al. (2020) can be applied. The grid is chosen proportional to the local
wavelength with a radial resolution of 10 grid points per wavelength at 2 mHz. Note that
the evaluation of Green’s function can be parallelized over frequencies. In this way, we
can choose different meshes for different frequencies.

3.12.6 Inversion on parts of the Sun

In this section, we will show that updating the Green’s function in the whole solar interior
is unnecessary. This approach saves computational costs and memory in the process of
computing the Green’s function. From Eq. (3.43) and the Woodbury inversion formula,
we obtain that

Gu = G0 − G0(Id+δLuG0)−1δLuG0.

We assume that δL is supported only on a small area defined by the index set f . We
introduce the following notation:

L0 =

L f f
0 L f , f̄

0

L f̄ f
0 L f̄ f̄

0

 , δLu =

(
δL f f

u 0
0 0

)
.
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It follows that

(Id+δLuG0) =
Id f f +δL f f

u G
f f
0 δL f f

u G
f f̄
0

0 Id f̄ f̄

 .
We get the inverse by the Schur complement:

(Id+δLuG0)−1δLu =

(Id f f +δL f f
u G

f f
0

)−1
−

(
Id f f +δL f f

u G
f f
0

)−1
δL f f

u G
f f̄
0

0 Id f̄ f̄

 δLu

=

(Id f f +δL f f
u G

f f
0

)−1
δL f f

u 0
0 0

 .
This result means we have to invert only a matrix of the size of the source region instead
of solving on the whole solar grid.

3.12.7 Constrained inversion using Lagrange multiplier
In this work, we consider optimization problems of the form:

δu = argmin
Ah=0

∥∥∥∥∥∥Λ−1/2
u0

[ (
∂C[u0]
∂u

)
· h − (Corr−C[u0]

]∥∥∥∥∥∥2

+ α∥Rh∥2,

where R is an operator describing the regularization and A describes the constraint Aδu =
0 and u0 is an initial guess. Constrained inversions can be implemented using the method
of Lagrange multiplier. The Lagrange function takes the form:

L(δu, µ) =

∥∥∥∥∥∥Λ−1/2
u0

[ (
∂C[u0]
∂u

)
· δu − (Corr−C[u0])

]∥∥∥∥∥∥2

+ α∥Rδu∥2 + β⟨µ, Aδu⟩.

Here, we have introduced an additional parameter β to increase the condition number of
the linear optimization problem. The optimality conditions ∂L

δu =
∂L
µ
= 0 are solved by the

saddle point equation(∂C[u0]
∂u

)∗
· Λ−1

u0

∂C[u0]
∂u + αRHR βA∗

βA 0

 (δuµ
)
=

(∂C[u0]
∂u

)∗
· Λ−1

u0
(Corr−C[u0])
0

 .
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4 Unique identifiability of flows and
other coefficients in passive imaging
with applications to helioseismology

4.1 Abstract

Passive imaging problems consist of identifying interior parameters from measurements
of the cross-correlation data on a hypersurface. Often one assumes that the cross-correlation
equals the imaginary part of the Green’s function. This relation can be guaranteed, e.g.,
by a particular choice of the source covariance. In this manuscript, we prove that mea-
surements at two distinct boundaries uniquely determine the scalar potential and advec-
tion term up to a gauge transformation by simultaneously determining the source strength
within a comprehensive source model. This gauge transformation can be resolved for
measurements at two different frequencies in helioseismology. The fundamental idea of
the proof is to relate the surface cross-correlation to the Dirichlet-to-Neumann map in
order to invoke the well-established uniqueness theory regarding the Calderón problem.

4.2 Introduction

In this manuscript, we focus on imaging problems described by a time-harmonic wave
equation

LA,qψ = s, (4.1)

where the differential operator LA,q depends on a vectorial potential A and a scalar po-
tential q, and s represents a random source. The solution ψ is typically observed in some
measurement region, such as the solar surface in the context of helioseismology.

In classical inverse problems in scattering theory, one aims to determine the parame-
ters A, q from measurements of scattered waves from known sources or incident waves.
Extensive literature exists on the topics of uniqueness and stability for classical scatter-
ing problems (e.g. Nachman 1988, Hähner and Hohage 2001, Dos Santos Ferreira et al.

This chapter reproduces an initial draft of the article Unique identifiability of flows and other coeffi-
cients in passive imaging with applications to helioseismology by Björn Müller and Thorsten Hohage, to
be submitted to Inverse Problems. Author contributions: T.H. designed the research. B.M. did most of the
work.
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2007, Agaltsov and Novikov 2015, Colton and Kress 2013), also when only partial data
is available (e.g. Bukhgeim and Uhlmann 2002, Kenig et al. 2007).

In contrast to the deterministic scattering problem, passive imaging problems involve
random source terms. As a result, in passive imaging problems, we focus on studying the
cross-covariance of solutions ψ to the wave equation (4.1), observed on a hypersurface Γ.
The cross-covariance is defined as:

C(r1, r2, ω) = E
[
ψ(r1, ω)ψ(r2, ω)

]
, r1, r2 ∈ Γ, (4.2)

where ω is the frequency.
The surface cross-covariance may be written in the form:

CA,q,Cov[s](r1, r2, ω) =
∫
Ω

∫
Ω

GA,q(r1, r) Cov[s](r, r′)GA,q(r2, r′) dr′dr, (4.3)

where we assume the acoustic sources to be supported in a bounded region Ω. Further-
more, we denote by GA,q the Green’s function to Eq. (4.1), with proper boundary condi-
tions to be specified later. Passive problems of this type occur in various fields such as
earth seismology (e.g. Snieder and Larose 2013), ocean acoustics (e.g. Burov et al. 2008),
and local helioseismology (e.g. Müller et al. 2024).

Correlation measurements are known to provide a significant amount of information
and have been used for source inversions (e.g. Garnier and Papanicolaou 2016). Neverthe-
less, uniqueness results for the inverse parameter problem are available only in a limited
number of exceptional cases. For instance, local uniqueness was proven in Agaltsov
et al. (2018) under the assumption that the surface correlation equals the part of the
Green’s function and that there are no advection terms or wave attenuation. This result
was obtained by establishing algebraic relations similar to Kramers-Kronig relations (e.g.
de L. Kronig 1926, Kramers 1927). Additionally, a global uniqueness result from two
measurements at two different observation heights for spherically symmetric potentials
was derived in Agaltsov et al. (2020). This result was obtained by analytically solving
the wave equation in the exterior. However, so far there are no uniqueness results for
advection terms and for situations with only partial data. Moreover, the source strength
has not been considered as a free unknown parameter so far.

The proportionality between the surface cross-correlation to the imaginary part of the
Green’s function arises from a particular choice of the source covariance ⟨s(r1, ω)s(r2, ω)⟩.
We relax this assumption by allowing a continuous family of possible source correlations
including the one inducing the proportionality to the imaginary part of the Green’s func-
tion. The pivotal element of our proof involves proving that the Dirichlet-to-Neumann
map is uniquely determined, from which the uniqueness of the parameters follows using
the same arguments as in the standard Calderón problem. The uniqueness of the source
covariance will follow from a particular choice of complex geometric optics solutions.

In a subsequent stage, we present a uniqueness result derived from partial data ac-
quired at the computational boundary. This aspect holds particular significance in helio-
seismology, given the absence of comprehensive full-surface observations of the Sun.

Rather than inverting for interior parameters A and q, there is often an interest in un-
derstanding the source covariance. Typically, one assumes spatial uncorrelated noises,
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Figure 4.1: The geometric setting we are working on. The scalar potential q and vectorial
potential A are supported in a regionΩ. We assume measurements at two different heights
Γa and Γb above the solar surface and below the computational domain ∂Ω.

such that (Cov[s]ψ)(x) = S (x) · ψ(x). The passive source identification problem is to in-
vert the source power S from measurements of the cross-covariance in the measurement
region. The passive source identification problem studied in this manuscript has to be dis-
tinguished from classical scattering problems, in which known incident waves determine
the scatterer.

The uniqueness of the passive source identification problem is only established in
proper configurations, e.g. for constant coefficients and S ∈ L∞(Ω) (Hohage et al. 2020),
where the authors used completeness of products of solutions to the differential equation.
We extend the ideas of the proof to elliptic wave operator with admissible coefficients.
The key of the proof will be the construction of complex geometric optics solutions,
which are successfully applied to the Calderón problem (e.g. Sylvester and Uhlmann
1986, 1987).

Besides the uniqueness, analyzing the stability of passive inverse source problems is
of great interest. This stability result leads to convergence results for traditional inverse
problems (e.g. Hohage and Weidling 2015). This manuscript proves logarithmic stability
for the passive source identification problem.

The paper is organized as follows. In Sect. 4.3, we present the forward model used
in this manuscript and state the main theorems. In Sect. 4.4, we discuss the example of
helioseismology. The central theorems are proved in Sect. 4.5. In Sect. 4.6, we provide a
stability estimate for the inverse source problem. Finally, we test our results on numerical
toy examples in Sect. 4.7.

4.3 The forward problem
The passive inverse problem investigated in this manuscript is primarily motivated by
helioseismology. Nevertheless, we expect that the presented ideas have more general
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applications in the realm of inverse problems.
Let Ω0 ⊂ Ωa ⊂ Ωb ⊂ Ω represent smooth, bounded domains in R3, with Γa := ∂Ωa

and Γb := ∂Ωb denoting the measurement regions. Additionally, we assume that ∂Ω, Γa,
Γb, and ∂Ω0 are pairwise disjoint. The geometric configuration is illustrated in Figure 4.1.

Consider the wave equation

LA,qψ :=
(
−∆ − 2iA(ω) · ∇ + q(ω) − i∇ · A(ω) − k(ω)2

)
ψ = s(ω) in Ω, (4.4a)
∂ψ

∂n
= B(ω)ψ on ∂Ω, (4.4b)

where ψ is the wavefield, s is a random source, ω is the frequency, k ∈ R>0 is the
wavenumber, n is the outer normal on ∂Ω, q is a scalar potential, A is a vectorial poten-
tial, and B : H1/2(∂Ω)→ H−1/2(∂Ω) represents some possibly nonlocal exterior boundary
condition. We will initially present the scenario for a single frequency for clarity in no-
tation. The extensions to multiple frequencies can be readily achieved. We make the
following assumption on the vectorial and scalar potentials A, q:

Assumption 4.1. The scalar and vectorial potential satisfy

q ∈ L∞(Ω0,C),A ∈ H1(Ω0,R
3) ∩ L∞(Ω),R

3) (4.5a)
supp(q), supp(A) ⊂ Ω0, (4.5b)

In the following we will denote with ∗ the adjoint operator. Furthermore we introduce
the complex conjugate of an operator B : X→ Y, mapping between Sobolev spaces X,Y
by Bψ := Bψ. Moreover, we introduce the transposed operator BT : X′ → Y′, BT := B

∗
.

The transposed operator can be viewed as the adjoint operator defined on bilinearforms
instead of sesquilinear forms. Furthermore, we make the following assumptions, which
will be justified for helioseismology in Sect. 4.4.

Assumption 4.2. Suppose that for some B0 ∈ L
(
H1/2(∂Ω),H−1/2(∂Ω)

)
and some set of

admissible parameters (q,A) ∈ L∞(Ω0,C) ×W1,∞(Ω0,R
3), the following holds:

ℑ(q − k2) ≤ 0 in Ω0 (4.6a)
A · n = 0 on ∂Ω0 (4.6b)

ℑ

∫
∂Ω

(Bζ) ζ ds > 0 for all ζ ∈ H1/2(∂Ω), ζ , 0 (4.6c)

ℜ

∫
∂Ω

(B0ζ)ζ ds ≥ 0 for all ζ ∈ H1/2(∂Ω) (4.6d)

B − B0 : H1/2(∂Ω)→ H−1/2(∂Ω) is compact. (4.6e)

⟨(BT − B)ψ, ϕ⟩∂Ω = 0 for all ψ, ϕ ∈ H1/2(∂Ω) (4.6f)

Assumptions 4.6a–4.6e are needed to ensure unique solvability of problem 4.4. It is
straightforward to check that the requirements of Assumption 4.2 are satisfied for Bψ =
ikψ withℜk > 0 or if B is the exterior Dirichlet-to-Neumann map on a sphere or a circle
(e.g. Ihlenburg 1998, Colton and Kress 2013). We recall a proposition from Müller et al.
(2024).
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Proposition 4.1. Under Assumption 4.2, the Problem (4.4) is well posed in the sense that
for all s ∈ H−1

0 (Ω0) there exists a unique ψ ∈ H1(Ω) satisfying (4.4) in the weak form, and
ψ depends continuously on s with respect to these norms.

Proof. Apply Proposition 1 in Müller et al. (2024).

Let us define the volume potential operator

GA,q : H−1
0 (Ω)→ H1(Ω), GA,qs := ψ (4.7)

as an integral operator

(GA,qs)(r1) =
∫
Ω

GA,q(r1, r2)s(r2) dr2, r1 ∈ Ω,

where the Green’s function satisfies

LA,qGA,q(r1, r2) = δ(r1 − r2), in Ω (4.8a)
∂nGA,q(r1, r2) = BGA,q(r1, r2), on ∂Ω. (4.8b)

Here, δ is the Dirac delta function. In this manuscript, we will consider source terms
s < H−1

0 (Ω), since Gaussian noise is usually not in H−1
0 (Ω). Therefore, we need the

following assumption.

Assumption 4.3. The solution to (4.4) on Γa/b is given by

(Tra/b ψ)(r1) =
∫
Ω

GA,q(r1, r2)s(r2) dr2, r1 ∈ Γa/b. (4.9)

Here, we have used the trace operator:

Tra/b : H1(Ω)→ H1/2(Γa/b), Tra/b u = u|Γa/b .

The trace operator is well-defined by the trace theorem (e.g. McLean 2000, Theorem 3.37).
We will need additional assumptions on the unique solvability of the Helmholtz equa-

tion. Let

Σ1 := {k ∈ R>0 : k2 is not a Dirichlet eigenvalue of −∆ in Ωb \Ωa}

Σ2 := {k ∈ R>0 : k2 is not a Dirichlet eigenvalue of −∆ in Ωb}

ΣA,q := {k ∈ R>0 : k2 is not a Dirichlet eigenvalue of −∆ − 2iA∇ + q − i∇A in Ωb}.

Throughout the manuscript, we use the following assumption:

Assumption 4.4. The wavenumber k ∈ R>0 satisfies: k ∈ Σ := Σ1 ∩ Σ2 ∩ ΣA1,q1 ∩ ΣA2,q2 .

The stochastic sources of excitation are modeled as Gaussian random processes with
zero mean and are characterized by (compare with Müller et al. 2024):

Cov[s] =
(
MS + Tr∂Ω

∗
Cov[s∂Ω] Tr∂Ω

)
: H1(Ω)→ H−1

0 (Ω), (4.10)

where supp(S ) ⊂ Ω0, S ∈ L∞(Ω0), (MSψ)(r) := S (r) · ψ(r) is the multiplication opera-
tor, and Cov[s∂Ω] ∈ L

(
(H1/2(∂Ω),H−1/2(∂Ω)

)
describes the covariance of sources at the

computational boundary. We assume knowledge of Cov[s∂Ω] and leaf S as a free param-
eter. This assumption on the source strength is frequently used in the helioseismology
community.
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Lemma 4.2. The covariance operator Cov[s], defined in Eq. (4.10), belongs to
L
(
H1(Ω),H−1

0 (Ω)
)
.

Proof.

∥Cov[s]∥L(H1(Ω),H−1
0 (Ω)) = sup

g∈H1(Ω)

∥Cov[s]g∥H−1
0 (Ω)

∥g∥H1(Ω)
= sup

g∈H1(Ω)
sup

h∈H1(Ω)

⟨Cov[s]g, h⟩L2(Ω)

∥g∥H1(Ω) · ∥h∥H1(Ω)

≤ sup
g∈H1(Ω)

sup
h∈H1(Ω)

∥S ∥L∞(Ω)∥g∥L2(Ω)∥h∥L2(Ω) + ∥Cov[s∂Ω]∥L((H1/2(∂Ω),H−1/2(∂Ω))∥g∥L2(∂Ω)∥h∥L2(∂Ω)

∥g∥H1(Ω) · ∥h∥H1(Ω)

≤ ∥S∞∥L∞(Ω) + ∥Cov[s∂Ω]∥L((H1/2(∂Ω),H−1/2(∂Ω)),

where we have used the trace theorem.

Let us define the covariance operator C (similar to Müller et al. (2024), Hohage et al.
(2020)) in terms of the trace operator, the source covariance operator, and the volume
potential operator:

C
i j
A,q,Cov[s] := TriGA,q Cov[s]G∗A,q Tr∗j : H−1/2(Γ j)→ H1/2(Γi), i, j ∈ {a, b}. (4.11)

The covariance operator is well-defined using the mapping properties in Proposi-
tion 4.1 and Lemma 4.2.

By Assumption 4.3, the Schwartz kernel of the covariance operator (4.11) takes the
form (r1 ∈ Γi, r2 ∈ Γ j):

CA,q,Cov[s](r1, r2) =
∫
Ω

∫
Ω

GA,q(r1, r) Cov[s](r, r′)GA,q(r2, r′) dr dr′. (4.12)

Recall that the correlation measurements are given by:

Corri j(r1, r2) :=
1
N

N∑
k=1

Tri ψk(r1)Tr j ψk(r2), r1 ∈ Γi, r2 ∈ Γ j, (4.13)

where i, j ∈ {a, b} and ψk are solutions to (4.4) for independent realizations of the ran-
dom source terms. The correlation measurements converge in probability to the Schwartz
kernel (4.12) for N → ∞.

We consider the following two inverse problems:

1. Inversion for A, q and S from measurements of the surface cross-covariance at two
different heights Γa,Γb above the solar surface.

2. Inversion for A, q and S from measurements of the surface cross-covariance and
the Neumann trace on a relatively open part Γ ⊂ Γb.

Previous uniqueness results rely on the assumption that the imaginary part of Green’s
function is proportional to the surface cross-covariance. In Lemma 4.8, we see that this as-
sumption essentially comes from a particular assumption on the source covariance, which
is included in our source model. Two measurements at two different heights can roughly
be achieved in helioseismology by observing Dopplergrams for two different spectral
lines. In contrast to Agaltsov et al. (2020), we also use correlations between different
measurement heights.

In this work, we make the following assumption
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4.3 The forward problem

Assumption 4.5. The sources covariance at the surface satisfies Cov[s∂Ω] = σ∂Ω
2i (B − B∗),

for some σ∂Ω ∈ R>0.

From Assumption 4.6a, it follows that Cov[s∂Ω] is self-adjoint and positive definite.
We will show in the remainder of this manuscript that this assumption incorporates special
cases with applications in helioseismology.

The following statement is proven in Sect. 4.5.1.

Theorem 4.3. Suppose that (A1, q1), (A2, q2) satisfy Assumptions 4.1 and 4.2, k ∈ Σ,
and Cov[s∂Ω] satisfies 4.5. Let Ci, j

A1,q1,S 1
= C

i, j
A2,q2,S 2

, where i, j ∈ {a, b}, then there exists
ϕ ∈ W1,∞(Ω,R) with

A1 = A2 + ∇ϕ

q1 = q2 + 2A2 · ∇ϕ + (∇ϕ) · (∇ϕ).
(4.14)

Moreover, we have the identity: S 1 = S 2.

The transformation (4.14) is a gauge transformation leading to the changed Green’s
function:

GA2,q2(r1, r2) = exp (iϕ(r1)) GA1,q1(r1, r2) exp (−iϕ(r2))

as the following identity holds true:

LA2,q2GA2,q2 =
[
−∆ − 2iA2 · ∇ + q2 − i∇A2 − k2

]
exp (iϕ) GA1,q1 exp (−iϕ)

= exp (iϕ)
[
−∆ − 2i(A2 + ∇ϕ) · ∇ + q2 − i∇(A2 − ∇ϕ) + ∇ϕ · ∇ϕ − i(∆ϕ) − k2

]
GA1,q1 exp (−iϕ)

= exp (iϕ)
[
−∆ − 2iA1 · ∇ + q1 − i∇A1 − k2

]
GA1,q1 exp (−iϕ)

= exp (iϕ(r1)) δ(r1 − r2) exp (−iϕ(r2)) = δ(r1 − r2),

where we have used the identity:

−∆
(
exp(iϕ)GA,q

)
= exp(iϕ) (−∆ − 2i∇ϕ · ∇ + ∇ϕ · ∇ϕ − i∆ϕ) GA,q.

This shows that the non-uniqueness due to the gauge transformation (4.14) is unavoid-
able in Theorem 4.3.

For the second problem, we are dealing with the partial data problem for observations.
Instead of assuming two measurements at two different heights, we assume measurements
of the Dirichlet and Neumann trace on Γ ⊆ Γb.

Note that we have approximate knowledge of the Neumann trace by the scaled dif-
ference of two different heights. In fact, the Neumann trace can be approximated in
helioseismology (e.g. Barucq et al. 2018). In the following, we denote by

CCau
A,q,S := TrCauGA,q Cov[s]G∗A,q Tr∗Cau : H−1/2(Γ) × H1/2(Γ)→ H1/2(Γ) × H−1/2(Γ)

the covariance operator, where TrCau is the Cauchy trace:

TrCauGA,q : H−1
0 (Ω)→

(
H1/2(Γ),H−1/2(Γ)

)
,TrCauGA,q(u) =

(
GA,qu|Γ, ∂nGA,qu|Γ

)
. (4.15)

We have the following theorem, proven in Sect. 4.5:

Theorem 4.4. Suppose that (A1, q1), (A2, q2) satisfy Assumptions 4.1 and 4.2, k ∈ Σ, and
Cov[s∂Ω] satisfies 4.5. Let CCau

A1,q1,S 1
= CCau

A2,q2,S 2
for Γ ⊆ Γb. Then, it follows that (A1, q1)

and (A2, q2) are related by the gauge transformation (4.14) for some ϕ ∈ W1,∞(Ω0,R).
Moreover, we have the identity: S 1 = S 2.
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4.4 Application to helioseismology
In helioseismology, it is reasonable to assume that Ω0 = B(0,R⊙) and Ω = B(0,R) with
R > R⊙, where R⊙ is the solar radius. Moreover, we assume measurements at heights
R > Rb > Ra > R⊙. The measurements in helioseismology consist of cross-correlations
of line-of-sight velocities, caused by acoustic waves. The wavefield can be approximated
by a scalar wave equation (e.g. Gizon et al. 2017). In the solar case, we have for acoustic
p-modes (Müller et al. 2024):

A(ω) = ω
1
c2 u, q(ω) = k2 −

ω2 + 2iγ(ω)ω − ω2
c

c2

k2(ω) =

√
ω2 − ω2

c

c2 , ω2
c = c2ρ1/2∆(ρ−1/2),

(4.16)

where ω is the frequency, γ is the damping factor, c is the sound speed, ρ is the density,
and u is the flow field. Furthermore, ωc is the acoustic cutoff frequency, which in the Sun
gets to ωc ≈ 5.2 mHz close to the solar surface. Acoustic modes below the acoustic cutoff
frequency are trapped in the solar interior and are frequently used in local helioseismology
(e.g. Christensen-Dalsgaard 2003). On the other hand, modes above the acoustic cutoff
frequency propagate through the solar atmosphere. Nevertheless, modes above the solar
acoustic cutoff frequency are rarely used in helioseismology since the waves are damped
in the solar interior. In this model, we have assumed no damping γ, an exponential decay
of density ρ, and a constant sound speed c0 above the solar surface (r ∈ Ω \Ω0):

γ(r) = 0, c(r) = c0, ρ(r) = ρ0 · exp (−(|r| − 1)/H) , u(r) = 0, (4.17)

where H is the density scale height at the solar surface. We assume that

c ∈ L∞(Ω0,R), c > c0 > 0, u ∈ H1(Ω0,R
3) ∩ L∞(Ω,R3),

γ ∈ L∞(Ω0,R), ρ ∈ W2,∞(Ω0,R), ρ > ρmin > 0.
(4.18)

It can be checked by straightforward calculations that the Assumption 4.18 leads to q ∈
L∞(Ω0) and A ∈ H1(Ω0,R

3)∩ L∞(Ω0,R
3). This model is frequently used in helioseismol-

ogy and smoothly extends the solar Model S (Christensen-Dalsgaard et al. 1996) into the
upper solar atmosphere. In the solar case, the occurring parameters are:

H = 125 km, c0 = 6855 m/s, ρ0 = 2.89 · 10−6 kg m−3.

This model provides reasonable results for the solar power spectrum (e.g. Gizon et al.
2017).

Additionally, we assume that no flow term crosses the solar surface and that the flow
field is mass-conserved:

u · n = 0, div (ρu) = 0, (4.19)

where n describes the outer normal at ∂Ω0.
We state the following proposition, which justifies Assumption 4.2 for helioseismol-

ogy:
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Proposition 4.5. Suppose that (c, ρ, γ, u) satisfy the Assumptions 4.17, 4.18, and 4.19.
Then Assumptions 4.1 and 4.6a–4.6b are satisfied.

Proof. Müller et al. (2024, Lemma 7).

Different choices of atmospheric boundary conditions for the Sun are discussed in
Fournier et al. (2017), Barucq et al. (2018). It was shown that the Robin-type boundary
conditions applied on a finite domain are usually sufficient for helioseismic applications.
These types of boundary conditions satisfy the Assumptions 4.6c–4.6f for frequencies
above the solar cutoff frequency..

The gauge transformation can be resolved in helioseismology (see e.g., Agaltsov and
Novikov 2015). Assume that the damping rate can be written in the form:

γ(ω, r) = γ0

(
ω

ω0

)ζ(r)

. (4.20)

Since we only have information on a finite number of frequencies, it will never be possible
to determine the frequency dependence of γ uniquely. Furthermore, in solar physics, the
damping rate is assumed to be proportional to the line width and can be measured directly
on the surface (e.g. Korzennik et al. 2013).

We are now in a position to formulate our main result in the context of helioseismol-
ogy:

Theorem 4.6. Let the assumptions of Theorem 4.3 hold, assume that γ1, γ2 satisfy the
Eq. (4.20), and that the flow field is mass-conserved (Assumption 4.19). Suppose that
either Ci j

A1,q1,S 1
(ω) = Ci j

A2,q2,S 2
(ω) for i, j ∈ {a, b} or CCau

A1,q1,S 1
(ω) = CCau

A2,q2,S 2
(ω) for two

different frequencies above the acoustic cutoff frequency. Then we have the equality
(ρ1, c1, γ1,u1) = (ρ2, c2, γ2,u2). Moreover, we have the identity: S 1 = S 2.

The theorem is proved in Sect. 4.5.
In many helioseismic applications, one assumes that the surface covariance is con-

nected to Green’s function by

CA,q(r2, r1) =
1
2i

[
GA,q(r2, r1) −G−A,q(r2, r1)

]
. (4.21)

This relation is achieved by a particular choice of the source covariance Cov[s]. It
will follow from Lemma 4.8 that this particular source covariance is included in the pre-
vious discussion. Hence, we have the following corollary with particular importance in
helioseismology:

Corollary 4.7. Under the Assumptions of Theorem 4.6 and Eq. (4.21), the parameters
ρ, c, γ,u are uniquely determined by either Ci, j

A,q,S , i, j ∈ {a, b} or CC
A,q,S .

4.5 Proof of the theorems
The proof of the theorems splits into several steps that can be captured by the following
scheme:

Ci j/CCau Sec. 4.5.1
→ TrbGA,q Tr∗b

Sec. 4.5.2
→ ΛA,q

Prop. 4.24
→ A, q

Sec. 4.5.4
→ c, ρ, γ, u, (4.22)
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where ΛA,q : H1/2(Γb) → H−1/2(Γb) is the Dirichlet-to-Neumann map. Furthermore, for
fixed A, q, we prove that:

C
i j
A,q,S /C

Cau
A,q,S

Sec. 4.5.3
→ S

We will use the scalar product: ⟨ϕ, ψ⟩Ω =
∫
Ω
ϕ(x)ψ(x) dx.

4.5.1 Green’s function from cross-correlation
We start with a lemma that relates the imaginary part of Green’s function and the cross-
covariance in the desired way (see also Gizon et al. 2017).

Lemma 4.8. Let the Assumptions 4.1, 4.2, and 4.3 be satisfied. The following statements
hold:

1. For ψ, ϕ ∈ C∞(Ω) we have

⟨LA,qψ, ϕ⟩Ω = ⟨ψ, (LA,q)∗ϕ⟩Ω + ⟨ψ, ∂nϕ⟩∂Ω − ⟨∂nψ, ϕ⟩∂Ω.

with the adjoint operator (LA,q)∗ = LA,q = (L−A,q).

2. The seismic reciprocity: G−A,q(r1, r2) = GA,q(r2, r1) holds true.

3. If Cov[s] = M−ℑ(q) +
1
2iTr∂Ω

∗
(B − B∗) Tr∂Ω, then

CA,q,−ℑ(q)(r2, r1) =
1
2i

[
GA,q(r2, r1) −G−A,q(r2, r1)

]
. (4.23)

Proof. 1. The first statement follows from:

⟨LA,qψ, ϕ⟩Ω = ⟨
(
−∆ − 2iA · ∇ + q − i∇ · A − k2

)
ψ, ϕ⟩Ω

= ⟨ψ,
(
−∆ + q + i∇ · A − k2

)
ϕ − 2i∇(A · ϕ)⟩Ω

− ⟨∂nψ, ϕ⟩∂Ω + ⟨ψ, ∂nϕ⟩∂Ω − ⟨2iA · nψ, ϕ⟩∂Ω
= ⟨ψ,

(
−∆ + q + i∇ · A − k2

)
ϕ⟩Ω − ⟨∂nψ, ϕ⟩∂Ω + ⟨ψ, ∂nϕ⟩∂Ω

= ⟨ψ, (LA,q)∗ϕ⟩Ω + ⟨ψ, ∂nϕ⟩∂Ω − ⟨∂nψ, ϕ⟩∂Ω,

where we have used that A is real-valued and A = 0 at ∂Ω.

2. GA,q is the kernel of L−1
A,q, equipped with the boundary condition (4.4b). From part

(i), we have LT
A,q = L−A,q. The claim follows, as furthermore BT = B by Assump-

tion 4.6f and the kernels of the transposed operator are given by interchanging the
arguments.

3. By using part (i) and part (ii), we observe that

GA,q(r2, r1) −G−A,q(r2, r1) = G−A,q(r1, r2) −G−A,q(r2, r1)

=

∫
Ω

[
L−A,qG−A,q(r, r1) ·G−A,q(·, r2)

]
dr −

∫
Ω

[
L−A,qG−A,q(r, r2) ·G−A,q(r, r1)

]
dr

=

∫
Ω

[
(L−A,q − L∗

−A,q)G−A,q(r, r1) ·G−A,q(r, r2)
]

dr + S .T.
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with surface terms to be discussed later. Since L−A,q = LA,q−2iℑ(q) and L∗
−A,q = LA,q

by part (i), the first term on the right-hand side takes the form:

⟨(L−A,q − L∗
−A,q)G−A,q(r, r1),G−A,q(r, r2)⟩Ω = ⟨−2iℑ(q)(r)G−A,q(r, r1),G−A,q(r, r2)⟩Ω

= ⟨−2iℑ(q)(r)GA,q(r1, r),GA,q(r2, r)⟩Ω.

The surface term is given by

S .T. =
∫
∂Ω

[
G−A,q(r, r1)∂nG−A,q(r, r2) − ∂nG−A,q(r, r1)G−A,q(r, r2)

]
dr

= ⟨BGA,q(r2, r),GA,q(r1, r)⟩∂Ω − ⟨GA,q(r2, r), BGA,q(r1, r)⟩∂Ω
= ⟨(B − B∗)GA,q(r2, r),GA,q(r1, r)⟩∂Ω.

Eq. (4.23) follows for the choice Cov[s] = M−ℑ(q) +
1
2i Tr∂Ω

∗
(B − B∗) Tr∂Ω.

Remark 4.9. By part (iii) of Lemma 4.8, the relation (4.21) between the cross-correlation
and the Green’s function is achieved by a particular choice of the source covariance
Cov[s], including Assumption 4.5.

The source covariance of part (iii) of the previous lemma has a physical interpreta-
tion. The acoustic Poynting vector takes the form: S ∝ ℑ

(
ψ∇ψ

)
(e.g. Burns et al. 2020).

Hence, ℑB models the energy transport in the exterior. Thus, we can understand the as-
sumption in a way such that the energy transport to the exterior is locally balanced by the
energy transport from the exterior into the interior. It is well-known that the volumetric
sources must be proportional to the damping rate to ensure the equipartition of energy
between different modes (e.g. Snieder 2007, Snieder et al. 2007). A similar relation is
known to be true in geophysics and acoustics (e.g. Snieder et al. 2009) and many further
applications (we refer to Garnier and Papanicolaou (2016) for an overview).
Next, we derive a relation between GA1,q1 and GA2,q2 . In the following, we use the differ-
ence operator δL := LA2,q2 − LA1,q1 . We have the following lemma:

Lemma 4.10. Suppose that (A1, q1), (A2, q2) satisfy Assumptions 4.1 and 4.2 and k ∈ Σ.
Then, we have the resolution equations:

GA2,q2 − GA1,q1 = −GA2,q2δLGA1,q1 , (4.24a)
GA2,q2 − GA1,q1 = −GA1,q1δLGA2,q2 . (4.24b)

Proof. Note that LAi,qiGAi,qiψ = ψ, i ∈ {1, 2} for all ψ ∈ H−1
0 (Ω). We obtain:

LA2,q2(GA2,q2 − GA1,q1)ψ = ψ − LA2,q2GA1,q1ψ = ψ − (LA1,q1 + δL)GA1,q1ψ

= −δLGA1,q1ψ = −LA2,q2GA2,q2δLGA1,q1ψ.

Let ϕ := (GA2,q2 − GA1,q1)ψ + GA2,q2δLGA1,q1ψ. Hence, ϕ ∈ H1(Ω) is a solution to

(−∆ − 2iA2 · ∇ + q2 − i∇ · A2 − k2)ϕ = 0 in Ω,
∂ϕ

∂n
= Bϕ on ∂Ω.

By Proposition 4.1, we have the identity ϕ = 0. Since ψ is chosen arbitrarily, it follows
Eq. (4.24a). The proof of Eq. (4.24b) follows similarly.
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We start with a lemma, which allows us to study the cross-correlation in the domain
Ω \Ω0. We define the restriction operator to Ω \Ω0 by

TrΩ\Ω0 : H1(Ω)→ H1(Ω \Ω0), TrΩ\Ω0 ψ := ψ|Ω\Ω0 .

Furthermore we define the covariance operator:

CΩ\Ω0
A,q,S = TrΩ\Ω0 GA,q Cov[s]G∗A,q Tr∗Ω\Ω0

: H−1
0 (Ω \Ω0)→ H1(Ω \Ω0).

We have the following lemma:

Lemma 4.11. Let k ∈ Σ. Let Ci j
A1,q1,S 1

= Ci j
A2,q2,S 2

, i, j ∈ {a, b}. Then, we have the identity:
CΩ\Ω0

A1,q1,S 1
= CΩ\Ω0

A2,q2,S 2
.

Proof. Let ϕ ∈ H−1/2(Γ j) and define

ψ = GA1,q1 Cov[s]1G
∗
A1,q1

Tr∗j ϕ − GA2,q2 Cov[s]2G
∗
A2,q2

Tr∗j ϕ.

Then, (∆+k2)ψ = 0 inΩb\Ωa and ψ = 0 on Γb∪Γa. Since k ∈ Σ, we have ψ = 0 inΩb\Ωa.
We apply unique continuation (Le Rousseau and Lebeau 2012, Theorem 4.2) to observe
ψ = 0 in Ω \ Ω0. Hence, TrΩ\Ω0 GA1,q1 Cov[s]1G

∗
A1,q1

Tr∗j = TrΩ\Ω0 GA2,q2 Cov[s]2G
∗
A2,q2

Tr∗j
for j ∈ {a, b}. The claim follows after taking the adjoint and repeating the argument
above.

Similarly, we have in the partial data setting:

Lemma 4.12. Let k ∈ Σ. Let CCau
A1,q1,S 1

= CCau
A2,q2,S 2

. Then, we have the identity: CΩ\Ω0
A1,q1,S 1

=

CΩ\Ω0
A2,q2,S 2

.

Proof. Let ϕ ∈ H−1/2(Γ) × H1/2(Γ) and define

ψ = GA1,q1 Cov[s]1G
∗
A1,q1

Tr∗C ϕ − GA2,q2 Cov[s]2G
∗
A2,q2

Tr∗C ϕ.

Then, (∆ + k2)ψ = 0 in Ωb \ Ω0 and ∂nψ = ψ = 0 on Γ. By the unique continuation
principle for local Cauchy data (Alessandrini et al. 2009, Theorem 1.9), we have ψ = 0 in
Ωb \Ω0 and by unique continuation again ψ = 0 in Ω \Ω0. Hence,

TrΩ\Ω0 GA1,q1 Cov[s]1G
∗
A1,q1

Tr∗Cau = TrΩ\Ω0 GA2,q2 Cov[s]2G
∗
A2,q2

Tr∗Cau .

The claim follows after taking the adjoint and repeating the argument above.

Next we can relate the cross-correlation CΩ\Ω0
A,q to the single-layer potential:

Lemma 4.13. Suppose that (A1, q1), (A2, q2) satisfy Assumptions 4.1 and 4.2, k ∈ Σ, and
Cov[s∂Ω] satisfies Assumption 4.5. Let CΩ\Ω0

A1,q1,S 1
= C

Ω\Ω0
A2,q2,S 2

. Then, we have the following
identity:

TrΩ\Ω0 GA1,q1 Tr∗Ω\Ω0
= TrΩ\Ω0 GA2,q2 Tr∗Ω\Ω0

.
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Proof. Let Pl := 1
σ∂Ω

S l + ℑql for l ∈ {1, 2}. By part (iii) of Lemma 4.8, we obtain

C
Ω\Ω0
Al,ql,S l

= TrΩ\Ω0 GAl,ql Cov[s]lG
∗
Al,ql

Tr∗Ω\Ω0

= σ∂Ω TrΩ\Ω0 GAl,ql

[
MPl +

1
2i

Tr∂Ω(B − B∗)Tr∂Ω
∗
+ M−ℑ(ql)

]
G∗Al,ql

Tr∗Ω\Ω0

= σ∂Ω

1
2i

TrΩ\Ω0

[
GAl,ql − G

∗
−Al,ql

]
Tr∗Ω\Ω0

+σ∂Ω TrΩ\Ω0 GAl,ql MPlG
∗
Al,ql

Tr∗Ω\Ω0
.

Therefore, we observe that

C
Ω\Ω0
A1,q1,S 1

− C
Ω\Ω0
A2,q2,S 2

= σ∂Ω

1
2i

TrΩ\Ω0

[
GA1,q1 − GA2,q2 + G

∗
−A2,q2

− G∗−A1,q1

]
Tr∗Ω\Ω0

+ σ∂Ω TrΩ\Ω0 GA1,q1 MP1G
∗
A1,q1

Tr∗Ω\Ω0
−σ∂Ω TrΩ\Ω0 GA2,q2 MP2G

∗
A2,q2

Tr∗Ω\Ω0
.

From CΩ\Ω0
A1,q1,S 1

= C
Ω\Ω0
A2,q2,S 2

, it follows that:

1
2i

TrΩ\Ω0

[
G∗−A1,q1

− G∗−A2,q2

]
Tr∗Ω\Ω0

=
1
2i

TrΩ\Ω0(GA1,q1 − GA2,q2) Tr∗Ω\Ω0

+ σ∂Ω TrΩ\Ω0 GA1,q1 MP1G
∗
A1,q1

Tr∗Ω\Ω0
−σ∂Ω TrΩ\Ω0 GA2,q2 MP2G

∗
A2,q2

Tr∗Ω\Ω0
.

After inserting the resolution relations (4.24a) and (4.24b), we get:

1
2i

TrΩ\Ω0

[
−G∗−A1,q1

(δL−A)∗G∗−A2,q2

]
Tr∗Ω\Ω0

=
1
2i

TrΩ\Ω0

[
−GA1,q1δLGA2,q2

]
Tr∗Ω\Ω0

+ σ∂Ω TrΩ\Ω0 GA1,q1 MP1G
∗
A1,q1

Tr∗Ω\Ω0
−σ∂Ω TrΩ\Ω0 GA2,q2 MP2G

∗
A2,q2

Tr∗Ω\Ω0
,

where δL := LA2,q2 − LA1,q1 .
Let ϕ ∈ H−1

0 (Ω \Ω0) and define:

ψ :=
−1
2i

[
GA1,q1δLGA2,q2

]
Tr∗Ω\Ω0

ϕ + σ∂ΩGA1,q1 MP1G
∗
A1,q1

Tr∗Ω\Ω0
ϕ

− σ∂ΩGA2,q2 MP2G
∗
A2,q2

Tr∗Ω\Ω0
ϕ

ψ̃ :=
−1
2i
G∗−A1,q1

(δL−A)∗G∗−A2,q2
Tr∗Ω\Ω0

ϕ.

By the assumptions, δL = 0 in Ω \ Ω0. Furthermore, supp P1, supp P2 ⊆ Ω0. Therefore,
we obtain in Ω \Ω0:

(∆ + k2)ψ = (∆ + k2)ψ̃ = 0, ψ = ψ̃.

It follows at ∂Ω  0 = ∂n(ψ − ψ̃) = Bψ − Bψ̃,
0 = ψ − ψ̃.

We can conclude that (B−B)ψ = 0 at ∂Ω. By (4.6c), it follows ψ|∂Ω = ψ̃|∂Ω = 0. Moreover,
∂nψ = ∂nψ̃ = 0 on ∂Ω. Due to vanishing Cauchy data on ∂Ω, ψ, ψ̃ can be extended by 0
as a strong solution of the wave equation to Ω \ Ω0. Hence, as ϕ was arbitrary and after
taking the adjoint, TrΩ\Ω0 G−A2,q2δL−AG−A1,q1 Tr∗Ω\Ω0

= 0. The assertion follows with the
resolution Eq. (4.24a) and seismic reciprocity.
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The previous Lemmas are summarized lead to the following Corollary.

Corollary 4.14. Suppose that (A1, q1), (A2, q2) satisfy Assumptions 4.1 and 4.2, k ∈ Σ,
and Cov[s∂Ω] satisfies 4.5. Let Ci j

A1,q1,S 1
= C

i j
A2,q2,S 2

or CCau
A1,q1,S 1

= CCau
A2,q2,S 2

. Then, the
following identity holds TrbGA1,q1 Tr∗Ω\Ω0

= TrΩ\Ω0 GA2,q2 Tr∗b.

Proof. From Lemma 4.11 and 4.12, we have CΩ\Ω0
A1,q1,S 1

= C
Ω\Ω0
A2,q2,S 2

. The claim follows by
the mapping properties of Trb.

4.5.2 Uniqueness of the Dirichlet-to-Neumann map
We start with preliminary results on the invertibility of single layer potential operators. In
the following, we denote with G0 and S0 the volume potential operator and single-layer
potential corresponding to A, q = 0. First, we need mapping properties of the volume
potential operator GA,q.

Remark 4.15. Suppose that A, q satisfy the Assumptions 4.1, 4.2, and f ∈ L2(Ω). By
elliptic regularity, GA,q f ∈ H2(Ω) (Evans 2010, Theorem 1, Sect. 6.3).

Furthermore, we need a preliminary result on the unique solvability of the wave equa-
tion in Ω \Ωb.

Lemma 4.16. Let B : H1/2(∂Ω) → H−1/2(∂Ω) be as in Assumption 4.2. Let g ∈ H1/2(Γb).
Then, there exists a unique solution u ∈ H1(Ω \Ωb) to the boundary value problem:

−(∆ + k2)u = 0, in Ω \Ωb

u = g, on Γb

∂nu = Bu, on ∂Ω.

Proof. We start with the proof of the uniqueness. Let g = 0 and v ∈ H1(Ω \ Ωb). The
weak form takes the form:

⟨∇u,∇v⟩Ω\Ωb − k2⟨u, v⟩Ω\Ωb = −⟨Bu, v⟩∂Ω.

We choose v = u and take the imaginary part. The claim follows with Assumption 4.6c.
From Eqs. (4.6d) and (4.6e), it can be demonstrated that the sesquilinear form of the
variational formulation is coercive up to a compact perturbation (e.g. Colton and Kress
2013). Consequently, the operator representing this sesquilinear form is Fredholm of
index 0. By uniqueness, it is also boundedly invertible.

It is well-known that the knowledge of the Green’s function on the boundary in par-
ticular settings uniquely determines the parameters in the wave equation (e.g. Novikov
1988). Typically, the single-layer potentials, defined bySA,q := TrbGA,q Tr∗b : H−1/2(Γb)→
H1/2(Γb), are matched with the Dirichlet-to-Neumann maps (e.g. Nachman 1988) for
Sommerfeld boundary conditions). For the uniqueness problem in the case of Dirichlet-
to-Neumann data, also known as the Calderón problem, there is plenty of literature avail-
able (e.g. Sylvester and Uhlmann 1987, Alessandrini 1988, Caro and Rogers 2016).
However, to our knowledge, there exists no result on relations between the Dirichlet-
to-Neumann map and single-layer potential for general boundary conditions satisfying
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(4.6c)–(4.6f) and in the presence of advection terms. In the following, we will frequently
make use of the following equivalence

u := GA,q Tr∗b f ⇔ u is unique solution to

LA,qu = 0 in Ωb,

Trb u = SA,q f ,
(4.26)

where a similar relation also holds in Ω \Ωb. The following lemma is proven in Nachman
(1988) for A = 0 and Sommerfeld boundary conditions. We follow the same arguments
and extend it to general A and boundary conditions satisfying (4.6c)–(4.6f).

Throughout the proof, we will need the jump relations for single layer potential oper-
ators and double layer potentials, summarized in the following lemma:

Lemma 4.17. Let (A, q) satisfy Assumptions 4.1 and 4.2. Then, we have the jump rela-
tions:

∂n,−(GA,q Tr∗b f ) − ∂n,+(GA,q Tr∗b f ) = f (4.27a)

GA,q(T N,−
b )∗ f − GA,q(T N,+

b )∗ f = − f , (4.27b)

where T N,−
b ψ := ∂n,−ψ|Γb ,T

N,+
b ψ := ∂n,+ψ|Γb .

Proof. In the case A, q = 0, the jump relations (4.27a) and (4.27b) follow from (Costa-
bel 1988, Lemma 4.1). By the resolution equations in Lemma 4.10, we observe that
GA,q(·, x) − G0(·, x) ∈ C∞(Ω \ Ω0). Hence, the jump relations (4.27a) and (4.27b) are
satisfied for arbitrary A, q satisfying Assumption 4.1.

Moreover, we give the Green’s representation formula in the next lemma:

Lemma 4.18. Let A, q satisfy Assumption 4.1 and u ∈ H2(Ωb). Then, we have the follow-
ing identities:

u(r1) =
∫
Γb

(
∂n,−u(r2)

)
G−A,q(r1, r2) dr2 −

∫
Γb

(
∂r2

n,−G−A,q(r1, r2)
)

u(r2) dr2

+

∫
Ωb

G−A,q(r1, r2)LA,qu(r2) dr2, r1 ∈ Ωb.

(4.28)

Proof. By employing Green’s third identity, we observe∫
Γb

(
∂n,−u(r2)

)
G−A,q(r1, r2) dr2 −

∫
Γb

(
∂r2

n,−G−A,q(r1, r2)
)

u(r2) dr2, r1 ∈ Ωb

=

∫
Ωb

(−∆)G−A,q(r1, r2)u(r2) dr2 −

∫
Ωb

(−∆)u(r2)G−A,q(r1, r2) dr2

=

∫
Ωb

(−∆ + q + 2iA · ∇ + i∇A − k2)G−A,q(r1, r2)u(r2) dr2

−

∫
Ωb

(−∆ + q − 2iA · ∇ − i∇A − k2)u(r2)G−A,q(r1, r2) dr2

= u(r1) −
∫
Ωb

G−A,q(r1, r2)LA,qu(r2) dr2,
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where we have used that∫
Ωb

(−2iA(r) · ∇ − i∇A(r)ψ(r) · ϕ(r) dr +
∫
Ωb

(−2iA(r) · ∇ − i∇A(r))ϕ(r) · ψ(r) dr

=

∫
Ωb

(−2iA(r) · ∇ − 2i∇A(r))(ψ(r)ϕ(r)) dr = −2i
∫
Ωb

∇(A(r)ψ(r)ϕ(r)) dr = 0

for arbitrary ϕ, ψ ∈ H1(Ωb).

Lemma 4.19. Let k ∈ Σ and A, q satisfy Assumption 4.1. Then, the single-layer potential
SA,q := TrbGA,q Tr∗b : H−1/2(Γb)→ H1/2(Γb) is invertible.

Proof. Injectivity of SA,q: Let f ∈ H−1/2(Γ), S0 f = 0 = TrbG0 Tr∗b f , and u := G0 Tr∗b f .
Hence, by an equivalent of Eq. (4.26), u|Ω\Ωb ∈ H1(Ω \ Ωb) solves the boundary value
problem:

−(∆ + k2)u|Ω\Ωb = 0, in Ω \Ωb

u|Ω\Ωb = 0, on Γb

∂nu|Ω\Ωb = Bu|Ω\Ωb , on ∂Ω.

By Lemma 4.16, we observe u|Ω\Ωb = 0. Furthermore, by Eq. (4.26), u|Ωb ∈ H1(Ωb) solves
the boundary value problem:

LA,qu|Ωb = 0, in Ωb

u|Ωb = 0, on Γb

Hence, u|Ωb = 0 since k ∈ Σ. Since GA,q Tr∗b f = 0 in Ωb and Ω \Ωb, it follows that:

∂n,−GA,q Tr∗b f = ∂n,+GA,q Tr∗b f = 0, (4.29)

where n is the outer normal of Γb. After combining Eqs. (4.29) and (4.27a), it follows that
f = 0.

Surjectivity of SA,q: Let g ∈ H1/2(Γb). Let ui ∈ H1(Ωb) and uo ∈ H1(Ω \ Ωb) be the
unique solutions to

L−A,qui = 0, Ωb

−(∆ + k2)uo = 0, Ω \Ωb

ui = uo = g, Γb

∂nuo − Buo = 0, ∂Ω.

(4.30)

The solution uo is well-defined by Lemma 4.16. Lemma 4.18 implies in Ωb for r1 ∈ Ωb

ui(r1) =
∫
Γb

(
∂n,−ui(r2)

)
GA,q(r1, r2) dr2 −

∫
Γb

(
∂r2

n,−GA,q(r1, r2)
)

g(r2) dr2.

Hence, after applying Trb on both sides, we observe for r1 ∈ Γb:

g(r1) = lim
r↗r1

ui(r1) =
∫
Γb

(
∂n,−ui(r2)

)
GA,q(r1, r2) dr2 − lim

r↗r1

∫
Γb

(
∂r2

n,−GA,q(r, r2)
)

g(r2) dr2.
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Similarly, we can prove that

g(r1) = lim
r↘r1

uo(r1) = lim
r↘r1

∫
Γb

(
∂r2

n,+GA,q(r, r2)
)

g(r2) dr2 −

∫
Γb

(
∂n,+uo(r2)

)
GA,q(r1, r2) dr2.

Here, we have used that the boundary term vanishes at ∂Ω due to (4.6f). It follows, after
summing up both sides and using Eq. (4.27b):

2g(r1) = g(r1) +
∫
Γb

(
∂n,−ui(r2)

)
GA,q(r1, r2) dr2 −

∫
Γb

(
∂n,+uo(r2)

)
GA,q(r1, r2) dr2

= g(r1) +
(
SA,q(∂n,−ui − ∂n,+uo)

)
(r1).

After choosing f := (∂n,−ui − ∂n,+uo), we obtain SA,q f = g. Since ui ∈ H1(Ωb), uo ∈

H1(Ω \Ωb) and ∆ui ∈ L2(Ωb),∆uo ∈ L2(Ω \Ωb) by (4.30), it follows f ∈ H−1/2(Γb), which
completes the proof.

Next, we can relate the single-layer potential operator with the Dirichlet-to-Neumann
map. We define the Dirichlet-to-Neumann map by:

ΛAi,qi : H1/2(Γb)→ H−1/2(Γb), ΛAi,qi f := ∂nui, (4.31)

where ui ∈ H1(Ωb) is the unique solution to LAi,qiui = 0 with ui|Γb = f and i ∈ {1, 2}. We
have the following result:

Lemma 4.20. Suppose that (A1, q1), (A2, q2) satisfy Assumptions 4.1 and 4.2, k ∈ Σ, and
assume that TrbGA1,q1 Tr∗b = TrbGA2,q2 Tr∗b. Then, we have the identity ΛA1,q1 = ΛA2,q2 .

Proof. Let i ∈ {1, 2}, f ∈ H−1/2(Γb), ui := GAi,qi Tr∗b f , and vi the unique solution to
−(∆ + k2)vi = 0 with Trb vi = SAi,qi f for some f ∈ H−1/2(Γb). We apply Lemma 4.18 to
observe∫
Γb

G0(r1, r2)∂n(ui − vi)(r2) dr2 = ui(r1) − vi(r1) −
∫
Ωb

G0(r1, r2)(−∆ − k2)(ui − vi)(r2) dr2,

where we have used Trb ui = Trb vi. Now applying Trb on both sides of the above identity
yields:

S0∂nui − S0∂nvi = −Trb

∫
Ωb

G0(r1, r2)(−∆ − k2)(ui − vi)(r2) dr2 = −SAi,qi f + S0 f ,

where we have used G0(−∆ − k2)GA,q = GA,q. By construction, ∂nui = ΛAi,qiSAi,qi f and
∂nvi = Λ0SAi,qi f . Combining these identities, we observe that

S0 − SAi,qi = S0(ΛAi,qi − Λ0)SAi,qi .

From the assumption SA1,q1 = SA2,q2 =: S. It follows that S0ΛA1,q1S = S0ΛA2,q2S. By
Lemma 4.19, S and S0 are invertible. Hence, ΛA1,q1 = ΛA2,q2 .
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4.5.3 Uniqueness of source covariance
This section proves the uniqueness of the volumetric source terms S ∈ L∞(Ω0). The
central part of this section consists of the following lemma, which characterizes the range
of G∗A,q Tr∗b.

Lemma 4.21. Suppose that A, q satisfy the Eqs. (4.5a), (4.5b) and k ∈ Σ. Then

H := clL2{u ∈ C∞(Ωb) ∩ L2(Ωb) : L∗A,qu = 0} ⊆ clL2 range(G∗A,q Tr∗b) (4.32a)

H ⊆ clL2 range(G∗A,q Tr∗Cau) (4.32b)

Proof. Let ϕ ∈ C∞(Ωb) ∩ L2(Ωb) such that L∗A,qϕ = 0 and

⟨ϕ,G∗A,q Tr∗b ψ⟩ = 0

for all ψ ∈ H−1/2(Γb). Hence, ⟨TrbGA,qϕ, ψ⟩Γb = 0. Since TrbGA,qϕ ∈ H1/2(Γb), it follows
that GA,qϕ = 0 on Γb, and w := (GA,qϕ)|Ω\Ωb solves the exterior boundary problem:

(−∆ − k2)w = 0, Ω \Ωb

w = 0, Γb

∂nw = Bw, on ∂Ω.

By Lemma 4.16, GA,qϕ = 0 on Ω \ Ωb. Hence, ∂n,+GA,qϕ = GA,qϕ = 0 on Γb. Since
GA,qϕ ∈ H2(Ω) by Remark 4.15, we also have ∂n,−GA,qϕ = 0 on Γb. Therefore,

⟨ϕ, ϕ⟩Ωb = ⟨LA,qGA,qϕ, ϕ⟩Ωb = ⟨GA,qϕ, L∗A,qϕ⟩Ωb + B.T. = B.T. = 0,

where the boundary terms vanish. Hence, ϕ = 0 almost everywhere.
For Eq. (4.32b), let ϕ ∈ C∞(Ωb) ∩ L2(Ωb) such that L∗A,qϕ = 0 and

⟨ϕ,G∗A,q Tr∗Cau ψ⟩ = 0.

for all ψ ∈ H−1/2(Γb) × H1/2(Γb). Hence, ⟨TrCauGA,qϕ, ψ⟩Γ = 0 for all ψ ∈ H−1/2(Γb) ×
H1/2(Γb). Now GA,qϕ solves the exterior boundary problem:

(−∆ − k2)GA,qϕ = 0, Ω \Ωb

GA,qϕ = 0, Γb

∂nGA,qϕ = 0, Γb

∂nGA,qϕ = BGA,qϕ, on ∂Ω.

By the unique continuation principle, GA,qϕ = 0 on Ω \ Ωb. Since GA,qϕ ∈ H2(Ω) by
elliptic regularity, we have ∂n,−GA,qϕ = 0 on Γb. Hence, as in the first case, ⟨ϕ, ϕ⟩Ωb = 0.
The claim follows by the Hahn-Banach theorem.

Furthermore, we need the following lemma on complex geometric optics solutions.

Lemma 4.22. Let γ ∈ R3 and assume that A, q satisfy the Eqs. (4.5a), (4.5b). Then for
each sufficiently small h > 0, there exists u1, u2 ∈ H such that

u1(x)u2(x) = exp(iγ · x)(1 + O(h1/2)).
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Proof. (Liu 2018, Proposition 2.5).

Now, we can formulate the central proposition of this section. The proof utilizes the
techniques presented in Hohage et al. (2020).

Proposition 4.23. Suppose that (A1, q1), (A2, q2) satisfy the Eqs. (4.5a) and (4.5b) and
k ∈ Σ. Assume that either Cbb

A1,q1,S 1
= Cbb

A2,q2,S 2
or CC

A1,q1,S 1
= CC

A2,q2,S 2
for S 1, S 2 ∈ L∞(Ω0).

Furthermore, suppose that A1, q1 and A2, q2 satisfy the gauge transformation (4.14) for
some ϕ ∈ W1,∞(Ω0,R). Then, we have the following identity: S 1 = S 2.

Proof. Since A1, q1 and A2, q2 satisfy the gauge transformation (4.14) with ϕ ∈ W1,∞(Ω0,R),
we have the equality:

Cbb
A2,q2,S 2

= TrbGA2,q2 Cov[s]2G
∗
A2,q2

Tr∗b = TrbGA1,q1 exp(−iϕ) Cov[s]2 exp(iϕ)G∗A1,q1
Tr∗b

= TrbGA1,q1 Cov[s]2G
∗
A1,q1

Tr∗b = C
bb
A1,q1,S 2

.

Hence, we have

TrbGA1,q1 Cov[s]1G
∗
A1,q1

Tr∗b = C
bb
A1,q1,S 1

= Cbb
A2,q2,S 2

= Cbb
A1,q1,S 2

= TrbGA1,q1 Cov[s]2G
∗
A1,q1

Tr∗b
⇔ 0 = TrbGA1,q1(Cov[s]1 − Cov[s]2)G∗A1,q1

Tr∗b = TrbGA1,q1(MS 1 − MS 2)G
∗
A1,q1

Tr∗b .

Therefore, we have for every v1, v2 ∈ H−1/2(Γb):

0 = ⟨TrbGA1,q1 MS 1−S 2G
∗
A1,q1

Tr∗b v1, v2⟩L2(Γb) = ⟨MS 1−S 2G
∗
A1,q1

Tr∗b v1,G
∗
A1,q1

Tr∗ v2⟩L2(Ωb).

It follows that ⟨(S 1 − S 2)w1,w2⟩L2(Ωb) = 0 for each w1,w2 ∈ range(G∗A1,q1
Tr∗b).

Similarly, in the case of partial data, ⟨(S 1 − S 2)w1,w2⟩L2(Ω0) = 0 for each w1,w2 ∈

range(G∗A1,q1
Tr∗Cau).

Let us fix γ ∈ Rd. By Lemmas 4.21 and 4.22, we find for every sufficiently small
h > 0 two functions w1,w2 ∈ clL2(Ωb) range(G∗A1,q1

Tr∗b) such that

0 = ⟨(S 1 − S 2)u1, u2⟩ =

∫
Ω0

exp(iγ · x) (S 1(x) − S 2(x)) dx + o(h1/2).

After taking the limit h→ 0, we observe that the Fourier transform of (S 1 − S 2) vanishes.
Hence, S 1 = S 2.

4.5.4 Proof of the theorems
We cite the following proposition (Liu 2018, Theorem 1.1):

Proposition 4.24. Suppose that Ω ⊂ R3 is a bounded open domain with open boundary
and A1,A2 ∈ (H1 ∩ L∞)(Ω,R3), q1, q2 ∈ L∞(Ω,C) such that the Assumptions 4.1 and
4.2 are satisfied. Suppose that ΛA1,q1 = ΛA2,q2 , then exists ϕ ∈ W1,∞(Ω,C) such that
A1 = A2 + ∇ϕ and q1 = q2 + 2A2 · ∇ϕ + (∇ϕ)2.

Now, all previous results can be combined to prove the theorems.
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Proof. Proof of Theorems 4.3 and 4.4
Assume that Ci, j

A1,q1,S 1
= C

i, j
A2,q2,S 2

or CCau
A1,q1,S 1

= CCau
A2,q2,S 2

. It follows by Corollary 4.14 that
TrbGA1,q1 Tr∗b = TrbGA2,q2 Tr∗b in both cases. By Lemma 4.20, it follows that ΛA1,q1 =

ΛA2,q2 . Hence, by Proposition 4.24, there exists ϕ ∈ W1,∞(Ω,C) such that A1 = A2 + ∇ϕ
and q1 = q2 + 2A2 · ∇ϕ + (∇ϕ)2. By Proposition 4.23, we have the identity S 1 = S 2.

In helioseismology, the gauge transformation can be resolved as follows:

Corollary 4.25. Let us assume that γ1, γ2 satisfy the Eq. (4.20) and that the flow field
is mass-conserved (Assumption 4.19). Furthermore, let ρi, ci, γi,ui, i ∈ {1, 2} satisfy As-
sumptions 4.17 and 4.18 and (A1, q1), (A2, q2) satisfy Eq. (4.14) for two different frequen-
cies. Then, we have the identity: (ρ1, c1, γ1,u1) = (ρ2, c2, γ2,u2).

Proof. Recall from Eq. (4.16) that

A = ω
1
c2 u, q = −k2 −

ω2 + 2iγω
c2 + ρ1/2∆(ρ−1/2).

The gauge transformation (4.14) takes the form:

q1 − q2 = 2A2 · ∇ϕ + (∇ϕ)2 = 2A2 · (A1 − A2) + (A1 − A2)2 = |A1|
2 − |A2|

2. (4.33)

The imaginary part leads to:

γ1

c2
1

−
γ2

c2
2

= 0.

After inserting the model of γ (see Eq. (4.20)), we observe that:(
ω

ω0

)ζ1(r)−ζ2(r)

=
c2

1(r)
c2

2(r)
.

Since the right-hand side is independent of ω, it follows ζ1 = ζ2. Therefore, we have
c1 = c2. The real part of (4.33) holds:

ω2 − ρ1/2
1 ∆(ρ−1/2

1 )

c2
1

−
ω2 − ρ1/2

2 ∆(ρ−1/2
2 )

c2
2

= ω2 |u1|
2

c4
1

− ω2 |u2|
2

c4
2

. (4.34)

Since Eq. (4.34) holds for two different frequencies, it follows

ρ1/2
1 ∆(ρ−1/2

1 )

c2
1

=
ρ1/2

2 ∆(ρ−1/2
2 )

c2
2

(4.35)

ω2

c2
1

−
ω2

c2
2

= ω2 |u1|
2

c4
1

− ω2 |u2|
2

c4
2

. (4.36)

Eq. (4.35) shows that ρ1/2
1 ∆(ρ−1/2

1 ) = ρ1/2
2 ∆(ρ−1/2

2 ). Let f := ρ−1/2
2 − ρ−1/2

1 ∈ W2,∞(Ω). It
follows:

∆ f = ∆(ρ−1/2
2 ) − ∆(ρ−1/2

1 ) = ρ−1/2
2 ρ1/2

1 ∆(ρ−1/2
1 ) − ∆(ρ−1/2

1 ) = ρ1/2
1 f∆(ρ−1/2

1 ).
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Thus,
[
∆ − ρ1/2

1 ∆(ρ−1/2
1 )

]
f = 0. The Assumptions 4.17 and 4.18 imply that ∂n f |∂Ω0 =

f |∂Ω0 = 0. By the unique continuation principle, it follows f = 0. Therefore, ρ1 = ρ2.
Furthermore, we have from the gauge transformation (4.14) the relation u1−u2 = c2∇χ

for some χ ∈ W2,∞(Ω,R). Conservation of mass leads to∇·
(
ρc2∇χ

)
= ∇·(ρu1)−∇·(ρu2) =

0. Furthermore, (u · n)|∂Ω0 = 0 implies ∂nχ = 0. Hence, χ solves the weak problem:∫
Ω0

ρc2∇χ · ∇ψ dx = 0,

for all ψ ∈ H1(Ω0). After choosing ψ = χ, it follows ∇χ = 0 almost everywhere and
therefore also u1 = u2.

Theorem 4.6 follows from Theorems 4.3, 4.4 and Corollary 4.25.

4.6 Stability
For the source problem, a logarithmic stability result can be formulated. For notational
simplicity, we introduce ∥T∥∗ := ∥T∥H−1/2(Γb)→H1/2(Γb). The stability result takes the form:

Lemma 4.26. Suppose that A, q satisfy the Eqs. (4.5a) and (4.5b). Furthermore, suppose
that there exists an upper bound ∥S 1∥L∞(Ω0), ∥S 2∥L∞(Ω0) ≤ M. Then

∥S 1 − S 2∥H−1(Ω0) ≤ ω(∥CA,q,S 1 − CA,q,S 2∥∗),

where ω(t) = C| log(t)|−2/3 for t ∈ [0, 1),C > 1.

Proof. Note that for u1, u2 ∈ range(G∗A,q Tr∗b), we have

⟨(S 1 − S 2)u1, u2⟩Ω0 = ⟨TrbGA,q(S 1 − S 2)G∗A,q Tr∗b v1, v2⟩Γb

= ⟨(CA,q,S 1 − CA,q,S 2)S
−1
A,q Trb u1,S

−1
A,q Trb u2⟩Γb ,

where we have used the identity

u1 = G
∗
A,q Tr∗b v1 ⇔ v1 = S

−1
A,q Trb u1.

It follows from Lemma 4.19 that S−1
A,q ∈ L

(
H1/2(Γb),H−1/2(Γb)

)
is well-defined. We have

the following bound∣∣∣∣∣∣
∫
Ω0

(S 1 − S 2)u1u2 dx
∣∣∣∣∣∣

≤ ∥CA,q,S 1 − CA,q,S 2∥∗∥S
−1
A,q∥

2
L(H1/2(Γb),H−1/2(Γb))∥Trb u1∥H1/2(Γb)∥Trb u2∥H1/2(Γb)

≤ ∥CA,q,S 1 − CA,q,S 2∥∗∥S
−1
A,q∥

2
L(H1/2(Γb),H−1/2(Γb))∥u1∥H1(Ωb)∥u2∥H1(Ωb).

After inserting Lemma 4.22, we obtain∣∣∣∣∣∫
Ω

(S 1 − S 2) exp(ik · x) dx
∣∣∣∣∣ ≤ ∣∣∣∣∣∫

Ω

(S 1 − S 2)u1u2 dx
∣∣∣∣∣ + ∣∣∣∣∣∫

Ω

(S 1 − S 2)R dx
∣∣∣∣∣ .
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Note that ∥u1∥L2(Ωb), ∥u2∥L2(Ωb) ≤ C exp(Ct) for some constant C > 0. Moreover, it follows
from the complex geometric optics solutions in Lemma 4.22 that,

∥u∥H1(Ωb) ≤ C
√

t2 + |k|2 exp(Ct).

Furthermore, we have ∥R∥L2(Ωb) ≤ Ct−1/2. Since S 1, S 2 are bounded in L∞(Ω0), it follows
that: ∣∣∣∣∣∫

Ω

(S 1 − S 2) exp(ik · x) dx
∣∣∣∣∣2 ≤ C∥CA,q,S 1 − CA,q,S 2∥

2
∗(t

2 + |k|2) exp(Ct) +Ct−1.

We bound S 1 − S 2 by a cutoff in Fourier space:

∥S 1 − S 2∥
2
H−1(Ω0) ≤

∫
|k|<ρ
|F (S 1 − S 2)(k)|2(1 + |k|2)−1 dk +

∫
|k|≥ρ
|F (S 1 − S 2)(k)|2(1 + |k|2)−1 dk

≤

∫
|k|<ρ

C
(
exp(Ct)∥CA,q,S 1 − CA,q,S 2∥

2
∗

(t2 + |k|2)
1 + |k|2

+ t−1 1
1 + |k|2

)
dk +

C
1 + ρ2

≤ Cρ
(
exp(Ct)(t2 + ρ2)∥CA,q,S 1 − CA,q,S 2∥

2
∗ + t−1

)
+

C
ρ2 ,

where we have used that |F (S 1 − S 2)(k)| ≤ ∥S 1 − S 2∥L1(Ω0) ≤ 2M|Ω0|.
We choose ρ = t1/3 and t = C−1| ln(∥CA,q,S 1 − CA,q,S 2∥∗)|. For notational simplicity, we

use s := ∥CA,q,S 1 − CA,q,S 2∥∗. Note that exp(Ct) = s−1, which leads to

∥S 1 − S 2∥
2
H−1(Ω0) ≤ C| ln(s)|−2/3 +C| ln(s)|s +C| ln(s)|7/3s

= C| ln(s)|−2/3(1 + s| ln(s)|−5/3 + s| ln(s)|3).

Therefore, we obtain for s < 1 that ∥S 1 − S 2∥
2
H−1(Ω0) ≤ C| ln(s)|−2/3 for some constant

C > 0.

4.7 Numerical tests
In the previous sections, we have established uniqueness results for the passive imaging
problem in helioseismology. In this section, we provide tests on numerical toy examples
of the previous uniqueness results. Throughout the numerical tests in the following, we
use the exterior Dirichlet-to-Neumann map as the boundary condition. For modeling
purposes, we consider the noise as Gaussian white noise with a predefined noise level for
simplicity. It’s worth noting that noise in helioseismology is often better represented as
realization noise (e.g. Fournier et al. 2014).

4.7.1 Inverse parameter problem
In this section, we investigate the uniqueness of the inversion problem defined as:

c ∈ L∞(Ω0)→ C[c] = Tra,bℑ(Gq(c)) Tr∗a,b,

where we assume a vanishing flow field. As discussed in Lemma 4.8, this configuration is
integrated into our previous uniqueness proofs. Since the flow field is vanishing, the gauge
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transformation can be resolved using only one frequency, set to ω = 3 mHz in our case.
Our tests employ a uniform background medium with a sound speed of c = 350 km s−1

and a damping rate of γ = 0.001. This configuration ensures direct comparability with the
inversions presented in Müller et al. (2024). We select grid spacing such that it divides the
wavelength into 7 grid points locally. Using the resolution equation and the sparseness
of the geometric setup, we can compute the Green’s function with significantly reduced
computational costs, as explained in Sect. 4.9.1. We expect that this simplified setup is
sufficient for our studies in a uniform medium.

To handle the substantial computational requirements and memory demands, we em-
ploy the "iterative helioseismic holography technique, which is comprehensively explained
in Müller et al. (2024). While primarily designed for applications in helioseismology, this
method can be adapted to general passive imaging problems. The fundamental concept
involves the reordering of the local correlation and the back-propagation of the wave-
field, effectively bypassing the need for computing the surface cross-correlation. The
inversion algorithm can be understood as a specialized variation of conventional iterative
Gauss-Newton methods, incorporating inner conjugate gradient descent. We employ the
discrepancy principle as the stopping rule.

According to Theorem 4.3, we expect uniqueness in three-dimensional medium. Fur-
thermore, the proofs in Sects. 4.5.1 and 4.5.2 are independent of the dimension. There-
fore, in the case of a two-dimensional medium, we can follow a similar approach, leading
to ΛA1,q1 = ΛA2,q2 . The uniqueness in this two-dimensional context can be established by
referring to (Bukhgeim 2008, Theorem 1). Consequently, we also expect uniqueness in
two dimensions.

In Figure 4.2 and Figure 4.3, we present toy inversions conducted on a source region
spanning [0.2,R⊙, 0.7,R⊙]2 and [0.35,R⊙, 0.55,R⊙]3, respectively. These inversions were
performed with a fixed noise level of 10−5. When assessed visually, there is no discernible
difference between the input data and the reconstruction.

In addition to addressing the issue of uniqueness, investigating the stability of the in-
verse problem is of great importance. Figure 4.4 shows the algorithm’s convergence for
varying noise levels. The results from these numerical simulations suggest a logarith-
mic stability within a specific range. Anomalies observed at lower noise levels may be
attributed to potential numerical inaccuracies.

4.7.2 Inverse source problem
In this section, we conduct numerical tests to assess the uniqueness and stability of the
following inverse source problem:

S ∈ L∞(Ω0)→ C[S ] = TrbGA,qMSG
∗
A,q Tr∗b .

In our numerical testing, we assume a vanishing flow field. The inversion is performed
using a Tikhonov inversion scheme, with the regularization parameter chosen based on
the discrepancy principle. Unlike the inversions performed in Sec. 4.7.1, it is sufficient to
compute the Green’s function once, and no iteration is required. According to Proposi-
tion 4.23, we anticipate uniqueness for the inverse source problem.

In Figure 4.5, we present the inversion results for a source strength with compact sup-
port, where supp S ∈ [0.2,R⊙, 0.4,R⊙]3, within the computational domain Ω = B(0,R⊙)
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Figure 4.2: Exemplary inversion result for two-dimensional sound speed inversion, con-
sidering a noise level of 10−5 at 3 mHz. Here, we assume that the damping rate and the
density are constant and perfectly known. Furthermore, we assume a vanishing flow field.

Figure 4.3: Exemplary inversion result for three-dimensional sound speed inversion, con-
sidering a noise level of 10−5 at 3 mHz. Here, we assume that the damping rate and the
density are constant and perfectly known. Furthermore, we assume a vanishing flow field.
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Figure 4.4: We present numerical tests for the convergence rate for the inversion of a
sound speed perturbation in uniform 2D-medium and 3D-medium. The inversions are
stopped with the discrepancy principle.

in a solar-like background. In this study, we add Gaussian noise with a predefined noise
level of 0.01. The inversion process is carried out using the "Fast Iterative Shrinkage-
Thresholding Algorithm" (FISTA) (Beck and Teboulle 2009), with the discrepancy prin-
ciple employed as the stopping rule. Notably, k < R>0 for this example. However, the
inverse source problem does not rely on this assumption.

The reconstruction quality remains high even in the presence of noisy data. This
outcome serves to confirm the uniqueness result for extended sources within the interior.

Furthermore, we conducted stability tests for the inverse source problem in both
two and three dimensions. By Lemma 4.26, we expect logarithmic stability in three-
dimensional media. In the left panel of Figure 4.6, we present the source strength inver-
sions in a two-dimensional uniform medium, similar to the uniform medium discussed
in Sect. 4.7.1, whereas in the right panel, we present the source strength inversions in a
three-dimensional solar-like medium. In these scenarios, the Green’s function is analyti-
cally known and given by:

G(x, y) = H1
0(k|x − y|), d = 2,

G(x, y =
exp(ik|x − y|)

4π|x − y|
, d = 3.

Stability results typically can be utilized to establish a variational source condition
(e.g. Hohage and Weidling 2015). This condition leads to logarithmic convergence rates
for the iterative inversion process. The inversion results presented in Figure 4.6 align with
the hypothesis that the studied passive source problem exhibits logarithmic stability.

While our uniqueness and stability proofs primarily rely on complex geometric optics
solutions constructed in three dimensions, the numerical examples suggest that unique-
ness and logarithmic stability can also be established in two dimensions.
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Figure 4.5: Inversions for the source strength in a spherically symmetric solar-like back-
ground at 3 mHz. We have assumed Gaussian noise with a noise level of 0.01.

Figure 4.6: Numerical tests for the inversion of source strength in two-dimensional uni-
form medium without advection term and three-dimensional solar-like medium without
advection term.

It is worth noting that similar regularity outcomes have been attained for Cauchy
data through quantitative unique continuation techniques (as demonstrated in Alessan-
drini et al. 2009), as well as for partial data scenarios (as explored in Rüland and Salo
2018).

4.8 Conclusion

In this manuscript, we have explored the passive imaging problem, which arises in helio-
seismology and finds applications in various other fields. We have established, subject to
certain assumptions regarding acoustic sources on the surface, the uniqueness of the vec-
tor and scalar potentials, as well as the extended source strengths assuming measurements
at two distinct boundaries that encompass the parameter’s support and two frequencies.
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A fundamental assumption in our work is a specific source covariance distribution
characterized by sources located at the boundary. This assumption encompasses the spe-
cific scenario of deducing interior parameters from knowledge of the imaginary part of
the Green’s function on a particular surface. The uniqueness result presented here sur-
passes previous findings by Agaltsov et al. (2018) in that the uniqueness proofs are global
and extend to flow fields. It also goes beyond the results in Agaltsov et al. (2020) since
no spherical symmetry assumptions are required. Moreover, the source strength can be
incorporated into the model as an additional free parameter and is uniquely determined
simultaneously.

In the field of helioseismology, the limited availability of information on the far side of
the Sun due to observational constraints makes it critical to investigate uniqueness results
when dealing with partial data. Adapting our proof to this scenario is not a straightfor-
ward task since there is no direct analogue of Lemma 4.11 for partial data. However, as
discussed in Lemma 4.12, we can establish similar results by assuming measurements of
the Cauchy trace instead of measurements at two distinct heights. This assumption is in
line with the approach used in Porter-Bojarski holography, as seen in works like Yang
(2018). Typically, the Neumann trace can be approximated by measurements taken at
different heights.

Furthermore, we have demonstrated uniqueness for L∞ sources in the presence of
random potential q and advection term A. This represents a significant advancement
over the findings presented in Hohage et al. (2020), as we consider general second-order
elliptic operators in our analysis.

A notable limitation of our method stems from the assumptions surrounding the source
covariance at the computational boundary. Our future objective involves establishing
analogous uniqueness results for scenarios featuring arbitrary source covariance. We ex-
pect that these proofs will necessitate the utilization of complex geometric optics solutions
and Carleman estimates similar to this work. However, we leave this problem for future
research.

The numerical examples support the analytical results. In principle, we can invert
the sound speed and source strength in both, a two-dimensional and three-dimensional
medium.

Additionally, we have obtained stability results for the inverse source problem by
employing cutoffs in Fourier domain. We have tested the stability in a uniform medium,
and the numerical results corroborate the theoretical findings. Hence, it is reasonable to
expect that comparable stability results can be attained for a two-dimensional medium.

An open question is the stability of the studied inverse parameter problem. The nu-
merical tests support the hypothesis that there is logarithmic stability. This question will
be addressed in future work.
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4.9 Appendix

4.9.1 Computation of Green’s function for small supports
The volume potential operator in a perturbed background medium can be computed by a
resolution equation:

GA,q = G0(Id+(LA,q − L0)G0)−1,

where L0,G0 are the differential operator and volume potential operator for A, q = 0. We
assume that L− L0 =: δL is supported on small domains. In a finite difference setting, the
volume potential operator takes the form:

(GA,qψ)i =

N∑
j=1

G
i, j
A,qdV jψ j,

where dV j describes the volume element. Here, we have to pay additional attention to
the singularity of the Green’s function. The integral at the singularity at x = y is approx-
imated using a finite number of spherical harmonics coefficients. Alternatively, in the
case of a uniform medium, the integrals at the singularity can be performed analytically.
In the following, we use the indices s, s̄ for the supported and not supported region and
decompose the unperturbed volume potential operator in the form:

G0 =

(
Gss Gs,s̄

Gs̄,s Gs̄,s̄

)
.

Let δL := LA,q − L0. It follows that:

(Id+δLG0) =
(
Idss +δLGss δLGss̄

0 Id f̄ , f̄

)
.

We get the inverse by the Schur complement:

(Id+δLL−1
0 )−1

=

(
(Idss +δLGss)−1 −(Idss +δLGss)−1δLGss̄

0 Ids̄,s̄

)
.

Therefore, it suffices to find the inverse of (Idss +δLGss)−1.

4.9.2 Computation of Green’s function for solar background
In this section, we sketch the computation of the Green’s function in a spherically sym-
metric solar background medium. Because of the spherical symmetry of the problem, the
Green’s function can be expressed using the modal expansion:

Gq(r1, r2) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Gq,ℓ(r1, r2)Yℓm(r̂1)Yℓm(r̂2)

Gq,ℓ(r1, r2) =
−H(r1 − r2)ψℓ(r1)ϕℓ(r2) − H(r1 − r2)ψℓ(r1)ϕℓ(r2)

Wℓ(r2)
,
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where H is the Heaviside function, Wℓ(r) := W
[
ψℓ(r), ϕℓ(r)

]
is the Wronskian and ϕl, ψl

are solutions to the one-dimensional differential equation:

(−∂rr2∂r + q(r)r2 − k2r2 + ℓ(ℓ + 1))ψℓ(r) = 0 (4.37a)

(−∂rr2∂r + q(r)r2 − k2r2 + ℓ(ℓ + 1))ϕℓ(r) = 0, (4.37b)

with lim
r→0

r−ℓϕℓ(r) = 0 and ∂nϕℓ(r) = ikℓψℓ(r). Since ψℓ, ϕℓ are linearly independent, it
follows Wℓ , 0 almost everywhere.

The interior parameters (ρ, c, γ) follow the solar model S (Christensen-Dalsgaard et al.
1996) and are smoothly extended by a constant sound speed and exponentially decaying
density in the solar atmosphere. The damping rate can be estimated by the Full Width at
Half Maximum of solar modes (e.g. Korzennik et al. 2013, Larson and Schou 2015). We
assume that the wave attenuation below the acoustic cutoff frequency follows the power
law:

γ(r, ω) = γ0

(
|ω|

ω0

)5.77

,

where ω0/2π = 3 mHz and γ0 = 4.29 µHz. We assume a constant damping rate for
frequencies above the solar acoustic cutoff frequency.

We solve the Eq. (4.37) on a grid with a discretization of 10 points per local wave-
length using the finite element software Ngsolve (Schoeberl 2014). At the computational
boundary, we use an atmospheric boundary condition, which approximates the Sommer-
feld boundary condition by solving the wave equation in the exterior (see Fournier et al.
2018, for more details). For a detailed description of the implementation and the solution
of the forward model, we refer to Barucq et al. (2018) and Chabassier and Duruflé (2016).
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5.1 Conclusions
In this work, we have introduced iterative helioseismic holography and discussed appli-
cations in helioseismology. This method combines well-studied iterative regularization
methods with helioseismic holography and combines the advantages of both approaches.
In particular, iterative helioseismic holography is superior to traditional helioseismology
in terms of:

• Nonlinear inversions Because of the iterative setup, it is possible to tackle nonlin-
ear problems. This is important for strong perturbations like the solar differential
rotation or convection. We have validated on synthetics that iterative helioseismic
holography can improve current inversion results for solar differential rotation and
meridional circulation.

• Using the whole cross-correlation data Iterative helioseismic holography was de-
signed to use the entire cross-correlation data at the solar surface without storing
the five-dimensional data set. This can be achieved by changing the order of lo-
cal correlation and holographic back-propagation. This technique is not restricted
to helioseismology and can be applied to further passive imaging problems. Since
we use the whole amount of seismic information, iterative helioseismic holography
allows measurements of new quantities like the antisymmetric part of solar differ-
ential rotation.

• Spatial resolution Helioseismic holography allows imaging at the lower resolution
limit (half of local wavelength). Traditional helioseismic approaches usually have
broader sensitivity kernels. Therefore, helioseismic holography enables the recon-
struction of smaller objects than traditional helioseismology. For example, iterative
helioseismic holography can be used to study the bottom of the solar convection
zone.

• Frequency averaging Regarding the signal-to-noise ratio and the numerical toy
examples, we have observed that proper frequency weights significantly improve
the holographic images. This frequency averaging can be achieved by likelihood
modeling, which enhances the inversion results enormously. It is an exciting finding
that inversions using only the data noise instead of the correlation between noise
terms cannot reconstruct large-scale flows properly.

The method’s major drawback is the enormous computational costs necessary to com-
pute the forward model. In this work, we have presented a scheme which successfully
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speeded up the forward model for large-scale flows. The scheme is based on analytical
computations of the angular part and is therefore of analytic exactness. On the one hand,
an increasing number of frequencies improves the inversion results. On the other hand,
the computational costs scale linearly with the number of frequencies. Therefore, we have
to balance these two effects for inversions.

Moreover, we have established the unique identifiability of the parameters ρ, c, γ,u,
and the volumetric source strength, based on measurements at two observation heights and
two frequencies above the solar acoustic cutoff frequency. This achievement represents an
advancement over previous uniqueness results in helioseismology, as the source strength
can be included as an additional free parameter under certain conditions. Additionally,
our approach allows for the incorporation of wave attenuation and flow fields. Notably,
the significant special case in which the surface covariance aligns with the imaginary part
of the Green’s function can be accommodated within our framework.

5.2 Outlook

5.2.1 Applications of iterative helioseismic holography

Iterative helioseismic holography is a new technique in helioseismic inversions with some
further fascinating applications in solar physics. Possible applications are summarized in
the following:

• Improved spatial resolution A central finding of this thesis is that internal flows
can be mapped by iterative helioseismic holography at the spatial resolution limit
with a high signal-to-noise ratio. In future work, iterative holography can improve
inversions for the solar differential rotation and solar meridional circulation. The
understanding plays a crucial role in understanding the solar magnetic activity cy-
cle.

• Time dependence The time evolution of internal flows is typically examined by di-
viding the time series into different time intervals and performing inversions on each
of these time intervals. In general, the time dependence of solar parameters can be
measured in terms of cross-correlations ψ(r1, ω1)ψ(r2, ω2) with ω2 = ω1 + δω. The
computational costs for computing the frequency-dependent hologram intensity are
still manageable. In future, we plan to use iterative helioseismic holography to map
the time dependence.

• Wave speed perturbations Besides the inversions for internal flow fields, we can
use iterative helioseismic holography to map wave speed variations in the solar in-
terior. Since a three-dimensional forward solver (e.g. the Hawen solver Faucher
2021) is currently not practical to use in inversions, we are restricted to inversions
for small regions. This way, we can study wave speed variations in active regions.
These inversions could be matched with well-known far-side imaging based on
magnetograms. A further important question is the time dependence of the sound
speed at the bottom of the convection zone during the solar cycle caused by the
poloidal magnetic field.
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• Supergranulation The method of iterative helioseismic holography can be used for
inversions of supergranulation. With reasonable accuracy, supergranulation can be
investigated within a Cartesian box. It is well-known from time-distance helioseis-
mology that the sensitivity kernels only depend on the difference r − r′ (e.g. Gizon
and Birch 2002). Therefore, the inverse problem can be separated into Fourier coef-
ficients on the xy-plane of the Cartesian grid. Furthermore, it was shown by Gizon
and Birch (2002) that the first Born approximation is accurate enough to model the
effect of supergranules on the surface cross-correlation. The same separability holds
also in the case of the holographic image on a spherically symmetric background.
Therefore, supergranules are an application to iterative helioseismic holography,
which needs a smaller amount of computational power than the presented inver-
sions on meridional flows and differential rotation. Furthermore, the conservation
of mass constraints can be naturally incorporated in the inversion procedure (e.g.
Fournier et al. 2016).

• Inversions for multiple parameters In the usual approach of local helioseismol-
ogy, one only inverts for one parameter. This is justified as long as the parameters
act independently or one of the parameters is dominant compared to the other ones.
This assumption is usually not satisfied since, for example, sound speed perturba-
tions and internal flow fields are correlated (e.g. Svanda et al. 2013). This leads to
a bias in the inversions. Korda and Švanda (2019, 2021) used a SOLA inversion
technique with regularization on the crosstalk between the inversions for sound
speed perturbations and flow fields. These methods rely on time-distance helioseis-
mology. Motivated by the distinctness of different flow fields in the surface cross-
correlation, there is some hope that the whole cross-correlation data minimizes the
bias between the single inversions.

• Fixing the damping rate Throughout this dissertation, we have assumed that the
damping rate is independent of the location in the solar interior. This assumption
is unrealistic, as we expect stronger wave attenuation near the solar surface. The
power spectrum can fix the spherical symmetric damping rate. Since the damping
rate is a strong perturbation in the solar interior and there is no reasonable initial
guess to our knowledge, this inverse problem needs an iterative inversion, such as
iterative helioseismic holography. Furthermore, the correct wave damping is an
important intermediate step for more complex inversions using helioseismic holog-
raphy, as the damping rate substantially impacts the amplitudes and the phase of the
Green’s function.

• Further quantitative passive imaging problems The idea of changing the order
of local cross-correlation and back-propagation can be adapted to further quanti-
tative passive imaging problems. Furthermore, an extension of iterative helioseis-
mic holography to vectorial wave equations, including more complicated physics,
seems possible. This would allow the study of inertial modes and the incorporation
of magnetic fields into the forward problem.
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5.2.2 Uniqueness and stability
We have proved the uniqueness of a passive imaging problem in local helioseismology
(see Chapter 4). This result allows a proper interpretation of the Dopplergram data. In
comparison to this, there are no similar results for time-distance helioseismology. We
expect that reducing the total cross-correlation data to few travel times does not allow
similar uniqueness results.
Besides the uniqueness, it is important for applications in solar physics to study the sta-
bility against noise and systematics. The robustness against systematics like the center-
to-limb effect or the effect of magnetic fields has not been studied yet and is left for future
work. These tests are important to validate iterative helioseismic holography as a liable
inversion technique in solar physics.
Furthermore, our inversion results rely on the assumption that the surface cross-correlation
equals the imaginary part of the Green’s function. This relation comes from sources of
oscillations excited on an artificial boundary. This assumption is usually used in helio-
seismology since it allows an interpretation of the measured solar power spectrum. It is
unknown if one can obtain similar uniqueness results for general source distributions. In
order to tackle problems with general source distributions, we have to properly extend
complex geometric optics solutions to fourth-order partial differential equations.

In the future, our plans include addressing the stability, convergence rates, and con-
vexity of iterative helioseismic holography. To validate iterative holography from a the-
oretical standpoint, it is crucial to study tangential cone conditions or variational source
conditions.

5.2.3 Algorithmic improvements
Some problems of iterative helioseismology related to the computational costs are solved
due to the symmetry of the forward problem of large-scale flows. For more general inver-
sion problems, there are further approaches to deal with the computational costs.

• Stochastic gradient descent The largest part of the computational time is con-
tained in the decomposition of Green’s function and the forward-backward kernels
describing the operator C′[qn]∗C′[qn]. In the case of large-scale flows, these kernels
are sparse and can be computed efficiently using the spherical harmonics decom-
position. Nevertheless, this high degree of symmetry is a property of large-scale
flows and cannot be adopted similarly to further problems like the inversion of su-
pergranulation flows or sound speed perturbations in sunspot models. For such
problems, we have to replace the computation of the sensitivity kernel with ran-
domized evaluations of the operator C′[qn]∗C′[qn]. The effect of using stochastic
gradient methods, commonly known in the context of machine learning, should be
studied for iterative helioseismology. Recently, it was implemented in the context of
geoseismology (e.g. van Herwaarden et al. 2020). Furthermore, the convergence of
stochastic gradient descent methods within the framework of regularization meth-
ods has to be studied (extending the first results from Jin and Lu 2019).

• Approximation of likelihood modelling A vital result of this thesis is that likeli-
hood modeling appears to be the optimal choice of norm in the data space. Never-
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theless, the cross-covariance of Gaussian cross-correlation data consists of fourth-
order correlations, making it impractical to invert this correlation data. Further-
more, likelihood modeling becomes even more complicated due to the leakage ef-
fect. In the case of large-scale flows, we have solved the problem with a small-rank
approximation to the exact likelihood function. In future work, small-rank approx-
imations to further helioseismic applications should be studied.

• Choice of frequency weights The inversion process is parallelized over frequency.
The expression for hologram intensity can be written as:

E
[
δIα,β(x)

]
=

∑
ω

W(ω)δIα,β(x, ω), (5.1)

where W(ω) represents frequency weights. We have complete freedom in choos-
ing the weights W. Throughout this thesis, we have employed constant weighting
and weights derived from the singular value decomposition of sensitivity kernels.
Another potential approach is to define weights within the context of optimal de-
sign and Bayesian inverse problems, considering Gaussian priors and data noise.
This concept parallels principal component analysis to enhance signal-to-noise ra-
tio at specific locations. The distinction lies in the global optimization strategy. In
subsequent studies, our focus shifts towards optimizing the selection of frequency
weights.

5.3 Preliminary results on real data
In this section, we give some preliminary inversion results for solar differential rotation,
considering six years of HMI data spanning from January 1, 2014, to December 31, 2019.
We focus on the antisymmetric part of solar differential rotation, which cannot be mea-
sured with traditional global helioseismology. It has been demonstrated in various studies
that solar activity is not symmetric between the northern and southern hemispheres (e.g.
Gurgenashvili et al. 2017). This asymmetry has been observed in terms of solar flares (e.g.
Joshi and Joshi 2004, Chang 2009, Mendoza and Velasco-Herrera 2011), solar filaments
(e.g. Li et al. 2010, Kong et al. 2015), magnetic fluxes (e.g. Vernova et al. 2014), sunspot
numbers (e.g. Temmer et al. 2006), and sunspot areas (e.g. Deng et al. 2016). Moreover,
an asymmetry in the rotation rate has been suggested in several studies (e.g. Bhatt et al.
2017). We invert the well-known symmetric differential rotation profile as a preliminary
step. This will give us some insights into the systematics of iterative holography.

5.3.1 Data preparation
In the framework of iterative helioseismic holography, we utilize the wavefield repre-
sented as ψ = ρ1/2c2∇ · ξ, where ξ denotes the wave displacement vector. The Doppler-
grams can be expressed in the following form: ψobs = ILOS · ∂tξ, where ILOS represents
the line-of-sight vector. For medium-range harmonic degrees, the modes predominantly
exhibit radial propagation (e.g. Christensen-Dalsgaard 2003), allowing us to approximate
the wavefield in the frequency domain. We perform the correction for the inclination
angle as a priori step.
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We utilize Dopplergrams obtained from HMI from January 1, 2014, to December 31,
2019, with a cadence of 45 seconds and segment the time series into daily chunks. These
HMI images are retrieved from the data series hmi.vw_v_45s. To ensure data quality,
we exclude days with more than 25 % bad images from the initial dataset, resulting in
a dataset spanning 2039 days. Additionally, we apply an apodization at 93 % of the so-
lar radius and subtract a one-hour moving average to correct for observer movements.
Given our interest in p-modes, we employ a Fourier transform and apply a high-pass
filter between 1.5 mHz and 2 mHz and a low-pass filter between 5 mHz and 5.5 mHz.
The high-pass filter effectively removes leakage from granulation and f-modes. Further-
more, we decompose the full-disk Dopplergrams into spherical harmonics for medium
ell-ranges (coefficients with ℓ < 300). Notably, this ℓ-range is bigger than the test inver-
sions on synthetics. Negative m values can be determined using negative frequencies and
the relation:

ψℓ−m(ω) = (−1)mψ∗ℓm(−ω).

We generate two separate data sets:

• For one data set, we track the data on the solar surface while accounting for solar
rotation. We achieve this by employing a fourth-order expansion of solar rotation
from Ulrich et al. (1988). This data set is used for calibrations.

• For the other data set, we do not track the solar rotation, and the data remains
uncorrected for rotation effects.

Finally, the Dopplergrams are projected to the eigenspace of the leakage matrix. In
this work, we approximate the leakage matrix by a scalar product of two spherical har-
monics over the measurement region.

5.3.2 Tuning the p-mode amplitudes
The imaginary part of Green’s function successfully describes the power spectrum regard-
ing eigenfrequencies and frequency shifts. Since helioseismic holography also makes use
of the envelope of the amplitudes of the correlation data, it is necessary to fix the ampli-
tudes. Here we consider the model:

P(ℓ, ω) =
Π(ω)A(ℓ)

2ℓ + 1

ℓ∑
m=−ℓ

∑
ℓ1,ℓ2,m̃

Lℓmℓ1m̃ℑG[ℓ1, ℓ2, m̃, ω]Lℓ2m̃
ℓm + background(ℓ, ω), (5.2)

where L describes the leakage matrix, and the background power is approximated with a
10th-order polynomial at fixed ω.

We approximate

Π(ω) =
maxℓ P(ℓ, ω)

maxℓ 1
2ℓ+1

∑ℓ
m=−ℓ

∑
ℓ1,ℓ2,m̃ Lℓmℓ1m̃ℑG[ℓ1, ℓ2, m̃, ω]Lℓ2m̃

ℓm

. (5.3)

To smooth the model of Π(ω), we take a running mean of [ω/2π − 0.05 mHz, ω/2π +
0.05 mHz]. After fixing Π(ω), we fit the factor A(ℓ) by a polynomial of degree 5 and
non-negativity constraint.
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Figure 5.1: Left panel: Comparison between the weights Π(ω) and a synthetic model.
The values for Π(ω) are computed with Eq. (5.3). The synthetic models follow Eq. (5.4).
Right panel: Comparison between the factor A[ℓ] with a polynomial fit of order 5 and a
non-negativity constraint.

In the following, we validate this calibration of the background noise and the ampli-
tudes in the data processing. As supposed by Stahn (2010) and Gizon et al. (2017), the
amplitudes in frequency space can be approximated by a Lorentzian centered at 3.3 mHz:

Π(ω) =
[
1 +

(
|ω| − ω0

Γ/2

)]−1

, (5.4)

whereω0/2π = 3.3 mHz and Γ/2π = 1.2 mHz. In the left panel of Figure 5.1, we compare
the synthetic frequency weights with the frequency weighting in the observed data. It
is visible that the synthetic model is broader than the observed model. However, it is
reasonable that a Lorentzian profile can describe the frequency weights.

In the right panel of Figure 5.1, we present the fit of A onto the observed power
spectrum. It is visible that the noise is maximal at small harmonic degrees.

Finally, we compare the observed power spectrum and the synthetically created power
spectrum at 3 mHz in Figure 5.2. The observed power spectrum and the forward model fit
qualitatively. Nevertheless, the amplitudes do not coincide, so further corrections could
be employed to enhance the quality.

Furthermore, the center-to-limb effect strongly influences the cross-correlation data.
However, to our knowledge, no model is available to account for the center-to-limb effect
in the phase of the cross-correlation. For the sake of these preliminary tests, we do not
correct for the center-to-limb effect.

5.3.3 Holographic image
We consider all harmonic degrees up to ℓ = 300 and all available azimuthal orders within
that range. Additionally, we initialize our inversion process using the rotation profile
from Larson and Schou (2018), which uses the hmi.vw_v_45s and observes a polar jet.
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Figure 5.2: Comparison of the observed power spectrum, the forward modeled power
spectrum, and the background noise at 3 mHz.

As suggested in Chapter 3, inversion for the antisymmetric part can be carried out in a
single iteration, allowing us to compute the sensitivity kernel in an a priori step.

In Figure 5.3, we present the holograms for differential rotation, comparing the ob-
served holograms with the input profile. We have divided the holograms by the diagonal
of the sensitivity kernel to obtain an approximation of the inversion. As per our analysis
in Chapter 3, one might expect that the reference hologram vanishes for odd harmonic
degrees. However, small changes are observed because the actual Dopplergrams are not
always supported in a rotationally symmetric area, leading to some degree of leakage
between modes (ℓ1,m1), (ℓ2,m2) with ℓ1 + ℓ2 being an odd number.

We decompose the solar differential rotation into spherical harmonics up to a maxi-
mum harmonic degree of 10 as follows:

Ω(r, θ) =
10∑
s=0

Ωs(r)Ps(cos θ),

where Ps represents the Legendre polynomials. The radial grid is chosen to be uniform
with finer spacing near the solar surface and at the bottom of the convection zone to cap-
ture the strong gradients near the tachocline and the near-surface shear layer, adding up
to 66 radial nodes. Additionally, we reduce the resolution below the solar convection
zone due to reduced sensitivity in that region. We focus on a frequency range of 2 mHz
to 4 mHz. Since the signal-to-noise ratio significantly decreases at higher frequencies,
especially above the acoustic cutoff frequency, it is reasonable to limit the analysis to this
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Figure 5.3: In this figure, we present the holograms averaged over the frequencies in the
range of 2-4 mHz and normalized by the diagonal of the sensitivity kernels. We present
the first 4 basis functions Ys,0.

frequency range (compare with Sect. 3.8.4). To ensure that each frequency contributes
equally, we apply appropriate frequency weighting, based on a principal component anal-
ysis.

5.3.4 Inversion results

We perform the inversions using likelihood modeling, as presented in Chapter 3. The
sensitivity kernels are shown in Figure 5.4. In the left panel, we present the dependence
of the sensitivity kernel on the harmonic degree and in the right panel the dependence on
the radius. The sensitivity kernels for symmetric components are roughly one scale larger
than the sensitivity for antisymmetric differential rotation. Furthermore, the kernels at
fixed target depths exhibit a dominance along the diagonal. The sensitivity kernels are
strongly decaying in the solar interior.

Similar to the synthetic tests conducted in Chapter 3, we employ second-order deriva-
tives as regularization terms. Given that the antisymmetric part of the differential rotation
is significantly smaller than the symmetric part, a single iteration from a reasonable ax-
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Figure 5.4: In this figure, we present the sensitivity kernel averaged in a frequency range
of 2-4 mHz. The sensitivity kernels are computed with likelihood modeling and decom-
posed in spherical harmonics basis.

isymmetric background model suffices. Throughout the inversion procedure, we assume a
latitude-independent rotation below 0.5 R⊙. This constraint is implemented by Lagrangian
multipliers. In Figure 5.5, we illustrate the inversion result for the symmetric part of dif-
ferential rotation, while in Figure 5.6, we present the rotation profile for the antisymmetric
component.

In terms of the holograms presented in Figure 5.3, noticeable discrepancies exist be-
tween the observed holograms and the initial guess. However, it is mandatory to conduct
further tests to ascertain whether these differences stem from systematics or are inherent
in the data itself.

For instance, as shown in Figure 5.2, quantitative discrepancies in the power spectrum
at 3 mHz are evident, which could potentially result from inaccuracies in the forward
modeling. Various systematics might explain this behavior. For instance, we have yet
to correct the center-to-limb effect and have not employed the special leakage matrix for
HMI. Furthermore, adjustments to the background model and amplitudes of the Green’s
function need to be made in a preliminary step. We have assumed a damping rate that is
independent of radial position, which does not align with reality.

In the case of the north-south symmetric component of the rotation profile, we de-
tect significant differences between our inversion and the global mode inversion near
0.90 − 0.95R⊙, while the other regions are similar. The origin of these differences will
be investigated in future work. Regarding the antisymmetric component of rotation, our
inversion points to a north-south asymmetry in the rotation rate above 50◦. Such asymme-
try is at the level of ±3 nHz, i.e. ±2% of the mean rotation rate. If confirmed, this is new
information about the Sun’s global dynamics, which is inaccessible to traditional p-mode
global helioseismology.

154



5.3 Preliminary results on real data

Figure 5.5: The symmetric rotation profile for 6 years of HMI data
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Figure 5.6: The antisymmetric rotation profile, inverted from 6 years of HMI data. Be-
cause of the assumption of latitude independent rotation below 0.5R⊙, we present only the
upper part of the solar rotation.
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