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1 Introduction

Magnetic fields are ubiquitous in the universe and can bedaunelestial bodies, galax-
ies, stars including our Sun and planets like the Earth oiteuDue to the fact that at
least in the Earth’s interior, temperatures are well abbeeGurie temperature, its mag-
netic field cannot result from permanent magnetisation. édeer, its time dependence
gives rise to the assumption, that the generation of the stagireld must be the result of
a very complex dynamical proceJis_(ﬂEILa.n.d_ELO_QtHLlQbZ). This is supported by the
fact that the ditusive time scale of most of the generated magnetic fields @hrahorter
than the life time of the respective objects. Today, it isegally accepted that the mag-
netohydrodynamic (MHD) dynamdtect is responsible for the magnetic field generation
in most stellar object@\)ﬁj 02). The idea is that themagfields can be sustained
by self-inductive processes of a moving electrically castohg fluid or plasma.
Most of the plasma flows are convection-driven by tempeeaguadients in rotating ob-
jects.@eﬁlﬁ) developed a model of the geodynamo asvaatmn-driven fast ro-
tating spherical system. According to the conditions dediuicom the Taylor-Proudman
theorem and based on the Rayleigh-Bénard conve&lign_(ﬁn_e.ur:ﬂ&dd_c_han.dtas.(ik'har
), the flow forms vortex tubes aligned with the axis o&tioin, in so-called Busse
columns ME%). This type of helical velocity field ss@med to be predominant
in many convection-driven rotating bodies.
It has been known for a long time that the Earth has a dominaginetic dipole field
dM.e.LI’.'LLLeI_a.I.”_’IBBJS). Since the 1950s it is also known tha& 8un has a detectable dipole
field, although it is much weaker than the magnetic field ofghiet Sun. In fact, most
of the celestial objects have detectable magnetic fieldsatieasustained on large spatial
scales, which stands in contrast to the small scale of theygmarrying-vortices of the
underlying flow. One possibility to deal with this scale sgpi@n is the mean field ap-
proach kSLeeubﬂQkﬂMdiﬁ__KLaus.&and_éidlﬂd 1980), icthvidrge-scale magnetic
fields are generated by the averaged induction result of-soalle velocity and magnetic
field perturbations. Thisfiect is known as the-effect M@) Especially with
regard to the Sun, anotheftect is crucial for the magnetic field generation. As a result
of the diferential rotation within the Sun, the plasma flow exhibitgyéashear, where
magnetic energy is gained by magnetic field line stretchifigs is called theQ-effect;
therefore, the dynamo of the Sun is known agranQ dynamo ).

The first numerical attempts to investigate the dynaffexéwere carried out '

deﬂi) antLG.La.tzmajeL(lﬁM), who modeled the solar dyn&ased on this pioneering
work, computer simulations became increasingly impotfianthe investigation of plane-
tary or Sun-like objects. As computer power and resolutohraaced, two types of direct
numerical simulations were developed. On one hand, colovedtiven dynamo simula-
tions in rotating spherical shells have been establishbadiwntend to simulate planet or
star like objects. Here, the implementation of gravitagipbuoyancy and Coriolis forces
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1 Introduction

usually causes the generation of Busse-column like flonciras. These models were

able to reproduce the main features of the geodyninm_(_Gand_RQb_elltls_lﬂbS,
|C.hLislens.en_eLHl._J_9|99) and dynamos of other planets dl‘ufslmamosl.(_c.hﬂslens.en_etl al.

|20_Dj‘5) but are not adaptive to, e.g., galactic dynamos.

Galactic objects are of an enormous extent and thus, havala separation from the
large-scale magnetic field down to the smallesiiudive scales that cannot be resolved.
Therefore, on the other hand, corresponding models weferpeed in periodic boxes
where each one only represents a small part of the whole tobjéw focus is on the
dynamo generation at the smallest turbulent scales. Ireteesulations, the flow is
usually driven by helical volume forces that inject energioilarge scales of the ve-
locity field. Due to inertial processes, the kinetic energydistributed over a large
range of spatial scales down to the smallefiudive ones. Attempts have been made
to understand to what extent flows, evolving turbulence,adne to sustain a dynamo

(Schekochihin et al. 2004b, Brandenburg and Subramanias)2&ven thouih such tur-

bulent helical flows have been able to generate large-scadgetic fields rg
M,LMMLMH.D_Z‘MM}L&JZOH), a fundamnaemderstanding of the
underlying processes is still lacking.

In the advent of this research field, three types of simphpsid helical velocity fields
and their capability to dynamo action has been investigaibé Ponomarenko dynamo,
the G. O. Roberts dynamo and the Dudley-James dynamo. ThenRwenko dynamo
is a single vortex tube, embedded in an isolating envirorim&aditional to the circular
motion, the velocity field has a component parallel to theigiy field such that the flow
exhibits helicity kEo.nQ.ma.Le.nuo_lQYS). The G.O. Robertsatlyo consists of a periodic
array of vortex tubes with an alternating up and down stregrflow. The sense of rota-
tion is so that the helicity does not change s@@ﬂgﬁe third type of flows
has a spherical geometry and has been investigat 9), e.g. the
sZtl—rovﬂ. This flow creates helicity with opposite sign in each hermesp. All of these
flows are basically able to sustain a dynamo, whereas theaheharacter of the flow is
a crucial property.

Aforementioned basic flows have been taken as prototypesfmrimental setups in or-
der to generate a dynamo in the lab. Based on the Ponomargnkmad and the G.O.
Roberts flow, two experiments have already been successiggmerating a dynamo:
the Riga |(_G_a.'LLi.ti§_e.t_al,_Z)_d)O) and the Karlsruhe experin(lM].lIJ.eLa.n.d_S.ti.ngle_ZOdZ),
which were named after the cities where they were built. Bs¢hexperiments, liquid
sodium was taken as working fluid. It is of high conductivityelts at comparably low
temperatures~ 110 °C) and has a similar viscosity as water. It was pumped through

In radial direction it is quadrupolar (s2) and in azimuthigdtion the velocity does not change the
sign over latitude (t1).
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cylindrical pipes and thereby forced into helical shapee Riga experiment used only
one pipe and the Karlsruhe experiment a lattice of pipes altdrnating up- and down-
flows.
After the success of the first dynamo experiments to creagmando, a follow-up gen-
eration of experiments based on the Dudley-James dynamsdselea designed in spheri-
cal geometry, which were built in Madisdn.(.l:l.omb_emﬂ*_aﬂép Grenobleml.
) and Marylanol (Rieutord et|£1_2(|)12). Another expeninveas designed in cylin-
drical geometryL{,M_o_n_Qha.ux_edelL_ZdO?) and is located in €arche. The latter one
generates a Van-Karman like flow and is therefore called K8 ¥xperiment. In these
experiments the flows are less constrained than in the prewpes in Karlsruhe or Riga.
The liquid sodium was driven by rotating impellers or spBemdich generate a large-
scale mean flow of the same topology as thos @). Due to a
strong impellent which is necessary to create the condittondynamo generation, the
fluid becomes highly turbulent. The dynami@i@ency of the flow thereby decreases in
such a way that so far, no experiment succeeded in creatiygaatb until today with the
exception of the VKS experiment. In that case, the use ofismftimpellers significantly
changes the magnetic boundary properij_as_(_B_eLha.nM.et_’Ed.)ZO'he insights that have
been gained in relation to MHD turbulence and small-scatedyo theory are helpfull for
the understanding. Because of the driving, small-scaleires can evolve and create a
competing or disturbingféect to the large-scale dynamo generation of the mean flow.
The performance of experiments is somewhat complex anddeaxsight which are
limited by the measurement techniques. Flow structuresrege visible using dye in
water experiments or by pulsed Doppler velocimetry. Mogtamantly, magnetic fields
can only be measured at the surface. In order to achieve er betdlerstanding of these
complex processes and their interrelations, numericatsddve been designed for in-
situ analysis, which is not possible by surface measuresnditie experimental results,
in turn, are the only way to confirm these numerical modelsvéier, the computational
abilities are not stlicient to resolve the fields in the parameter range of the rgelcts
they are adapted to. The transfer of respective resultsatmigects is only possible by
exponential powerIaV\}.S_QhLiSIQDSQD_and_ALHﬂnLIZdQﬁ)_@[EﬂDﬂJLIL(ZQbQ .
Computationally based work has been performed relatecttigainisruhe dynammer
@}) could predict the onset of magnetic field amplificatgmd the saturation level of
the field by numerical simulations. This dynamo experimleotyever, uses a constrained
flow, where turbulence plays a minor role. Thus, the simarfatiould be performed in the
laminar regime, which, in contrast to turbulence simulagias not computationally de-
manding. Close to the dynamo onset the Lorentz force is stoalpared to other forces
so that it can be treated as a weakly non-lindgfgat in the mean field picture and solved
analytically up to the first perturbation ordliL(I'LLgﬂﬂthﬂbﬁH_ZO.dl).
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|B.a;LIj§5_el_ai.|.(m_d7) anId_R_e_uI.QLe.{ Mob&_i011) studieddynamo mechanisms in

flows related to the Madison experiment based on laminar \kiagenotion and in highly
turbulent flows. The parameter for the onset of magnetic @igblification could be
determined, which was shown to be independent of the dedresbulence. Since the
accessible parameter regime of the simulations is far totlegvresults had to be extrap-
olated to those parameters relevant for the experimenhoAtgh the mean flow should
be able to sustain a dynamo, it is still unclear why the flowha e&xperiment is that
inefficient. With respect to the VKS experiment, the dynamo ttokkhas also been
investigated and magnetic field topologies of existing dyoa could be reproduced by
|G_Le.s.e.cke_el_gtll_(m_’l.|0a) ahd_ElnIe.LEltlﬁBOlO). Espethalgfect of soft-iron impellers
on the dynamoféiciency was reproduced by numerical simulatid;.ns_(_G_i_es_em.Euéﬂlﬂl)).
In order to reach higher magnetic Reynolds numbers, aneipaEriment in spherical ge-
ometry was builtin Maryland_(Zme_eLnJMlO), which is kargnd more powerful than
previous experiments. It has a diameter of 3 meters andgsranotors in order to create
higher rotation rates, which are necessary for dynamo ractieven though the topol-
ogy of the mean flow of spherical Couette experimgwits similar in the experiments
in Carderache and Madison, the respective numerical eieatjlkE_u.enLlIJ.)La.nd_C.a.LdJn

) showed that the dynamo onset is increasing with theioo rate of the inner
sphere, contrary to the respective numerical analysisebther experiments. For the
spherical Couette flow, this means that an increasing dedreebulence lowers the dy-
namo dficiency. According to the results b&u&mﬂ&and_ca}dlmldﬂ this experiment
will fail to create a dynamo as well. Therefore, it is worthestigating how this exper-
iment needs to be modified in order to get a flow that is mdifieient to generate a
dynamo.

This PhD thesis consists of two parts which treat two fundaaleaspects in dynamo
theory. The first part focuses on the kinematic dynamo tlulesbf the spherical Cou-
ette flow. Since previous work on this system failed to comeavith promising results

for spherical Couette experiments to succeed in creatingnardo, the simulations are
going to be repeated in order to compare the results witlfardnt driving mechanism.
The spherical Couette system is driven by the moving bouesl&in this case, only the
inner sphere is rotating), which are coupled to the fluid Iscous drag. Compared to
the Maryland experiment this is represented by smooth bariesl Since the boundary
layer is dependent on the rotation of the inner sphere, filidency of the flow could

be increased by a driving force that drives the flow in a carisiestance from the inner
boundary so that it becomes independent from the rotatitenalad increases the mo-

2The spherical Couette is a system of two concentric sphethswo different radii. The spherical gap
is filled with a viscous (electrically conducting) fluid. lni¢ context the spherical Couette flow is generated
by a single rotation of the inner sphere, whereas the outarsys stationary.
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mentum transfer. Accordingly, the Maryland experiment barmodified by rough inner
boundaries or blades attached to the inner sphere. In thish@acharacteristics of both
flows and their &iciency to dynamo action is compared. Thereby the mechanisheo
dynamo plays a crucial role and on which scales the magnetit i§ generated. The
results are partly publishedlln_E'Ln.k:La.n.dILI.dr{eLdou).
The second part deals with the saturation mechanism of a etiagreld in a rotating
system. The relation of rotation, convection and magnegid faas been investigated by
Mamﬂnﬂmn.dﬂl:a.d.elriE (1984). No _Qs_Jat[al_dldBA)._ELzzami kmO]S) for main se-
guence stars. Especiah;LRﬂin.eLs_eltal_dZOO% found thslbim rotating low-mass stars
(M-type dwarfs) the surface magnetic field increases wighrtitation rate of the respec-
tive object. In fast rotating M-stars, however, the surfa@gnetic field becomes rota-
tionally independent at a certain rotation rate. The depeoé of the magnetic energy‘s
saturation level on the rotation rate has been investigatesgveral numerical models
MWMWMM@&MW) Neither the exponent
for the increase of the magnetic field with the rotation raiethe saturation mechanism
could be consistently reproduced. Therefore, the saturati the magnetic field within
a G. O. Roberts like driven flow in a rotating frame of refeeminvestigated, since the
flow structure in such celestial bodies is believed to havendar shape. Once a small
magnetic field rises within a flow, at a certain point its Ldeeforce reaches a strength
comparable to the driving force and reorganises the flonhabthe magnetic field satu-
rates.
This part focuses on thetect of the rotation rate on the saturation mechanism of the
dynamo and the reorganisation of the velocity field by theebhtz force. As long as the
parameters are close to the kinematic dynamo onset, thetzdiece is small and can be
treated as a weakly non-linear perturbation in the mean figldire. The approximated
MHD equations are solved analytically in a rotating peridatx, where the flow is driven
by a force field corresponding to the G.O. Roberts flow sinﬁdﬂﬂgn.e.r_a.r:l.d_B_usLe
). In order to test whether these analytical assumg@oe reliable, numerical sim-
ulations of the full MHD equation are performed.
Since the mean flows of many rotating celestial objects aserasd to have the similar
basic properties as the G.O. Roberts flow and their magnelitsfare usually generated
on large scales, it is a promosing approach to achieve basierstanding from such a
simple and analytically treatable model.

10
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2 Kinematic dynamo onset of spherical Couette flows

The spherical Couette consists of two concentric sphereadiifr; of the inner and,
of the outer sphere with an aspect rationo& r;/r, = 1/3, which is shown in Figure
1. The gap between the spheres is filled with a fluid, whiahriigen by the rotation of
the inner sphere at a fixed rotation rate, while the outer Bagnis stationary. Due to the
viscous coupling of the fluid and the spheres, a shear layetales at the inner boundary,
in which the fluid is accelerated and centrifuged outwardnrequatorial jet and finally
recirculates within the entire rest of the volume to the msghere. The axisymmetric
streamlines of the flow are shown in a meridional cut in Fig@i@on the left side. The
velocity field in direction of the rotation is indicated in arg¢our plot on the right hand
side. The highest values are near the inner sphere.

The general geometry of the mean flow is quadrupolar due tandr&ional circulation
with opposite helicity in each hemisphere. It is topologgailar to the s2t1-flow, which
has already been investigate a]m_es|(19893 basically able to create a
dynamo. This kind of flow is called the non-rotating sphdr€auette flow. Considering
an electrically conducting fluid, the focus of this work is loow a magnetic seed field
evolves therein and how the onset of magnetic field amplifinathanges with respect to
the rotation rate. The dynamo onset is denoted by the driiegnetic Reynolds num-
ber Rm, which thereby serves as a measure for the dynamo qualigseltuestions are
closely linked to the dynamo mechanism of the flow.

The spherical Couette flow in this sense has already beehydeegstigated with respect

to purely hydrodynamic aspects l).)LI:l.O.l.lﬂLb.a.Qth?tl.al_(JZO(DﬁI) @magnetohydrodynamic

Q 0.2
0.15
0.1
0.05
0

Figure 2.1: Scheme of the spherical Couette system witarsiiees of the axisymmet-
ric poloidal flow (left) and a contour plot of the axisymmettoroidal flow (right) in a
meridional cut.

12



2 Kinematic dynamo onset of spherical Couette flows

asgects bLLI:Lo.IJ.e.Lb.al:h_(ZdOQ) and with the focus on dynarrmabyl_G_u.en[LLI;La.n.dL.a.LdJn

). The latter one is related with the generation of aadymin the spherical Couette
experiment in Grenoblé;(.Nala.f_etl la.L_ZbOS). The resulllsmmﬁﬂ;La.n.d_Qa.Ldih kﬂ)_’l|0)
are, however, discouraging, since the onset shows an singeRm with higher rotation
rates of the inner core. The magnetic Prandtl number Pm renwdiorder one in the
entire parameter range of the Reynolds number Re, so thabtigitions in the exper-
iment can not be reached by extrapolation. The aspect sasbghtly diferent and the
conductivity of the boundaries are the same as of the fluidh Véispect to these results
no dynamo can occur in this experimental setup.

Keeping this problem in mind, the spherical Couette is satad again in order to confirm
the results. These results are compared with propertiesathar Couette flow, which is
driven by a volume force in one tenth of the gap width at theeircore and intends to
simulate the spherical Couette flow with a rough inner sphdtrés assumed that the
boundary layer and the equatorial jet are crucial to dynaotiom due to shears in the
velocity field.

In the first simulations, in which rigid walls are used to é@rihe fluid at the inner core,
the boundary layer thickness decreases with increasingfRegh Re the boundary layer
and the equatorial jet are decreased much, but contain radst @f the kinetic energy,
which might be unfavourable to dynamo action. The volumedoon the contrary, gen-
erates a much higher momentum transfer and a heavier miyitigeldriving mechanism,
so that the meridional circulation is increased and thabthendary layer thickness is lim-
ited by the acting range of the force to one tenth of the gaphwid this way, the dynamo
efficiency of the flow might be improved and conclusions can be/dnaith respect to
possible improvements of experimental setups to make therggon of a dynamo more
likely.

In the first section, the éerential equations of the dynamo model, the parameter of the
system and the numerical implementation are introducece rébults of the spherical
Couette flow with smooth boundaries are presented in thensezection and those with
rough boundaries in the third one. Finally in the concluslmresults are compared.

13



2 Kinematic dynamo onset of spherical Couette flows

2.1 Dynamo model

2.1.1 Dfferential equation

Because of the geometry of the spherical gap, this probletassribed in spherical co-
ordinates I(, 6, ¢). The axis of rotation of the inner sphere is (1,0,0). Thelwian of
a magnetic seed fielB = (B, By, By) within a moving electrically conducting fluid of
velocity v can be described by the induction equation in the magnetodydamic ap-
proximation )

B+ V x (B xV)=AV’B V-B=0 (2.1)

whered = 1/(ouo) is the magnetic diusivity, o is the electric conductivity andg the
vaccum permeability. Since there are no magnetic monoplademagnetic field is diver-
gence free. The time evolution of the magnetic field depemndsvo dfects. The induc-
tion term on the left side is responsible for generating neéigriield lines by deforming
and stretching processes whereas the second term on théaiggth side describes dif-
fusive processes, which let the magnetic field decay. Thgsat®ns deal with a dense
plasma where the collision frequency is large compareddayilotron frequency of the
charged particles, so that the mean free path is very shdrvelocities are small com-
pared to the speed of light. In that way the plasma behavesliftuid and its velocity
field v = (v, vy, V) can be described by the Navier-Stokes equation

1
Ov+(V-V)v=-=Vp+»wW? +F V-v=0. (2.2)
o

v is the kinematic viscosity, is the densityp is the pressure anBl is a volume force
which will be defined later. Near the onset of dynamo actiba,rhagnetic field strength
is low enough so that the back reaction of the magnetic fiektheplasma via the Lorentz
force can be neglected. In kinematic dynamo theory, thecityléield then behaves inde-
pendently from the magnetic field. The induction equatidmesar inB and the temporal
evolution of the magnetic Field is given I8/ ~ € with growthratess as Eigenvalues,
which indicates whether the magnetic fieldstrength grondemays. The kinematic dy-
namo onset is defined kyy= 0. In addition, in these studies, we assume the plasma as
incompressible, which is a good assumption for the conati@.g., in the earth’s core
or in liquid sodium experiments. Hengeis constant and the continuity equation just
yields a velocity field which is divergence free. In the faliag the reference scales of
the variables are defined:

14



2.1 Dynamo model

t’ L
Q;
x'd

vdo, (2.3)

3

ppd’Q?
F'dQ?

bl

m © < X

Time is scaled by the reciprocal inner core’s rotation @tand the length is scaled by
the gap widthd. In the dimensionless system the gap width is from now on leigua
unity and with the aspect ration gf= r;/ro = 1/3 the radii arer; = 0.5 andr, = 1.5.
In the following only the dimensionless variables are cdesed and for simplicity the
primes are omitted. All reference scales are collected timofollowing dimensionless
Parameters

Q,d?
Re: it
v
A2
Rm = 290" (2.4)
A
Rm v
Pm=— = —
Re A

The Reynolds number Re describes the balance of inertiadtows forces and the mag-
netic Reynolds number Rm is a measure for the ratio of indedt dissipative #ects
of the magnetic field. By varying Rm, the growthraef the magnetic fieldstrength
changes and the onset of a magnetic instability at the kitiemignamo onset at Rptan
be found. The dimensionless MHD equations then read

1
atB+Vx(va):ﬁnVZB V-B=0, (2.5)

1
OV +(V-V)V=-Vp+ R_eVZV +F V.v=0. (2.6)

These dimensionless parameters, however, are made ongiseob#éhe inner boundary
velocity, which is taken as a measure for the charactenstiacity of the fluid. A more
convenient quantity to describe the dynamical state of ylseesn would be the temporal
and spatially averaged dimensionless veloGfy of the saturated state, which has to be

15



2 Kinematic dynamo onset of spherical Couette flows

calculated aposteriori.

2B, 1
Vims = Vkm Ekin = <f EVZdV> (27)

Exin IS the kinetic energy integrated over the whole spherical @ad the brackets de-
note temporal averaging. The appropriate lapse of timedae ttonsidered well. The
advective turnover time, is the time, a fluid particle needs to complete one meridional
circulation. The length of this path iIs, ~ 2d + 7/2(r; + r,) ~ 5d and the timeL,/v,
with v, = Q;d Vis as the characteristic velocity along this path. Since time tin the
dimensionless equations is related to the reciprocaliostaate, like in equation2.3 the
corresponding dimensionless advective time scat€ #sv./(La * Qi)t = Vig/5t. Taking
Vims = 0.1 the advective turnover timg, = 1 would bet = 50 rotational time steps. An
appropriate time range for averaging would be a few ten aoaeturnover times. Based
on this characteristic velocity the dimensionless paransdbok like

Re= ReVims 28)
RmM = RMVme '

In table[Z1, the parameter limits of the simulations andNfayland experiment are
shown.

Simulation| Experiment

Re || 1.6x 10 5x 10’

Rm 104 950
Re 10°
Rm 800
Pm ~1 1075

Table 2.1: Parameter limits of the simulations and the m@lexperimenmn
|Eﬁﬂ)).

Boundary conditions

The two diferent surface types of the inner boundary are simulated é&gifspboundary
conditions in combination with variation of the volume ferf€. The smooth boundary

16



2.1 Dynamo model

is realised by no-slip conditions, where the velocity of thid at the inner boundary is
equal to the inner core’s velocity and at the outer boundgnakto zero. The volume
forceF in equatior . ZF is zero

v=Q;xratr=r;, v=0atr =r,. (2.9)

Only the very inner layer of the fluid is forced by the boundang the momentum transfer
occurs by viscous drag. Thus, the boundary layer thicknegsritls on the viscosity and
finally on Re.

In the rough surface simulations, the fluid is driven by a waduforce which is equal to
one in one tenth of the gap width near the inner sphere andrzémne rest of the volume.
The volume forcd= has the following shape

F = (-tanh(6Qd - (r — r; —d/10))/2+ 0.5) sind &, (2.10)

and points inp-direction withé€,, the respective unit vector. FigureR.2 shows the radial
dependence of the force amplitude which is one at the innandery and decreases
very steep to zero at + d/10. In this way the boundary layer is supposed to remain
at a constant thickness dff 10 for Re — oo. This kind of driving force extends the
boundary layer thickness to the region where the force teequal to one. In this way the
energy injection rate into the fluid motion by the driving rhanism is increased and the
momentum is transferred moréieiently in the whole volume. In order to avoid jumps
in the velocity profile at the inner boundary, there, the loarg condition is free slip.
This means that the radial component is zero at the innerdasyiriso that impermeability

Is satisfied. The radial stresses are zero as well. The ooterdary still has no-slip
conditions. The disadvantage is that the force is time nategl and the boundary velocity
saturates arbitrarily so that the dimensionless innerscargtion rate might not be one.
That is quite an important point to be mentioned, becausdithensionless output of the

1.2r

Figure 2.2: Radial dependence of the amplitude of the dgitance

17



2 Kinematic dynamo onset of spherical Couette flows

two simulations cannot be compared directly. In the firsedasv; is kept fix by the no-

slip condition taQ;r; = 0.5 at the inner boundary, whereas in the second case the volume
force is time integrated and creates an arbitwgry w; r; which is not appropriate to what

the dimensionless inner core’s rotation rate should be,ehah With the introduced
scalings of time and length (see €q.2.3) the integratiohe@Navier-Stokes equati@nP.6
gives a solution

1

OV + V-V =-Vp+ =V +F (2.11)
Re
incorporating the following transformation

vV =aV

p=a’p
F=a’F
t=1{/a

Re = Re/a.

By choosinga = Q the new solution of7 has a time averaged inner core’s rotation rate
of 1. On account of that another set of dimensionless passet necessary

R€ = ReQ

(2.12)
RmM = RmQ|

whereQ/ is the time averaged inner core’s rotation rate in the dyoalyi saturated state

3 21 T
Q=2 d¢f do sir? o, (r = 11, 6, 6, 1), (2.13)
0

B 87Tri 0

Inside the inner sphere and beyond the outer sphere theielmmbductivity is zero.

Output of physical quantities

An estimate for the energy dissipation can be deduced frenN#vier-Stokes equation
by multiplication withv and integrating over the spherical gap:

18



2.1 Dynamo model

1,. 1 1 2
atfzv dv = R’ ~ Ref(&.vj) dV+fF vdV (2.14)

21 T
T= _f d¢f d9r3sin29(8rv¢ - ﬁ). (2.15)
0 0 r

Since the non-linear term in the Navier-Stokes equationrpdistributes kinetic energy
to different scales it generates no energy losses. Only the eneggyation by difusion,
boundary drag and other volume force terms remains. For ¢h&ip simulations the
force termF is zero so that in the dynamically saturated state the tireeaged torque

is a direct measure for the energy dissipation. In the seswndlation the inner boundary
is free slip and the torque is equal to zero. Therefore theggréissipation rate becomes

with

fﬁ-Vdvz%fF-vdv. (2.16)
Q

The torque at the outer boundary is neglected because thereelocity is much lower.
In Kolmogorov’s dimensional theory of turbulence, the gyedissipatiore is defined by
the scales of the energy carrying vortiees v3/lo. The dimensions of the torque in the
simulation is f] = kgn?/s* — pd®Q2. Apart from that, we get the energy dissipation
ratee ~ 7Qi/pd®. The torque should therefore evolve like~ pd®v3/Qilo. Without
dimensions and takinlg = d it simply readsr ~ (Vo/€;d)°.

Important quantities which are investigated are the kinetiergy

Exin = f|V|2dV, (2.17)
the magnetic energy

Eg = f|B|2dV, (2.18)
and the kinetic helicity

H=(Vxv)-v. (2.19)
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2 Kinematic dynamo onset of spherical Couette flows

2.1.2 Numerical realisation

A pseudo spectral method for incompressible flow simulatiorspherical geometry has
been worked out mmg). In this geometry it isabié to describe the equations
in spherical coordinates,, ). Since both fields, the velocity field and the magnetic
field, are solenoidal, their three components can be destiily two scalar functions
respectively. The convenient way to do this is a toroiddbjaal decomposition of these
vector fields

Vv=VXxVXx(D,&)+Vx(P, &
(VA) (VA) (2.20)
B=VxVx(@®s&)+Vx(¥s&),

where€ denotes the unit vector in radial directiobg, is the poloidal field an&'g, the
toroidal field. In this way the divergence of both fields is @i zero. The toroidal part
of the vector fields has no radial components and points tdizdig to spherical surfaces.
A purely radial vector field, like a dipole field, would be debed by a poloidal field.
The poloidal and toroidal scalar fields are expanded in sgdddrarmonics.

o |
rZ Z [@.]" (r)P"(coss)e™

1=1 m=-I
2 i DI (P (coso)e™

= (2.21)
Z[ o]" ()P (cosv)e™

Z [¥e]™ (r)PP"(coss)e™,

D,

€

\"

M B

1l
=

wherelslm(cose) are simply the Legendre Polynomials with the prefactorgctvlappear
in the spherical harmonics

4 (I +m)!

Pr(cost) = \[5rg (—m)

P"(cose). (2.22)

By this definition, the components of the velocity field are
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2.1 Dynamo model

8

w= 33 D g pricosnen

1=1 m=—I

|
_ Z Z (0" (0 Pm(cose)ém¢+m[‘l’v], (NP"(cosh)e™  (2.23)

8

=2, 2 ST [l (BP(cosNE™ — 1 [P (1) PT(Cosh)e™.

8

1=1 m=-I|

Except for the respective prefactorandr? of the poloidal and toroidal fields (see eq.
2.21), the magnetic field is obtained by the same formulansceSthe velocity and the
magnetic field is real®]™ = [®]," and [']™ = [¥]; ", with = denoting the complex
conjugated quantity, only one half of the complex Fourienponentsif > 0) have to be
stored. In radial direction the spectral amplitudes are@egpd in Chebychev polynomials
Tn(X) = cosfrarccosx). With x = 2(r —r;) — 1 and taking the collocation points at

=1+ % (1 ; COSI\JIr_—ll) . j=1.N, (2.24)
the expansion function becomég(r;) = cos(nn—) which is just a cosine transforma-
tion. By this method the grid point density is higher at theihdaries, which increases
the resolution of boundary layers. The timestep for the $iedch Crank-Nicolson scheme
of second order.

The boundary conditions in the smooth surface simulatioise &rom[Z®. Since in di-
mensionless variabl€®; is equal one, the toroidal field at the inner boundary is

[P (r=1) = \/%. (2.25)

All other components®,]" (r = ri,ro) and [@,]{" (r = ri, 1,) are zero.
In the rough surface simulation this boundary conditioneiglaiced by the force term,
which defines the toroidal field according to equafion?.10

[P0 (r) = \/g(— tanh(6Qd - (r — r; — d/10))/2 + 0.5). (2.26)
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2 Kinematic dynamo onset of spherical Couette flows

The main diference between equatibn2.25 &ndP.26 is that the lattesontegrated in
time, whereas the first one is just a Dirichlet boundary coowli After a number of time
steps, some important quantities are stored like,e.gkitiedic energy% fvzdv. Inserting
223, the kinetic energy can be expressed for each speotrgdanent. In this way the
different contributions of axissymmetric, non-axisymmewioidal and poloidal fields to
the total kinetic energy can be separated and spectrabdistms can be analyzed.

Eo =4 fZZ'glill)E:”“) (I(I VI[P +|r [0+ [d)v]lmlz)

I(I+1)(I+m)

(2.27)

The time step is limited by the CFL-number which is dependenthe velocity and
resolution mﬁ)

min| —— (2.28)

2 2
I max /vg + V5

If the time step exceeds this limit, numerical informatioauld pass to the next but one
gridpoint within one time step and the numerical solutioredjes.
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2.2 Smooth surface

2.2 Smooth surface

In the following, the results of the smooth surface simolasi are presented. A smooth
surface implies that the fluid is coupled to the boundary dmlywiscous drag. In the
simulation, this is done by so-called no-slip boundary ¢obmals, which have exactly
this efect. The fluid velocity equals the boundary velocitygirdirection at the inner
core. All other components are zero. The momentum of the iuichnsferred outwards
by viscous drag so that near the inner boundeayyjecreases rapidly outward in radial
direction. In this region, the fluid moves in the equatoriEng and flows outward in
an equatorial jet towards the outer sphere. The reciraudatkes place in the entire
rest of the volume. The basic topology of the flow is similathe s2t1-flow and has
opposite helicity in the two dierent hemispheress2 denotes a quadrupolar poloidal
field andtl means that the toroidal velocity does not change sign atgude. Such a
flow has been studied wﬂandﬁn{_es_dl989) and is Hgsteglable to create a
dynamo.

In the first subsection, the purely hydrodynamic propeufebhe system will be described
in dependence on Re. For this purpose equdiidh 2.6 was atéglgin time and only
the parameter Re was changed. The main focus is on the ondie dfydrodynamic
instability with a dominant wave number= 2, a possible dominant wave number 3
and developing turbulence at high Re. In the subsequentestibss, the evolution of
a weak magnetic seed field within this moving plasma is ingastd. In order to do
this, the equations.6 aldP.5 are integrated simultahgausere Re and Rm are the
two relevant parameters. The kinematic dynamo threshalddueral Re between 10
and 1667 x 10* is found by adapting the parameter Rm so that the growthsafethe
magnetic fieldstrength is zero. Here, the nearest valugs=ad for s < 0 ands > O are
linearly interpolated. The most important issue is the dyoaanechanism of the specific
flow at different Re. At low Re, it consists of a single wave propagatiahevolves strong
turbulence at high Re. This is relevant to answer the questiovhich way these results
can be extrapolated to the parameter regime of liquid so@xperiments.

In these simulations, Re will be varied from310p to a value of 567 x 10%, which
requires a resolution of 32 radial grid points. 128 in latg@nd 256 in azimuthal direction
with respective dealiasing at 85 and 170 up to Re& x 10*. From there, the radial
resolution is increased to 64 with 256 in latitude and 512-direction and respective
dealiasing at 170 and 340. An important point is that the bawnlayer should be well
resolved, which means that at least 5 grid points should bemthe boundary layer. For
the highest value of Re: 1.667 x 10%, it is only resolved by 4 grid points. In order to
check the reliability of these results, one simulation a&tkinematic dynamo onset was
repeated with 128 radial gridpoints.
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2 Kinematic dynamo onset of spherical Couette flows

2.2.1 Hydrodynamic properties

The basic state of the spherical Couette flow is axisymmuaiitic respect to the axis of
the inner core’s rotation and symmetric with respect to thea¢orial plane. By increasing
Re, the hydrodynamic system undergoes two transitions.

The first occurs at a critical value of Rex 1500 Re, ~ 105), where small non-
axisymmetric perturbations increase and an instabilityettgos in form of a propagating
wave on the equatorial jet with a dominant azimuthal wavelmemm = 2. Amplitudes of
higher harmonics of this wave number also increase, whemegditudes of odd modes
decrease in time. This is shown in Figlirel 2.3, where the spaodf the kinetic energy

is plotted over spherical harmonic ordar The amplitude of the dominant wave number
m = 2 is approximately 16 and the next harmonic is already about one order of mag-
nitude lower. In the right panel, a snapshot of the isosert#i3% of the maximal local
kinetic energy aRe = 133 is plotted. The local kinetic energy is simply the absolalue

of the velocity vector at each grid point. It can be seen thhies of 97% of the maximal
local kinetic energy are within the boundary layer near tirveer core and the equatorial
jet. Thus, the highest velocities are located there. Thalngy bends the equatorial jet
on two opposite parts respectively up and down, like it issghn the figure.

The azimuthal wave number of = 2 is in agreement Witb.l:l.OlL&Lba.ch_etl ELL_(ZbOG), who
computed the linear onset of non-axisymmetric instabgitand their most unstable az-
imuthal wave number for a wide range of aspect ratios. At geetsratio ofp = 1/3,

the first instability develops at Re 1500 with the most unstable azimuthal wave number

10 ¢

N

Em 10_ L

kin
10_8 A All 1

10° 10
m

Figure 2.3: Snapshots of the kinetic energy spectrum pl@tginst spherical harmonic
degrean (left) and isosurface of 3% of the maximum local kinetic gyefright) atRe =
133.

24



2.2 Smooth surface

kin

Figure 2.4: Temporally and spatially averaged spectié@fplotted againsin (left) and
| (right) atRe = 300 (black) and 970 (red).

changing fromm = 3tom = 2. |G_u.enL'LLI;La.n.d£.a.LdJn|_(2QlO) performed full three-

dimensional simulations with an aspect rationot 0.35. They found a corresponding
onset of the instability with the same azimuthal wave nunaben = 2.

Another transition occurs at Re= 2800 Re;, = 178). Beyond this value, in addition,
non-axisymmetric instabilities with odd wave number®ccur. For further increasing
Re, the spectrum begins to flatten and approaches a powef law/®. This is shown in
Figure[Z4, where on the left side the kinetic energy is ptbtgainst spherical harmonic
orderm at Re = 300 and 970. The large scales of the velocity, however, remaithe
same order of magnitude. The azimuthal wave number 2 remains dominant at least
up toRe ~ 300. In the right panel, the kinetic energy spectrum is ptbthgainst the
spherical harmonic ordér The spectrum also approaches a powerlalv¥%t at highRe.
The kinetic energy spectra develops the same powerlawdik&®imogorov’s theory of
turbulence|.(_D_asLi_d5_<|>b_ZQb4), although it is plotted agaspéterical harmonic order and
degree. Kolmogorov, on the contrary, argues on the basqseofral properties of plane
waves. The correct relation between a plane wave v&aad the spherical harmonic de-
greel isk? = I(1 + 1) iI.QLeuza.EH_ZQ_dl). This implies that the concept of antiakrange
and a dissipation scale can be applied on the spectral piegpef spherical harmonics.
The scale, at which the power spectra kink and become stéegdr>2, therefore indi-
cates the viscous scdlewhich shifts to higher wave numbers for increasing Re.

In Figure[Z®b, the three characteristic regimes,RRe, (left panel), Rg < Re < Res
(middle panel) and Re Re; (right panel), are displayed. The components of the veloc-
ity field are shown as snapshots in a meridional cut. The radimponent at the top,
the 8-component in the middle and tikecomponent at the bottom. On the left side, at
small Re< Re,, the velocity is axisymmetric with respect to the axis ofat@n. The
radial component shows high velocities in the equatoriaheltowards the outer sphere,
while everywhere else it is at least one order of magnitudeto Theg-component has
relatively large velocities at the inner boundary, wherefthid flows into the equatorial
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2 Kinematic dynamo onset of spherical Couette flows
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Figure 2.5: Snapshots of (top), v, (middle) andv, (bottom) in a meridional cut at
Re= 1.25x 10® (left), 2.5 x 10° (middle) and 16 (right).

plane, and at the outer boundary, where it circulates batketpoles. The-component
Is large near the inner core within the boundary layer. Caegbto the other components,
v, reaches the highest values, being six times larger thamathal velocity in the equato-
rial jet and one order of magnitude larger than the absolae&mum ofv,. In the central
plot for Re, < Re < Re;, the first non-axisymmetric instability with the azimuthedve
numbem = 2 is shown. Accordingly, the equatorial jet is bended up-@dodnward and
the symmetry with respect to the axis of rotation is only giby a shift ofp — ¢ + 7
or ¢ — ¢ + n/2 and an additional reflection with respect to the equatpiaie. Due to
the increase of Re, the equatorial jet as well as the bourldgey becomes thinner. Fi-
nally, on the right side, at high Re, the symmetry is entitelyken, the velocity becomes
increasingly small scale structured and turbulence degeldhe equatorial jet and the
boundary layer further diminish.

The boundary layer is defined as the distance, within whiehptlielocity averaged on
spherical surfaces,(t) drops below the mean of the boundary veloaigyr;) and the
radially averaged velocity;

Uy(ri) +V
dg = % (2.29)
In Figure[2Z®, on the left side, the boundary layer thickredshe ¢-velocity is plotted. It
decreases proportional to R€ as predicted by laminar boundary layer th son

). On the right sidek, is plotted. Because of the weak mixing, it saturates at
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Figure 2.6: Boundary layer thicknessg plotted against Ré’? (left) and E,, plotted
against Re'. The vertical dashed lines indicates the transitions atRd Re.

quite low Re and approaches a constant valuggf~ 0.023. In this limit, the viscosity
can be neglected. The only remaining parameters, on wheckittetic energy depends,
areQ; andp. The dimensional kinetic energy is therefore proportidnal?e and the
dimensionless kinetic energy becomes constant. The akdashed lines in Figufe 2.6
indicate the two mentioned transitions in the characiessif the velocity field.

An important aspect for a later discussion about tfieiency of dynamo action is that
the boundary layer thickness as well as the strength of thatedal jet decrease when
the inner sphere rotates faster. At all Re, the largest banions to the kinetic energy are
localised within the boundary layer and the equatorialljnce, at high Re, the kinetic
energy is concentrated in a small volume near the inner epdraat the equatorial plane
and is not well distributed within the entire spherical gap.

Another important quantity is the torque at the inner bouypdt gives a direct measure
of the energy dissipation. In dimensionless form the torgaels

o oV, V,
T:—f f r3sing? | —= — - | dade, (2.30)
o Jo or r
107° | -
TNl i Re™™
My |
A SN
& Hseo.
| "X
-
X,
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10 b : :
10° 10*

Re

Figure 2.7: Dimensionless torque plotted against Re.

27



2 Kinematic dynamo onset of spherical Couette flows

which, together withv, from equatiof 223, leads to

2
(0, ), = smez[ o 5 ear -2 [cDV].*“) Pr(cost)-

sindr 2
(2.31)
gm.

J m
ri o [P P (cosh)

V]| a

Figure[Z.¥ shows the temporally averaged torgue< 7 > /Re as a function of Re and
decreases with R&%?. Giving the assumption thatv, ~ dz!, equatio 230 would yield
a proportionality of Re*? for . The deviation might arise from the fact thav, atr; is
not the same as it is across the boundary layer.
The dimensional torque isoQ;d3v. The three diameter experiment in Maryland mea-
sured a torque’pv?r; that increases with R&°. With the same dimension, the torque in
the simulations yield a proportionality of ~ TRe ~ eR€* ~ Re**®., The deviation comes
most probably from the fact, that the boundary shear lay#rarsimulations is still lami-
nar. The experiments exhibits strong turbulent flows, incllihe shear layer destabilizes
at relatively low Re compared to the possible Iirhj.t_(Zme.a[Lh’ﬂ.lb).
It is well known that in turbulent plasma flows, the helicitiaps a crucial role in gener-
ating magnetic fields, since helical flows are often favoler&dr dynamo actiorlﬁﬂ?ll

). They can produce a large-scale dynamo viaatleffect, as it was shown in
the experiments in Karlsruhe (Muller and Stied;lleZIOOZ)da'en numerical simulations
IB.La.n.d.enhUJIgL(ZO_d)QL_G_La.ham_el al (5012). The sphericak@edlow is topologically
related with thes2t1-flow of lD_u.dI.e;La.n.d_‘la.mL?L_(LJSQ), which includes a zonal flow i
¢-direction and a meridional component. That, in turn, @sdtelicity of opposite sign
in the two hemispheres. In FigureR.8 snapshots of the ifams of the kinetic helic-
ity are plotted forRe = 130 and 970. Red color marks positive helicity and blue color
marks negative helicity surfaces of one percent of the malkand minimal helicity, re-
spectively. This means that helicity from 1% up to 100% ofrtteximalminimal helicity
amplitude is concentrated at the inner boundary and neagghatorial plane. This is
reasonable, since in these simulations, the meridionallaition is quite weak compared
to the boundary velocity, and the helicity is dominated i/ dtrongp-rotation within the
boundary layer. Enhancing the helicity in the entire voluman equal value by increas-
ing the meridional circulation would probably increase dy@amo quality, which could
be achieved by a better coupling between the moving bouratatyhe fluid.
There is a surprising observation related with the domingate number of the non-
axisymmetric instability. Usually for Re< Re < Re;, small non-axisymmetric pertur-
bations increase with the dominant made= 2. At Re > Re;, all modes are unstable
and the spectra of the velocity field looks like those in F&id. Starting from this state
and lowering Re below Regamplitudes of high wavenumbers are damped lifusiion
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Figure 2.8: Snapshots of the isosurface of 1% of the maximimetik helicity atRe =
132 (left) and 970 (right). Blue indicates negative and resifive helicity. The respective
maxima/minimal values are 3.5 and+ 10.0

and the non-axissymmetric instabilities turn again intargle wave propagation, like
discussed in the first paragraphs. By this means, it is plessibat the dominant wave
number becomes = 3 and only every third wave number m remains as additional
stable wave number. The left panel of Figlird 2.9 shows thetikienergy spectra plotted
against spherical harmonic degnee lI:LQ.IJ.eLba.Qh_eLAI.L(ZO_d)B) found the most unstable
mode for this aspect ratio to be on the transition fnrons 2 to 3. However, in simula-
tions with an aspect ratio af = 0.4, growing non-axisymmetric instabilities still have a
dominant wavenumber oh = 2, although the linear onset predicts &elient one. On
the right side, an snapshot of the isosurface of 3% of the malXipcal kinetic energy is
shown. According to the dominant wave number, the equaijetihas three wave crests.
The left panel of FigurE2210 shows the bifurcation diagrdrthe kinetic energy of the
two branches with dierent wave numbers = 2 (black) andn = 3 (blue), which get sep-
arated at the onset of the first non-axisymmetric instafalitd slowly merge aRe > Re..
The kinetic energy of the simulation, where the instab#ithibits a dominant wave num-
ber of m = 3 is higher than the corresponding simulation with= 2. The right panel
shows the dimensionless torqaat the inner boundary for the same simulations. These
values ofEyj, ande represent the state, wheadge, e = 0. From Equatiofi 214, it fol-
lows that the viscous dissipation is balanced by the enengytj expressed by the torque.
Thus, the energy dissipation with = 2 is slightly higher than witm = 3.
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Figure 2.9: Snapshots of the kinetic energy spectrum glatginst the spherical har-
monic degreen (left) and isosurface of 3% of the maximum local kinetic gyyefright)
atRe= 130.
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Figure 2.10: Kinetic energy bifurcation diagram (left) ahd dimensionless torque at the
inner boundary (right) of then = 2 andm = 3 instability.

2.2.2 Kinematic dynamo threshold

In the following, the results of the magnetohydrodynamicidations are presented. Ad-
ditionally to the momentum equation (e@._12.6), the induttemuation (eq.[215) was
solved numerically and intergated in time. Thereby, theabedur of the magnetic field

within the plasma flow was investigated. Further, solutioihgero growth rate were eval-
uated, which denote the kinematic dynamo threshold.Rnhe dynamo onset and the
evolution of a seed magnetic field in the spherical Couette Aas already been inves-

tigated b»l.Gn.endﬂmnd.QatdiMlO) incorporating th# fon-linear equatiorﬂs The

aspect ratio in their studies wgs= 0.35 and the magnetic boundary conditions were

YIn this sense, non-linear means the MHD equations incluttiad_orentz force in the Navier-Stokes
equation
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different. They implemented boundaries, which had the sameuctwitdy as the fluid
and also investigated ferromagnetic boundaries. The aiivity of the boundary was
found to be irrelevant for Rgybut enhanced the saturation level of the magnetic energy.
The crucial result was that the dynamo onset.Rmreases with Re, which makes this
kind of flow unfavourable for dynamo experiments. The exatapon of the results to the
parameter regime relevant for the experiment yields utiaale Rn.

In order to find the onset of magnetic field amplification, Rnmigreased for several Re
until the growth rate becomes positive. The transition.Rdetermined by linear interpo-
lation. FigurdZZIIl shows the simulations in tReRm)-plane and in theRe,Pm)-plane.
The vertical dashed lines denote the transitiongsd®e Reg between the three character-
istic velocity fields, which were described in the previoest®n. The thick black dashed
line between the red dots and the blue asterisks shows tharadythreshold. In addi-
tion lines of constant Pre: 1 in the upper panel an@m = 800 in the lower panel are
plotted. To point out an interesting aspect, note that Prarger than one except for the
simulation at the highe®e ~ 970. Since Pm represents the ratio of kinematic viscosity
and magnetic diusivity, it also indicates the ratio of the smallest scaltthe velocity
field and the magnetic field and the ratio of viscous dissypatd ohmic dffusion. For
Pm > 1, the dissipation scale of the magnetic field is smallersTiil turn out to be an
important point at high Re, when the velocity field is highlyldulent.

10
Rm

10°
Pm 10°

Figure 2.11: Dynamo onset in thR¢ Rm)-plane (upper panel) and in tHed,Pm)-plane
(lower panel). Failed dynamos are indicated by red dots atidgadynamos by blue
asterisks. The thick dashed line mafks, for m = 2 and the blue thick solid line for
m = 3. The straight lines are Pm 1 (upper panel) anBm = 800 (lower panel). Vertical
dashed lines mark the transitions,Red Re.
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2 Kinematic dynamo onset of spherical Couette flows

In the following, the three regions- axisymmetric flow, Hgastationary instability, and
turbulent regime- are investigated with respect to the Wela of the magnetic field and
the dynamo mechanism.

2.2.3 Stationary regime

The shape of the velocity field is axisymmetric up to,Re 1500 Re, = 105). In this
regime, no dynamo action could be found even at large=Pf®. This is in agreement
with |G_u.emLI;La.nd_C_a.Ldjn| (2010), who didn’t find any dynamadian for an axisymmet-
ric velocity field either. SinCtLDudJ_e;LandJa.llnla_s_d989) pbthat this kind of flow
is basically capable of creating a dynamo, at very high Rm giéneration of magnetic
energy should occur. On account of that, the ratio of memnili@irculation to toroidal
kinetic energy could be crucial to improve the dynaniicency.

Once the flow becomes unstableRE > Re,, the flow is able to sustain a dynamo at low
Pm. The development of the dynamo threshol®af < Re < Re, has a characteristic
peak atRey, ~ 140 (Fig.[ZIIL). At first, Rmincreases wittRe forRe < Reyy, and then
decreases fdRe > R_eSy up to the second transition Res. There, it increases again and
remains nearly constant up to higte. Most striking is that the shape of the velocity
does not change significantly within the rariR@, < Re < Re; but the dynamo threshold
changes significantly. The main evolution of the velocitydfis the decrease of bound-
ary layer thickness and the thickness of the equatoriallje¢. dominant azimuthal wave
number remains = 2 within this range oRe.

Time series of the radial velocity at a fixed point in the equat plane are plotted in the
left panel of Figur€2Z12. The focus is on the temporal vemaand not on the amplitude
so that the curves are just plotted on top of each other fottatmmparability. It can be
seen that the phase velocity of the propagating wave dexsedth increasingRe.

In the right panel in FigureZ212, the time evolution of thegtee at the inner core, ob-
tained by equatiof.ZB1, is displayed foffdientRe. The amplitude of the oscillation is
about 1% of the total mean torque. The fact that the torqueeahiner core is not constant
suggests a superposition of higher harmonics and the dotpnapagating instability. A
single wave propagation would exert a constant torque. Hx¢ mgher wave number
m = 4 is only one order of magnitude lower than the dominant ome. ffequency of the
torque’s oscillation decreases wite as well, similar to the phase velocity of propagating
wave on the equatorial jet.

The dynamo onset decreases significantly with the occugrehthe non-axisymmetric
hydrodynamic instability aRe,. Thus, the generation of the magnetic field must be
closely related to the this propagating instability.

Such wave-like motion can approximately be composed ofteoetry state and a time
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Figure 2.12: Time evolution of; at a fixed point in the equatorial plane (left) and the
torque (right) aRe= 114 (red), 133 (black) and 162 (blue). The amplitudes arierark
since the focus is on the time dependence

dependent phase. This has already been done in simulagiatesd with the Madison ex-
periment by Reuter et al. (2009). They found that growthsratehibit resonancefiects,

0 2000 4000 6000 8000
time

0 1000 2000 3000 4000 5000
time

Figure 2.13: Kinetic energy spectra (black) and magnetergynspectra (red) plotted
againsim (left) and according time evolution of the magnetic enemght) atRe = 133
(top) and 162 (bottom).
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2 Kinematic dynamo onset of spherical Couette flows

depending on the phase velocity of the propagating wave.

Figure[ZIB shows the spectrum of magnetic and kinetic gnaajted against spheri-
cal harmonic degrem on the left side and the respective time evolution of the reign
energy on the right side &e = 133 (top) and 162 (bottom). These plots contrast the
evolution of the magnetic field slightly before and behine peak aR_esy in the dynamo
threshold (FigCZ11). The spectra show thaRat R_esy the same modes of the velocity
field are excited in the magnetic field. As a consequence, tgnetic field and the ve-
locity field have the same symmetry with respect to the axi®tition with a dominant
azimuthal wave numben = 2. Amplitudes of higher harmonics of this wave number are
amplified as well, whereas the energy in odd wave numbergpdiss. Once the kinetic
energy has saturated and the non-axisymmetric instab#isyfully developed, the time
evolution of the magnetic energy can be represented by asaggon of an exponential
increase and an oscillation.

On the contrary aRe > ﬁesy, the magnetic energy in odd wave numbers increases in
time and dissipates in even wave numbers. Thereby, the pharisal symmetry of the
magnetic field breaks up. The time evolution of the magneterg@y now exhibits a time
independent growth rate, and an oscillation can be observed

In order to investigate thetect of the phase velocity of the propagating instability foa t
dynamo threshold and on the time evolution of the magnetgegmn only the induction
equation is integrated. A stationary velocity field withlyulleveloped instability is taken
for the induction term in equatidn2.1. By varying the meawftd this velocity field, the
drift velocity of the propagating wave can be altered aitifig:

~ |4n
m=0 _ m=0 ~
[\Pv]|:1 (r) = [\Pv]|:1 (r) —w ? (2-32)
-3 —frozen
I
X Re=210";Rm =410
gl > Re =1.710%; Rm=410" 4
 Re=1.710°;Rm=3.410° \/-\/\/\
4 . ]
X O E
S ot b 1 B \/\/\
X
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Figure 2.14: Growth ratesplotted against phase velocityfor different Rm (left). The
velocity fields are generated with hydrodynamic simulatianthe corresponding Re. The
right panel shows the time evolution of the magnetic enengpé full simulation and in
the corresponding frozen flux simulation.
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The induction equation is then just a lineaffeiential equation with a constantidrential

operatord
0

EB = JB, (2.33)
for which temporally averaged exponential growth rateslmafiound in dependence of
Rm. The change of the driftis given lay Since the constantflierential operator in equa-
tion[Z33 is time-independent with solutioBs~ €%, eigenvalues indicate the growth
rate of the respective magnetic field. The time evolutiomeftelocity field in Figur€2.12
shows a phase velocity of the instability of abeut.6% — 1.9% of the inner sphere’s ro-
tation rate. Note that an azimuthal wave numbeme# 2 creates two wave crests, so that
every second wave crest belongs to one full rotation of thtalility.

In Figure[ZTH#, the growth rates at Rm4 x 10° are plotted againsb for two different
frozen velocity fields. The velocity fields were taken frondhydynamic simulations at
Re = 2x10%*and 17x10%. The simulations with Re: 1.7x10° were repeated with afiier-
ent Rm. The according drift velocities and growth rates effthil simulations are plotted
as circles (red for Re 1.7 x 10%; Rm = 4 x 10° and black Re= 2 x 10°; Rm = 4 x 10°).
Only the evolution ofs at Re= 2 x 10° shows a monotonous behaviour over the entire
range ofw. The sets of simulations with the same velocity field at-R&.7 x 10° but
different Rm (red and green crosses), however, show that treigarofw significantly
effects the growth rate. In the range of the dynamical simulatedw ~ 1.6 — 1.9%, the
growthrate decrease with diminishing phase velocity, asvshin FigurdZ.TW. This result
agrees with the behaviour of the dynamo threshold URee: 133.

Nevertheless, the growth rates of the frozen flux simulatiare totally diferent from
those of the full simulations. In FigukeZ]114 (right), thenfgoral evolution of the magnetic
energy of a frozen velocity field simulation is plotted tdgat with the corresponding
dynamical simulation. In both types of simulation, the fregcy of the magnetic energy
oscillation changes slightly with the phase velocity of pinepagating wave. Also, in both
cases, the superposition of an exponential growth and altatisn can be observed.
Therefore, the conclusions drawn from these frozen flux Etrans can only be seen as
a qualitative result. The oscillatory behaviour of the metgnenergy, however, seems
to be generated in the stationary part of the velocity fiellgesit is also present in the
frozen velocity field simulations. On the other hand, phadeaities, for which the time
evolution of the magnetic energy is pure exponential, wetdaund. Even at Re Rey,
where the full simulations suggests such a behaviour, geefr flux simulations do not
show it. Therefore, the symmetry breaking of the magnetid & Re= Re,, must be on
account of the slight time dependence of the velocity fieleg th the superpostition of
the dominant mode and higher harmonics.

In Figure[Z.Ib, snapshots of the magnetic field are shownreg thoints in time during
one maximum of the magnetic energy to another (right paneigafre[2.IH). The patches
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Figure 2.15: Snapshots @&; (top), By (middle) andB, (bottom) in a meridional cut
during one frozen flux simulation from one maximum (left) b@ tminimum (middle) to
the next maximum (right).
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of maximal and minimal magnetic field strength vanish betbey finally reappear with
opposite sign. The same mechanism can also be observed adyhalmical simulations,
where the patches move with the propagating instabilityis Tan be seen as a special
kind of a propagating magnetic wave in a frozen flux of plasma.

Magnetic field strength is generated due to magnetic fiedtnetching in the vicinity of
velocity gradients at the boundary layer and the equatj@ialn the rangeRe, < Re <
Re,, this occurs mainly near the wave crests, as well as abovéelod/ the equatorial
plane, as seen in Figure2116. It shows snapshots of 10% titddéocal magnetic energy
and 3% of the maximum local kinetic energyRe = 114, 133 and 162. The local mag-
netic energy is the absolute value of the magnetic field vedteach grid point. The main
contribution to the magnetic energy comes from the toranaginetic field. Then = 2
symmetry of the magnetic field at the two low& is clearly visible. ARe = 162, the
symmetry of the magnetic field with respect to the two henmeseb breaks. The change
in the symmetry of the magnetic field seems responsible ®irbreased dynamdfe
ciency. So far, it remains unclear, which small-scale attarastics of the velocity field
actually trigger this change in the amplification oftdrent modes.

As a first approach, it is assumed that the change in the symiethe amplified mag-
netic field modes is responsible for the significant changberdticiency of the flow to

36



2.2 Smooth surface

Figure 2.16: Snapshots of isosurfaces of 3% of the maximwal kinetic energy (red)
and 10% of the maximum local magnetic energy (blud&yat 114 (left), 133 (right) and
162 (bottom).

dynamo action. In order to verify this assumption, one carsimter the dynamo threshold
of them = 3 instability, which is additionally plotted in Figule21idr Re, < Re < Re;
(blue thick line). Two things can be seen. First, the thrésiwlower form = 3 than itis
for m = 2. Secondly, it increases monotonously with Re. The spatisaibution of the
magnetic and kinetic energy is plotted in Figlre 2.17Rer= 133, whereas the symme-
try of the magnetic field does not undergo any change in thgerRe, < Re < Re,. At
anyRe, the amplitude of every third wave numimeis amplified, whereas the others de-
crease. The magnetic field and the velocity field have the symenetry. The evolution
of the magnetic energy is plotted in Figlre 2.17 on the rightchside and shows also a
similar exponential increase with a superposed osciljatehaviour like in the top panel
of Figure[Z.1B.
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Figure 2.17: Kinetic (black) and magnetic (red) energy speplotted against spheri-
cal harmonic degrem at Re = 133 (left) and the corresponding time evolution of the
magnetic energy (right).

Figure 2.18: Snapshot of the isosurface of 3% of the maxinagal kinetic energy (red)
and 10% of the maximum local magnetic energy (blue) duringnalation with a domi-
nantm = 3 instability.

FigureZIB shows again isosurfaces of 3% of the maximuni kietic energy and 10%
of the maximum local magnetic energy. The generation of reagenergy occurs in the
vicinity of the propagating wave crests, where the velotigld is strongly sheared. The
main contribution to the magnetic energy is given by theittalocomponent of the mag-
netic field. Here, the symmetry of the velocity field and thegmetic field, respectively,
agree as well. Since the magnetic field is generated in theityiof the wave crests of
the equatorial jet, it is likely that them = 3-instability is more #icient to dynamo action
than withm = 2.

Remembering the two branches of the kinetic energyfer 2 andm = 3, plotted against
Re in Figurd 210, another explanation for the increasidi@ncy could be that in this
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range, the kinetic energy of the flow with = 3 is 10% higher than witim = 2, which
increases the induction.

2.2.4 Dynamo mechanism in the turbulent regime

At Rey ~ 2800, instabilities develop over the entire range of wavmlpersm. The
regularity of the velocity field entirely breaks up, whereas- 2 still remains the dom-
inant mode at first. Due to the appearance of many modes, tbeitydield temporally
fluctuates without any periodicity anymore. The temporéligtuations lower the dy-
namo quality and the dynamo threshold increases immediakejure[Z.IP shows the
evolution of the non-axisymmetric toroidal kinetic eneltgft) and the magnetic energy
(right) of a simulation aRe = 210, which is close above ReThe plot in the left panel
shows the temporal development of a small non-axisymmeéniiturbation and the satu-
ration of the corresponding toroidal kinetic energy. It eens nearly constant for a short
time and finally develops a strong time dependence, whicicanes the destabilisation
of higher modes on the equatorial jet. The corresponding @molution of the magnetic
field shows a nearly constant growth rate as far as the dommmade has developed.
With the onset of strong time fluctuations, the growth ratedbees time dependent as
well and decreases significantly. The growth rate even adssgn so that the dynamo
eventually shuts down. At that point, the dynamo is still nhadriven by the dominant
wave numbem = 2, whereas the time dependence due to the instability ofelniglave
numbers decreases th@&@ency of the flow to dynamo action.

Important points to discuss in this context include, filsg #fect of small-scale velocity
structures to dynamo action, which become increasinglyidant the higher Re gets.
Secondly, the question, if the dynamo threshold remainscahatant Rmfor Re — 0.

0 2OI00 40I00 60I00 BOIOO 10000 0 2000 4000 6000 8000 10000
time time

Figure 2.19: Time evolution of the non-axisymmetric toaditinetic energy (left) and
the magnetic energy (right) &e = 210.
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2 Kinematic dynamo onset of spherical Couette flows

This, in turn, is related to the question, whether, thirdhg turbulent spherical Cou-
ette flow is a small-scale dynamo (and thus driven by smalleseelocity vortices) or a
large-scale dynamo, where the= 2 instability and the mean flow mainly generate the
magnetic field. One crucial parameter in this discussiomms Wwhich indicates the ratio
of the dissipative scales of the fluid and the magnetic fieltelpt for simulations at the
highestRe = 970, the dynamo threshold is at Pl (Fig.[ZI1). Since Pre 1 denotes
an important transition, where the smallest scales of beltifiare on comparable length
scales, the extrapolation of these results to higher Re tioave well considered.

These considerations are relevent to many astrophysigadtsbwhere turbulent gas flows
at very low Pm can create large magnetic fields, which are eoatyte to the size of the
same objects. A lot of research has focused on the improveofienur understanding
of turbulent dynamos at very low Pm. In order to geffisient Rm so that dynamo
action is achieved, the simulations require high Re ands,thte computationally de-
manding. In these simulations, the scale of the generatephetia field can be much
larger than the energy carrying vortices of the flow. The dyoés a large-scale dynamo,
which can be described, for instance, with the help of themfedd theory

hﬂé,l.lﬁta.us.&a.n.dﬁédlw%). In these cases, helicitys @agrucial role. Turbulent

simulations at small Pm have been made using, e.g., randoofdyised helical waves
dB.La.n.d.enb.LuI&_ZO_d)9) or helical G.O. Roberts like forced fI(dBﬁnl;La.n.d_Elunif}tllZDJll),
who succeeded to gain large-scale dynamos. On the otherihendlso possible that
the magnetic energy is generated on scales which are cobi@arasmaller than the tur-
bulent eddies (Schekochihin ef al. 2004b, Iskakov €t al228hekochihin et al. 2007).
This kind is of fluctuative dynamo was investigated for ex@mphomogeneous isotropic
turbulence.

In the following, it will be shown that the dynamo of the splat Couette flow is a large-
scale dynamo and that this result implies that the dynanesttoid is independent on Re.
Although spherical Couette flows exhibit anisotropic tuemee, the following argumen-

Kinetic Energy Spectrum

Small Scale Dynamo
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Figure 2.20: Spectral distribution of kinetic and magneditergy in homogeneous

isotropic turbulence at large (left) and low Pm (right) (8kbchihin et all 2004b).
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tation is based on homogeneous isotropic turbulence.

The usual approach to deal with homogeneous isotropic lemba is to distinguish be-
tween diferent scales that exist within the system. A sketch of theakes is shown in
FigureZ.2D. Here, it has to be guaranteed that by identfglifierent length scales, a suf-
ficient scale separation is given. The largest length sealefined by the container side
of the specific object, which constrains the flow. In casettimafluid is driven by a large-
scale motion like, e.g., the mean flows in convection cellsrgreller-driven flows like
in some mentioned dynamo experiments, the next smallee scdefined by the energy
injection scald,. In the Kolmogorov picture of turbulence, this large vorteeaks up
into smaller vortices, so that the energy is transferredralker scalesj_(_D_axLi.dsH.n_ZdO4).
At these scales, non-linear inertial processes are domirkanr this reason, it is called
inertial range. Since energy is neither dissipated noctegwithin the inertial range, but
only redistributed to smaller structures, the energy fluxoisstant over the entire range.
The spectral kinetic energy decays with powerlaw &f. Finally, at the dissipative scale
l,, inertial processes become comparable to dissipatiorepses, where the kinetic en-
ergy is transformed into thermal energy. The kinetic eneqggctrum kinks at that point
and the spectrum continues steeper than the inertial ralkgknogorov’s dimensional
theory of turbulence gives for the viscous schle- Re®*l,. Considering a magnetic
field that is stretched and twisted within these turbulentiges, it is required to get a
scale for the induction processes of the fluid at first. Theeggion of magnetic energy
is mainly described by the induction term in the inductionatpnZ.1

Vx(BxV)=(v-V)B—(B- V). (2.34)

The first term on the right side describes changes of the ntiagiedd by plasma convec-
tion. The second term describes stretching processes ofdbaeetic field lines by veloc-
ity gradients, which are mainly responsible for magnetildfaamplification in turbulent

—Re =970
_12| —Re =300

10

10° 10 10°

Figure 2.21: Temporally and spatially averaged turbulete of strain plotted against
(left) andl (right) atRe = 300 (black) and 970 (red).
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2 Kinematic dynamo onset of spherical Couette flows

flows. The square of the stretching tefBw,v;|> ~ E|. |? is a measure for the turbulent
rate of strain and gives a powerlaw ofl*/3 in the Kolmogorov picturel_(_C_h.e.Lt—kmLellal.

). It peaks at the viscous scale, where the inductioogsis mostfécient. The
temporally and spatially averaged spectra of the turbukbgetof strain are plotted in Fig-
ure[Z21 forRe = 300 and 970.
In homogeneous and isotropic turbulence, the magnetiggnsrgenerated at the vis-
cous scale. There, the viscous eddy turnover time equalsdumetic difusion time,
which defines an estimate for the fourth length scale, thisties scalel, ~ Pm/?|,

). Two scenarios arise from this definitionw-Pm (Pm< 1) and high-

Pm (Pm> 1) dynamos.
For Pm> 1 (left panel in Fig[ZZ20), the magnetic energy is generhtethe most &i-

cient vortices at the viscous scale and accumulated in thestous range &t

). If Re is cranked up, presumably Rm would increaseedls since the scale at
which dynamo action occurs is directlyffected by the viscous scales and would shift to
lower scales. In this case, the behaviour of the dynamo isegiigiable concerning the
extrapolation to higher parameter ranges.
For Pm< 1 (right panel in Fig[[2.20), the dynamo is generated somewvéihin the
inertial range and is notfiected by the smaller viscous scales. If Re is cranked up, the
dynamo would not beféected by even smaller viscous scales and. Rmuld remain

constant[(EausLe_a.n.d_EeltHlis_ZbOY). This has already begtedvout by some numer-
ical works b ihin et al. (20048), Ponty étlal. (30Bkakov et al.|(2007) and

). In all simulations, the same phenomenonrobaershooting Rmas a
bump in the threshold appears at Bl before it saturates at a constant level at higher
Re. Inl.EQ.nl)Lel_ElI.L(ZO_d) i_ij?), thiffect was found at.06 < Pm < 0.2, which could
not be reached in these simulations due to computationahlions. This &ect was re-
lated to a bottleneckfiect, the accumulation of kinetic energy at scales sliglahger

than the viscous scallE_LB.La.n.d.enbuLg_an.d_NQ.Lclllun_dJ2011)hdrkihetic energy spectra
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Figure 2.22: Temporally and spatially averaged Magneterg@nspectra plotted against
m (left) andl (right) atRe = 300 (black) and 970 (red).
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Figure 2.23: Temporally and spatially averaged toroidadl{rand poloidal (black) mag-
netic (left) and kinetic (right) energy spectra plottediagd atRe = 970.

(Figure[Z.Z1L), no such bottleneck can be found.
Another explanation for the bump in the threshold was givethie presence of helicity
at the resistive scale l}J;LM.a.I;E.hkm_an.d_B_QLdJ/rELdom) hie énd, a convincing expla-
nation is still lacking so that this phenomenon is not wellerstood by now.
ForRe = 300 and 970, the magnetic energy spectra are plotted againgtn in Figure
22. At high Re, the magnetic energy is located at largeescahd even a@Re = 970
thel = 1-component is dominant. The results seem to be similamb‘Mrg
), where the magnetic field generation in helical tlehece simulations was investi-
gated. This strongly suggests a large-scale dynamo thegasad in the spherical Couette
flow by large-scale motions. Only the simulation at the haiiRe = 970 raises doubt,
because a local maximum emerges atl0, which still is within the inertial range of the
kinetic energy spectrum (Fig—2121). It seems to suggesttamgedynamo at two dierent
scales. In FigureZZ.23, the toroidal and poloidal parts efrttagnetic and kinetic energy
spectra are plotted separately. Apparently, the largke$oeoidal magnetic field is gener-
ated by the velocity shear of the boundary layer, which isidamt atl = 1 in the toroidal
kinetic energy. The generation of the poloidal magneticgyneccurs at some intermedi-
ate scalé ~ 10. The only significant intermediate scale between theesifahe boundary
shear and the viscous scale is the scale of the equatorialjete the maximum polodial
magnetic energy is generated. In order to make sure thatyhasmo is dominant at large
scales, another simulation was performeRat= 970, where the mean part of the flow is
subtracted from the velocity field before integrating thauection equation. The magnetic
energy decreases significantly at Pml, as well as the peak at= 1 in the magnetic
energy spectrum. This implies that the large-scale dynammminant and apparently
generated by af-effect of the boundary layer shear. The turbulent eddies aleneat
able to sustain the dynamo. Hence, increagtechas no #ect on the dynamo threshold,
since the dynamo is created within the inertial range ang anurbulent tail is added to
the kinetic energy spectrum. With increasiRg, Pm drops below unity and the magnetic
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2 Kinematic dynamo onset of spherical Couette flows

Figure 2.24: Temporally and spatially averaged magneteggn(red) and turbulent rate
of strain (black) spectra &e = 300 (top left), 400 (top right), 600 (bottom left) and 970
(bottom right).

field is too rough to beféected by the fluid at the viscous scale. Because of the magneti
diffusion, the magnetic field is not influenced by the turbuledieslof further decreasing
scale size. That is why the dynamo threshold is seen to beardnis the limit Re— 0.

The transition of the dynamo scale from low to high Re can lea s Figurd 224, where
the turbulent rate of strain is plotted oetogether with the magnetic energy spectrum
at Re = 300,400,600 and 970. At lowRe, the magnetic energy is generated at large
scales, where the dynamo is mainly driven by the dominantanasymmetric instability.

At Re = 970, finally, the magnetic energy shows these two maximagtéie far within

the inertial range.

Based on this finding, the threshold can be extrapolatede@énameter range relevant
for experiments. The plateau of the dynamo threshold Rrat = 800. In all dynamo
experiments, the working fluid is liquid sodium with Ps10° andv ~ 10°°. Based

on these numbers, the experimental setup has to lRach8 x 10°. For such higiRe,

the kinetic energy is already constdfy, ~ 0.023 andv;s ~ 0.058, which finally gives

Re = 1.4 x 10°. The corresponding rotation frequencyfis= Rev/2rxd? = 223sL. In
order to get an estimate for the energy dissipation, theafdftagure[2Z.Y are also extrap-
olated to that Re and one yieldsx 1.8 x 105, The energy dissipation per unit mass is
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e ~ TQ3d? ~ 1.8 x 10°W/kg. Within a volume ofVol ~ 13m® and a density of liquid
sodium withp ~ 10°%kg/m?, the total energy dissipation is approximatelyx 23GW,
which is a quite unrealistic number owing to very high raiatrates.

The low dficiency of this flow to sustain a dynamo might have two cru@akons. First,
the high rotation rates are needed because the boundarydayess which the momen-
tum is transferred to the fluid, decreases with the rotat@be. rAlmost the entire kinetic
energy is gained within the boundary layer and only therggelahears occur so that the
dynamo is generated in a very small part of the spherical §apther important aspect
for the dficiency is the ability to generate poloidal and toroidal metgnfield lines like-
wise, in order to close the dynamo circle. A toroidal magneéld is generated mainly
within the boundary layer, where the field lines are wound rquiad the inner sphere.
The poloidal magnetic field is mainly obtained around theaggpal jet, where the field
lines are pushed outwards in radial direction. Equdiiod 88ws that the induction of
B is proportional to the shed;0;vi. Assuming that the length scales of the equatorial
jet and the boundary layer are of same order of magnitudeatiee of the shear across
the boundary layer to the shear across the equatorial jestishje ratio of their maximum
velocities. This ratio can be taken as a measure for the dgrefliciency. In this flow,
the ratio is approximately 5. In conclusion, th@@&ency can be improved by increasing
the momentum transfer in the whole volume and a lower ratibh@toroidal to poloidal
velocity shear.
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2 Kinematic dynamo onset of spherical Couette flows

2.3 Rough surface

The obtained results for a spherical Couette flow driven byre piscous coupling be-
tween the inner core and the fluid leads to parameters, whiuhat be reached by the cor-
responding experiment in Maryland. Although with smoothihdaries, the inner sphere
rotates quite fastf( = 223s™!) at the kinematic dynamo onset, the momentum transfer
across the boundary layer to the entire volume is very lowthabthe averaged s is
only one tenth of the boundary velocity.

Therefore, a second numerical setup is investigated, wdneatume force is introduced
in the Navier-Stokes equation. The force intends to sineudatough surface, which in-
creases the coupling between the rotating inner sphereharitutd. Thereby, the fluid is
stirred more.

The outline of this section is similar to the previous onetHe first section, the purely
hydrodynamic properties of the system are investigatedhtegrating the Navier-Stokes
equatior.ZJ6 in time. The only parameter that is changed iSTRe shape of the velocity
field undergoes two transitions from an axisymmetric field &iate where the first non-
axisymmetric instability develops with a dominant azimaltvave numbem = 2. At
high Re, the flow becomes Kolmogorov-like turbulent. Themrfaicus is on the evolu-
tion of the boundary layer thickness, the kinetic energytaeakvolution of hydrodynamic
instabilities.

In the second section, the evolution of a weak magnetic se&tifi this flow is inves-
tigated. Therefore, the induction equationl 2.5 is integgtatdditionally. The main focus
is on the kinematic dynamo onset in the parameter space oh&®&m. The results are
compared with those of the smooth surface simulation witipeet to the dynamofie
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Figure 2.25: Snapshots of the kinetic energy spectrumgaa@gainsin (left) and isosur-
face of 20% of the maximum local kinetic energyRet = 106 (right).
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ciency of the respective flow and the dynamo mechanism. Thétseare extrapolated to
parameters of the liquid Sodium experiment in Marylandalyna conclusion is drawn,
whether a rough surface could be a reasonable improvemdéme @xperiment and what
are the reasons therefore.

The parameter Re is varied from?lip to 25 x 10°, whereas Pm is again of order unity.
Since the boundary layer is expanded to one tenth of the gdihwts thickness is not
crucial as a measure for the radial resolution anymore. &balution is 32 in radial, 128
gridpoints in latitude and 256 in azimuthal direction withadising at 85 and 170 respec-
tively. At Re = 10% the driving force is already generating large averagedoi$svys,
so that the resolution has to be 64 in radial, 256 gridpomiatitude and 512 in azimuthal
direction with dealising at 170 and 340 respectively.

2.3.1 Hydrodynamic properties

The basic shape of the velocity field is similar to that crédtg no-slip boundary condi-
tions. The driving force generates a boundary layer, in twvthe velocity is accelerated in
¢-direction and flows outwards in an equatorial jet to the ogphere. Within the entire
rest of the volume, it recirculates back again to the innBespand the equatorial jet. The
main diference is a thicker boundary layer, which is independentgraRit was wanted.
Thereby, the momentum transfer into the entire spherical ghincreased. Hence, the
equatorial jet is much larger compared to the size in thedimtlations. At low Re, the
flow is axisymmetric and destabilizes at comparatively |@iues Rg = 425 Re, = 95).
The stronger driving force generates higher velocitieshst mon-linear inertial forces
become dominant.

At that point, small non-axisymmetric perturbations depehs a propagating wave on
the equatorial jet with a dominant wave numiper= 2. Only amplitudes of even wave

gMm kin

kin

Figure 2.26: Temporally and spatially averaged kinetiagyspectrum plotted against
m (left) andl (right) atRe = 320 (black) and 1100 (red).
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2 Kinematic dynamo onset of spherical Couette flows
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Figure 2.27: Boundary layer thickness of the volume far@mnd the no-slipx simulations
plotted against Ré/? (left). Kinetic energy plotted again§e_l (right). The red dashed
lines represent the respective power laws of'Rdleft) andRe (right)

numbers are excited so that kinetic energy in harmonias ef 2 is gained and in odd
wave numbers it dissipates. Figlire 2.25 shows the kineéiggrspectrum over spherical
harmonic degreen (left) and a snapshot of the isosurface of 20% of the maxinagall
kinetic energy (right) aRe = 106. Compared to the no-slip simulation, the contribution
of the boundary layer and the equatorial jet to the total tikcnenergy is ten times less.
Thus, in this case, the kinetic energy is distributed moreattg within the entire volume.
At Re; = 465 [Re, = 108), only slightly higher than Reamplitudes of odd wave num-
bers increase in time as well. The kinetic energy spectrurnrbes increasingly smooth
and approaches power lawsin®2 andl =3, which implies Kolmogorov-like turbulence.
In Figure[ZZB, the kinetic energy spectra are plotted agaiandl atRe = 320 and 1100.
Since the inner boundary velocity increases with Re, thetspare normalised with re-
spect to the amplitude of thie = 1-mode. In this way the spectra can be better compared.
In FigurelZ2V, the evolution of the boundary layer thiclgieplotted against R&2 and
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Figure 2.28: Inner sphere’s rotation r&¢(left) and energy dissipatianplotted against
Re. The red dashed lines show the respective proporti@stifRe - andRe
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2.3 Rough surface

compared with the results of the no-slip simulations. As &xpected, the boundary layer
thickness does not drop below the defined roughness sizeedieoith of the gap width,
which is much larger than in the other set of simulations. Thesequence is that the
kinetic energy, which is plotted in FiguEe 2127, is about tmévo orders of magnitude
larger than in the smooth surface simulation (Eigl 2.6)hingimulated range, itincreases
with Re"2 and is far away from saturating, as it should for large Relllfiqures the ver-
tical dashed lines denote the transitions Red Re.

In the left panel of Figuré2Z.28, the inner sphere’s rotatiate Q' is plotted against
Re. The developing of the values is non-monotonous and shopsverlaw only for
Re > Re, of ReY®. Although its increase is quite low, the exponent is imputrfar the
extrapolation to experimental parameter regimes. Condpar¢he powerlaw of the ki-
netic energy, it becomes clear that these two exponentsoareasonable foRe — co.

In this limit the spatially averaged velocity would exce&é driving velocity. The ratio
of Vims/(ri€4) gives a measure for the validity of the extrapolated resattRe ~ 10,
the ratio becomes one. Slightly below this value, the kaetiergy is supposed to
reach the saturated state and become constant. The rigitgfaows the energy dissi-
pation, which is computed from the integ@;‘?’fF -vdV, is plotted againsRe. The
evolution is not quite well understood since it decreasdsnion that fast. The best
fit is denoted by the red dashed line and shows a developmepotional toRe .

Figure 2.29: Snapshots of the three componeritsp), # (middle) andg (bottom) of
velocity field at Re= 107 (left), 4.5 x 10? (middle) and 5 x 10° (right).
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2 Kinematic dynamo onset of spherical Couette flows
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Acting on the assumption that turbulence has
01 Vg 22 emerged so far that it is Kolmogorov-like, the
o 0:1 energy dissipation rate should evolve like-
' 0 (Vo/Qid). The velocity of the energy carry-
01 ing vortex is denoted by, and represents the
vortex of the driving force and should be pro-
portional toQ;d. Thus, the energy dissipation
v \ 0.05 v should be constant.
) 0 E The shape of the velocity field is shown as
/ 005 -02  snapshots in Figur€E_2ZP9 for the three dif-
ferent states: Axisymmetric (left), first non-
axisymmetric instability (middle), turbulent
04 08 state (right). At low Re, on the left side, the
0.3 v 086 shape is axisymmetric. The radial component
0.2 %4 (top panel) shows the equatorial jet, which is
01 comparably thick to that one of the smooth sur-
face simulations. The boundary layer, which
_ can be seen i, (central panel) and, (bot-
Figure 2.30: Temporally and zorllally AVom panel), has increased as well. As it was
eraQeF’ compgnents of the. radial (t0p<);11ready mentioned, thg¢-velocity at the inner
meridional (middle) and ammuthal (_bOtboundary is not equal to.® anymore so that
to.m) component of the velocity f|e_Iin cannot be seen as the time scaling quantity
W.'th smooth (left) and rough boundanez?tnymore. Due to the change of the boundary
(right). force the ratio of toroidal to poloidal kinetic
energy has changed. The maximal radial ve-
locity is only one third of the maximum value of thiiecomponent, as well as the
component. In the short range of Re Re < Res the non-axisymmetric instability can be
observed as a propagating wave with azimuthal wave number2 (middle plot). The
equatorial jet is bent up- and downward due to the instgbiilbompared to the snapshots
of the smooth surface simulations, it can already be seehew-component that the
momentum transfer due to the force term increases the welagiplitude in the entire
volume. Finally at the highest Re, the regularity of the flsweompletely broken and the
velocity field is getting increasingly small-scale. Congzhto the smooth surface simu-
lations, v, has significant values, almost all over the entire volume.
These diferences at higRe become more obvious in Figie .30, where the temporally
and zonally averaged components of the velocity field of actmsurface simulation at
Re = 970 and of a rough surface simulationRe = 1100 are shown. The radial com-
ponent in the latter case shows a much stronger jet, whichasready mentioned due to
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2.3 Rough surface

the increased momentum transfer and therewith a higher treassport. This is related
to the thickness of the boundary layengfandy, at the inner core. Due to an extension
of the driving force to one tenth of the gap width, the bougdayer is much thicker and
the momenta are better transferred in the entire volume.véloeity component, has
significant values all over the spherical gap contrary tostm@oth surface simulations,
where thep-component is large only close to the inner sphere. Apant fitwat, the ratio
of polodial to toroidal shear is decreased by about a fadt@r o

In Figure[Z3lL, isosurfaces of 10% of the maximum local litglare plotted. Compared
to the smooth surface simulations (Fig.12.8), the heliciy hlso significant values apart
from regions near the inner sphere. The maximum and minimeliaity is increased by
a factor of 4. Thus, thefgciency of the flow to dynamo action is enhanced as well.

Figure 2.31: Snapshots of the isosurface of 10% of the maxirkinetic helicity at
Re = 106 (left) and 1100 (right). Blue indicates negative hgfieind red positive. The
respective maximum and minimum values a¢€l(58) and (-45.587.17)

51



2 Kinematic dynamo onset of spherical Couette flows

2.3.2 Kinematic dynamo threshold

In the following, the results of the simulations integratithe full MHD equations are
presented. The focus is on the kinematic dynamo onset andytiteemo mechanism in
comparison with the results of the previous section. FiEg shows the dynamo results
of the simulations in theRe Rm)-plane and in theRe,Pm)-plane. The dynamo onset is
indicateted by the dashed thick black line. The developro&éRm, is quite similar to
the no-slip simulations. In axisymmetric flows, no dynamalddoe found for values of
Pm < 10. This implies, that the generation of magnetic field linefow Re is closely
related to the occurrence of non-axisymmetric instabgitiNevertheless, slightly above
this onset aRe, < Re < 100, no dynamo up to Pm 9 could be found either. The reason
for that might be related to the phase velocity of the propagavave on the equatorial
jet. Since the focus is on the turbulent regime in this se¢tm according investigation
with frozen flux simulations was omitted. But, as it was shawRigure[Z.TH, the depen-
dence of the growth rate on the phase velocity is not monat®aad quite unpredictable
and at this particular phase velocity the dynamo might bg wesfficient.

At Re > 100, amplitudes in even wave numben®f the magnetic energy spectrum in-
crease and the symmetry of the magnetic field becomes sitmillaat of the velocity field
with a dominant azimuthah = 2-periodicity. In the left panel of FigufeZI33, the kinetic

Figure 2.32: Dynamo onset in thRéRm)-plane (top) and in thd&e,Pm)-plane (bottom).
Failed dynamos are indicated red and working dynamos bloe tflick dashed line marks
Rm and the vertical dashed lines denote the transitRasandRe,. The straight lines

are Pm= 1 (top) andRm = 600 (bottom).
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Figure 2.33: Snapshots of the magnetic (red) and kinetaccik)lenergy spectrum (left)
and isosurfaces of 20% of the total kinetic energy (red) e0fib ®f the total magnetic
energy (blue) (right) aRe = 106.

and magnetic energy spectrum is plotted agamsh the right panel, isosurfaces of 20%
of the maximum local kinetic energy and 20% of the maximunalonagnetic energy
are shown. This plot emphasizes the close relation of magheld generation to the
propagating instability, because magnetic energy is maadated at the equatorial jet.
There, the magnetic field exhibits a strong toroidal compane

The phase velocity of the propagating wave decreases witeasingRe like in the no-
slip case. Nevertheless it is not suprising that in this csg decreases with increasing
Re contrary to the observations in the no-slip simulatioB#ce, as it was shown in
Figure[ZTH (left), the growth rate behaves non-monotoyagainst the phase velocity.
Obviously, no general conclusion can be drawn from theiolaif the phase velocity to
the dynamo fficiency of the flow. The case of growing amplitudes in odd maxfabe
magnetic energy spectrum (Fig._2.13 does not appear. Ttee sthaere only amplitudes
of even wave numbers and higher harmonics are excited, epipea very short range of
Re. The driving force creates high velocities so that iaéftirces destabilize the equato-
rial jet already at low Re.

At Re > Re,, all modes of the kinetic energy spectrum are excited. Thecity field

is increasingly fluctuating in time arfdm. increases wittRe. According to the smooth
surface simulations (Fig._2Z119), the temporal fluctuatiomge a destructivefiect on the
dynamo.

At Re = 320, them = 2-mode is still the dominant mode. Therefore, it is quiteiast-
ing, why the threshold suddenly kinks and remains at a cahBta = 600 forRe > 220.
Obviously, at a certain point, the raising amplitudes ofghmll-scale velocity field fluc-
tuations have noftect on the dynamo quality anymore. In Figlire 2.34, four teraibo
and spatially averaged spectra of the turbulent rate ahsarad the magnetic energy are
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2 Kinematic dynamo onset of spherical Couette flows

|1/

Figure 2.34: Temporally and spatially averaged turbulate of strain (black) and mag-
netic energy spectra (red) plotted agaihat Re = 218 (top left), 525 (top right), 825
(bottom left) and 1100 (bottom right).

plotted against for Re = 218 525825 and 1100. The spectra show that the peak of
I?Eyin, which marks the viscous dissipation scale, is shifted tallem, as it is expected.

At Re = 218, the generation of magnetic field lines takes placesopnéethntly at large
scales, like it is the case at smalRe. There, the dominant mode is still = 2 and
drives the dynamo. ARe = 320, the scales where the dynamo is mainly generated
decrease and the dynamo mechanism seems to change. Thefpkakragnetic en-
ergy spectrum shifts to smaller wave numbers, which suggestmall-scale dynamao.
This has already been discussed in helical forced turbeldﬂyt}_B.La.n.d.enb.u}d_(Z).bQ),
|B.La.n.d.euhuLg_a.n.d_NQ.Ldluhh_(ﬂill). There, dynamos occur where between a small
and large-scale dynamo but shifts to large scales as Pmadesie

In the smooth surface simulations, the dynamo acts on larxgiesdue to the boundary
shear layer and on a second intermediate scale, which isiagsbwith the scale of the
equatorial jet. In the rough surface simulation, no suadaicale in the magnetic energy
spectra can be identified, since the shear at the boundagy imyot distinct anymore.
Nevertheless, a scale of the equatorial jet and the bourdgey can be obtained from
the temporally and zonally averaged velocity field (HIg.®.3This can also be seen in
Figure[Z.3b, where the magnetic and kinetic energy spectramitted into toroidal and
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2.3 Rough surface
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Figure 2.35: Toroidal (red) and poloidal (black) magneldt] and kinetic (right) energy
spectra plotted againsat Re = 970.

poloidal parts. Obviously, the magnetic energy spectravsiim small-scale dynamo, so
that the maximum in the spectra can be associated with ammatbBate scale dynamo as
well.

At Re = 1100, the resistive scale is already within the inertiagersince Pm= 0.7.
There, the intermediate scale of the equatorial jet is oflammarder than the viscous scale
and the small-scale dynamo becomes the dominant magnetigyegenerating mecha-
nism. Nevertheless, it has to be pointed out that a cleae s&garation is not obvious
in the spectra, which complicates the interpretation. &toge, additional simulations
were made in which the mean flow was subtracted from the \glbeld in the induction
equation. In these simulations acting dynamos suddenlydgiwn, which indicates that
a large-scale mean flow is still necessary to generate thendgrand that the turbulent
eddies are not able to sustain it alone.

Although the shape of the boundary shear is smeared overithiegdrange compared to
the sharply sheared boundary layer of the smooth simulatierdynamo mechanism can
be seen as similar, since the basic topology of the flow isdh&es Therefore, the max-
imum in the spectra of the magnetic energy must be due to a,sghlch is comparable
to that of the equatorial jet, which is definitely larger thtae viscous scale and the dy-
namo is not a small-scale dynamo but a dynamo at an interteestiale. Obviously, the
resistive scale and the intermediate scale are also notategasificiently. The dynamo
threshold, therefore, is seen constant for even higeerThe turbulent tail of the kinetic
energy spectrum just elongates and the generation of meagmetrgy occurs further on
within the inertial range.

In this dynamo threshold, the bump, which is supposed toapgePms 1, cannot be
observed as well as in the Workl.o_f_B.La.n.d.e.nhULg_a.n.d_NQ.thhﬁm_’bZ The reason for that
could be, on the one hand, that there is no bottleneck visililee kinetic energy spectra
or, on the other hand, it appears at lower Pm. The regionGf § Pm < 0.2, where it

was found b)LBo_m;LeLbL(Zde__Zd)O?) in the dynamo thresholdld not be reached in
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2 Kinematic dynamo onset of spherical Couette flows

the simulations either.

In Figure[Z3b, the threshold of both sets of simulationspoéted against Re and Rm
together with the results (])Iﬁ_u.enLlIJ;La.nd_C.aJdln_dOlO). n@aring the two dferent
surface types of this chapter gives a significaffifedence in the range of Re, where the
two flows are completely destabilised. This leads to esaintifferent ranges of rota-
tion rates. The results of the smooth surface simulationvshebmpared to the results
of |G_u.enL'LlI;La.nd_C.a.Ldj|n|_(20_’l0) a quite similar developmextzounting for the fact that,
there, the non-linear equations including the Lorentzdae solved. Due to the Lorentz
force the wave-like motion at Re< Re < Re; cannot evolve urféected as in the kine-
matic case. At high Re, where the dynamo threshold kinkse@thteau, it is not clear
whether the other curve would do so as well, if Re was incietadgtle bit further.

The extrapolation of the numerical results to the paranreggme relevant for the liquid
sodium experiment in Maryland has to be regarded careflitgt, the kinetic energy in-
creases witrﬁel/z. Only a saturated state could give a certain result in thiz Ra— co.

It is not clear, up to whiclRe this exponent would be correct. Secondly, the time sgalin
Qi is not equal to one, as it is shown in Figlire 2.29 and dependieofsee fig[2.28).
The respective power laws fof,s andQ; are inconsistent foRe — co. Hence, the ratio
of vims/(ri€2;) has to be seen as a measure of the saturation state and nsusaler than
one.

Based on the obtained power laws, the dynamo threshdinat= 600 with Pm= 10-°
(liquid sodium) giveRRe = 6x 107 for the experiment. The extrapolation of the kinetic en-
ergy up to this value yieldByi, ~ 300 andv;,s ~ 6.6. The temporally averaged boundary
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Figure 2.36: Kinematic dynamo onset with smooth and rouginbdaries and the results

of Guervilly and Cardinl(2010). Vertical dashed lines dertbie transitions Reand Re

56



2.3 Rough surface

rotation rate i€)/ ~ 9 and Ré~ 9x 10’ gives finally a frequency of abolit~ 14s™. The
ratio of averaged to boundary velocity, however, yields/(riQ2;) ~ 1.4 so that this result
has no validity. WithQ/ ~ 9, the kinetic energy can be at le&}, ~ 140. This represents
the case, that except for a thin boundary layer at the oubarspthe fluid velocity within
the entire volume is almost equal to the boundary velocityis Hives Ré ~ 1.2 x 108

with a rotation rate of ~ 19s™! and can be seen as lower limit. The experiment is able to
spin the inner sphere with a rotation frequency o§15Even though the obtained result
is some kind of a lower limit, in this configuration no dynanamaccur.
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2 Kinematic dynamo onset of spherical Couette flows

2.4 Conclusion

In this part, two diferent surface types were applied to drive the non-rotafugscal
Couette system in order to investigate the capability of fiti@vs to generate a dynamo.
So far, dynamo experiments in spherical geometry failediasn a dynamo and recent
results of numerical simulations Mumﬂ&andﬁdrdi@lé) found that the condi-
tions to sustain a dynamo cannot be achieved by sphericat@oflow in experiments.
Therefore, another driving mechanism, which intend to $ateua rough surface, was
investigated. By means of this, théieiency of the flow to dynamo action shall be in-
creased. Based on the results, the spherical Couette erques like that one in Maryland
needs to be improved in such a way that it might be a capablestais a dynamo.

The parameter range of Re can be divided into three regiomfiich the characteristic
of the velocity field changes significantly. At low Re, the flisvaxisymmetric where
no dynamo occurs at moderate Rm. At a criticaj,,Remall perturbations develop and a
non-axisymmetric instability with a dominant azimuthalweanumbemm = 2 occurs as
a propagating wave on the equatorial jet. The azimuthal wawveber remains the same
in this rangeRe, < Re < Re, and only the boundary layer thickness and the phase ve-
locity of the drifting wave changes slightly. Within thistge of Re, the symmetry of the
magnetic field changes significantly and the dynamo threstietreases abruptly. The
first increase of Rycould be found in the decreasing phase velocity of the prajag
instability. The reason for sudden change in the symmetth@fmagnetic field could
only be narrowed down. It seems to be triggered by the timewmggnce of the velocity
field, which could not be captured by the frozen flux simulagisince the actual field is a
superposition of the dominant mode and higher harmonicsiddbly, the change in the
efficiency of the flow to create a dynamo is directly related toliteaking of the sym-
metry of the magnetic field. This could be confirmed by simafet where the dominant
azimuthal wave number im = 3 and every third highem are gained as well. Here the
symmetry ofB is always the same asso that Rmg increases monotonously. Still, the
reason why the configuration with a broken symmetr8aé more dficient to dynamo
action, remains unclear.

In the third region, at Re Re; the regularity olv is entirely broken and at high Re, it be-
comes Kolmogorov-like turbulent. The dynamo thresholdsha plateau @&m. ~ 800,
which remains constant at high Re. Since the dynamo is sestait large scales, a fur-
ther increase of Re only elongates the turbulent tail of fgega and has ndtect on the
dynamo. Surprisingly, these results resemble tho%ﬂﬁhﬂl}mn.d_c_a.tdih kZCLIJO), but
only up to the Re where the threshold kinks to the plateau. t@vial reason could be
that Re has not been increasedisiently to see this plateau. Nevertheless, the extrap-
olation to relevant values of the dynamo experiment in Maglyields rotation rates of
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f ~ 223s71, which is an unreachable number. Apparently, the main prabs the lack
of momentum transfer from the boundary layer to the fluid. Fimer sphere has to ro-
tate very fast, since the energy is not transferi@diently in the entire volume. Another
problem is that the high ratio of toroidal to poloidal veliycshear. The magnetic field
is only sheared significantly within a small layer near theeinboundary and near the
equatorial jet and the dynamo circle is not closed uniformly

Including a driving force in the Navier-Stokes equatiore ystem intends to simulate
the spherical Couette flow with a rough surface, which lirties boundary layer of the
flow to a thickness of one tenth of the gap width. In this waw thtio of toroidal to
poloidal shear of the flow is reduced and the momentum trafrsfie the boundary layer
to the whole gap is increased. From this it follows that theekic helicity is increased
as well and is not located near the boundary layer only. Therkatic dynamo onset of
the system shows the same qualitative distinction intoetihegions as the result of the
smooth surface simulations: An axisymmetric flow, the datation of the equatorial
jet at a comparatively low Re with the same dominant azimwtage numbem = 2 and
finally at high Re Kolmogorov-like turbulence wheRen. ~ 600 remains also constant.
This value is lowered by one fourth so that the flow can be dEghias more fécient
which is found to be due to the better ratio of toroidal to pidd shear. The dynamo is
generated at scales larger than the viscous scale anddtesieiependent on Re. Coming
from thisRm, a lower limit of the rotation rate of the experiment in Mamytl is eval-
uated to bef ~ 19s71, which unfortunately is still beyond the experiment’s pbiiies
dBj.euJ.o.r_d_eLa]ILZOiZ). The dynamo threshold has to be laver®&m, ~ 320 in order
to get a lower limit off ~ 15s1. For this purpose, the ratio of poloidal to toroidal could
be improved by taking an additional poloidal forcing termoirder to find the optimal
efficiency of the flow to dynamo actidh With Re ~ 3.4 x 107, however, this is still
far above where the kinetic energy is supposed to saturatshwiould be still another
uncertainty.

2Private communications with Dr. Emmanuel Dormy
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3 Magnetic field saturation in a
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3 Magnetic field saturation in a rotating G. O. Roberts likieet flow

Figure 3.1: Left: Sketch of a convectional driven flow sturetin a fast rotating spher-
ical shell which forms a vortex columnar structure, soezBusse-Columns ( se
(1975)). Right: G. O. Roberts flow in a periodic box of widthnd heighL. The flow in
the x, y-plane is indicated by arrows and taeomponent by the underlying contour plot.
Red denotes up and yellow down streaming flm 1972).

Most of the celestial bodies like stars or planets, whichansa magnetic field by dy-
namo action are rotating very fast so that Coriolis forcasitates over diusion dfects.
Additionally, in some objects, the flow is driven by conveatidue to high temperature
gradients from the inner core to the outer boundary. In syskems the velocity field
has a specific shape, which is nearly independent with regpéee axis of rotation due
to the Taylor-Proudman theoreln_(Q_Le_e.nﬂ{;b.a.n_I1968) and apmseg to form a series of
vortex tubes with alternating up and down flows, which aralpelraligned with respect
to the axis of rotation. Those vortex tubes which are showes@tically in the left panel
of Figure[31 are known as Busse colun@llls_s__e.lm?S). arfeamgrable to dynamo
action due to their helical structure. It is believed tha& tlow structure in such celestial
bodies is quite similar.

The magnetic field that is generated in many stars can haveeatdele dipolar compo-
nent t_M.o.L'Ln_eLaH_ZO_dS). The relation between magnetic $ielidconvection-driven stars

and their rotation rate has already been investigateld_b;ngLand_Em&ili_ﬂé84),
Noyes et al.|(1984), Pizzolato ef al. (2003). Furthermdrieas been found that in slowly

rotating low-mass stars (M-type dwarfs) the surface magfietd increases with the ro-
tation rate and at a certain rotation rate, the surface mugiedd becomes independent
of the rotation ratel_(Bﬂ'Ln.em_elual_ZbOQ). The dependentteeahagnetic field in rotating
systems on the rotation rate has also been invﬁedrmaﬂyein spherical geometry

byl.C.hLislenﬁ.en_a.nd_AubIEI:L(ZbOb)_ﬁ.Qhﬂm.eLl? 01@)mrotating plane layer con-

vection er@Z). However, no consistent dependeari the magnetic energy on
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3 Magnetic field saturation in a rotating G. O. Roberts likeel flow

the rotation rate could be found. The impact of the rotaticthe system on the generated
magnetic field in dynamos is thereby barely understood.

In order to better understand the mechanism of the dynamerggon in such flows and
the saturation process of the magnetic field, the G.O. ReHert is taken as a simple toy
model for analytical approach @972). One plessipression for this flow is

V2 sinEx) cos&y)
VR=Vo|— V2 cosE&x) sinZy)|. (3.1)
2 sinEx) sinZy)

On the right hand side in Figuke 8.1, the G. O. Roberts flow @wshin a vector plot in
the (x, y)-plane with an underlying contourplot showing theomponent of the flow. It
is a two-dimensional periodic flow, where tle andy-components of the velocity are
arranged in vortex cells of width/2, in which the z-component of the velocity field is
pointing alternately in positive or negative direction.€lieightL of the box defines the
periodicity length of the magnetic field. The growing modeltg magnetic field in the
kinematic regime has the following shape=Hcos 2rz/L, sin 2rz/L, 0]. The length scale
of the growing magnetic field mode is thereby much larger tharlength scala of the
small-scale velocity vortices and the dynamo becomes the mficient the larger the
aspect ratid_/a is. Due to this scale separation, the evolution of a magfietat in this
velocity field can be determined with the help of mean field)tbld.KLa.us_e_a.n.d_Rad.Ier

). The back reaction of the magnetic field on the flow waltbrentz force is small
compared to the driving force close to the kinematic dynamsea Thus, it is treated as
a weakly non-linear perturbation.
This theoretical approach has already been done in noting@i@. O. Roberts like driven
flows byllngn_eI L’L&QI7) anl:IlLIgn.e.r_a.n.d_B_ulSie_(ZIOOl) in orlecompare analytical
calculations with experimental results of the Karlsruhpeafxnentl(.M.uLLQLa.n.dleegﬂt

), which actually was inspired by the G. O. Roberts flolae Agreement shows fun-
damental insight in the relevant processes of the sataratgechanism.
In this chapter, this analytical approach of weakly nomdintheory is extended to a ro-
tation of the system about theaxis and compared to respective numerical simulations
of the full MHD equations. The influence of the rotation on #pecific modes in the
saturated regime are investigated in the mean field picitire.diferent contributions to
the Lorentz force, which are based on large- and small-soatgmetic fields, are studied
with respect to estimates of the magnitude of their ampdisud
Although these calculations are performed in the laminginme, this study can give basic
insight of the interaction of the velocity and magnetic feeld a rotating system. Con-
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

clusions with respect to other helical driven turbulent eledor even real objects are
reasonable, since parts of their magnetic field are beliewezktend over large length
scales in both regimes and are generated by convectionahosl with a similar mean
flow.
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3.1 Weakly non-linear theory

3.1 Weakly non-linear theory

On the basis of the Navier-Stokes equation and the conyieqgitation of an incompress-
ible fluid

1 1
OV+(V-VIV=-"Vp+WW+F+—(VxB)xB+2(vxQ), V-v=0, (3.2
P Hop

and the induction equation

B + V x (B x V) = AV?B, V-B=0, (3.3)

the saturation mechanism of the magnetic energy and itsxdepee on the rotation rate
Q is investigated with the help of mean field theory and weaklg-tinear theory.

The magnetic field

The length scalé of the magnetic field mode, which is generated within the ®@berts
flow is much larger than the sizeof the vortices. Due to this scale separation the mag-
netic field can be split into a z-dependent mean part averagedone periodicity cell
and a fluctuating parL(.ISLa.us.e_a.n.d_REMiI.QLi980), given by

and fullfilling the equations

(B) = (B+b) =B, (b) =0, (3.5)

where the brackets mean averaging over one periodicityrcelland y- direction

1 X+a y+a
()= ?f dxf dy... . (3.6)
X y

The mean magnetic fielf is thereby independent afandy and varies on a lengthscale
L in z-direction. Performing the averaging of the magnetildfithe induction equation
(eq.[3B) yields
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

9B +(V x (b xV)) = 1V?B. (3.7)

Subtracting the averaged induction equation (gl 3.7) fitmenfull induction equation
(eq.[3B) yields the induction equation foas

b —(B-V)V+ (V- V)B = AV%h — {V x (b x V) —(V x (b X V))}. (3.8)

Close to parameters of the dynamo onset the time derivativesosmall compared to the
diffusive part §;b < AV?b). It is assumed in the following

Vo2 1 EEI <1 = Ib| < [B| (3.9)

with the amplitudeys, of the G.O. Roberts flow such that equatiod 3.8 reduces to

AV?h = —(B - V)v (3.10)
andb turns out to be

1

- 2—/l(%)z (B-V)v+ O(%)Z, (3.11)

where only terms of zeroth order &jL are left. Inserting the approximation bfinto the
induction equatiofi 317, the evolution of the mean magnedlid fs given by

OB + (V x {2_14 (%)2 (B V)v] x v}) _ VB (3.12)

The velocity field

The fluid motion is driven by a time independent force fiEld= F fg within a rotating
frame of reference, whereas the rotation is abourtheis. The evolution of the velocity
field v is described by the Navier-Stokes equation in equéildnThi equation includes
the Coriolis force and the Lorentz force term, which is resplole for the mangetic field
saturation. In the stationary state at low Re the inertrahseas well as the time derivative
can be neglected. In the following the rotation of equalidh\8ill be used so that the
pressure gradient term vanishes, giving
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3.1 Weakly non-linear theory

1
0=VvWx VWV + FVxfr2Vx (Vx Q)+ —V x [(VxB)xB],
Hop (3.13)

V.-v=0.

Using the mean field approach f8; the Lorentz force term splits up into three non-

vanshing terms

(VxB)xB:(Vx§)><§+(Vx§)xb+(be)x§. (3.14)

Due to the derivative dB with respect ta the first and second term is of first orderifL
and therewith small compared to the third term, which is abteorder ina/L, so that
here it is assumed th&¥ x B) x B ~ (V x b) x B. With equatiof.3.1I1 the Navier-Stokes

equation gives

0=vWx VW +FV xfr+2Vx(VvxQ)
l {
+ —V X
Hop

Near the kinematic onset of dynamo action the Lorentz foscemall compared to the
other forces and is treated as a perturbation term in theviolly. Since the perturbation
is singular, the velocity field, the mean magnetic field aredaimplitude of the force field

are expanded in orders ef

in(i)z(ﬁ-V)v

— (3.15)
51\2y X B}.

V = VRt eVy + €2V + €V3 + ...
F =Fo+eF1 + €Fo + €F3 + ... (3.16)

B = 6§1 + EZEZ + 63§3 + ...,

whereag is an unknown parameter at first.

0. Orderin €

In zeroth ordef=3715 reduces to the simple relation
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

0=vVx VA +Fg-Vxfr+2V x (Vg X Q). (3.17)

The axis of rotation is aligned with the z-axis = [0, 0, Q] so that the Coriolis term is
equal to zero

VX (VRxQ)=(Q-V)vg =0, (3.18)

since the derivative of the velocity field is zero in directiof the axis of rotation. The
Force amplitude is in zeroth order

F() = 87T2/aZVVQ with fR = VR/Vo. (319)

1. Orderin €

In first order ofe the Navier-Stokes equation has no additional terms cordpar¢he
zeroth order, since the last term in equafionB.15, the ltarfarce, is of order B
Hence,v; = 0 andF; = 0. The induction equation in zeroth order represents thetgro
of the dominant mode at the kinematic dynamo onset

— 1/a\;—
2 —
_AVZB, + (V x {ﬁ (Z) [(B:- V)V va}> =0 (3.20)
and yields
~-32 -k, O
B = |kd, -2 0 [B1=0 (3.21)
0 0 -

where the dterential operator is abbreviated By, andk, is the wave number in the
z-direction of the dominant mode of the magnetic field

_Vrav

ved _ WY
ke = —=——3 & V2 2«/§akza. (3.22)

Considering periodic boundary conditiofis, has the following shape
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3.1 Weakly non-linear theory

cosk,z+ 6
B, = By |sink,z+6|. (3.23)
0

The heightL of the box is chosen such thigt = 27/L is the fastest growing mode. The
dominant mode can have an arbitrary phaskie to the periodic boundary conditions.
Since the phase has no impact on the results, it is equal earzéne following.

2. Orderin e

In second order of, the Lorentz force term appears in the Navier-Stokes eguétr the
first time. Thus, it describes the modificationvoflue to the magnetic field in first order

0=vWx VA, +2Vx (V, x Q) + F,- V x fg
1

+—V><{
Hop

The derivative oB; in z-direction is of order AL, wherea$ andv vary on scales /i, so
that in the following derivatives imare neglected, < dy, dy) as far as terms witk are
not involved, becaus@ can indeed become large. The Lorentz force t&gms in this
approximation

V X 1 (E)Z (B - V)Vg

. (3.24)
21\2x 8 1}'

_ in 2y 21X
Vv n V2 sinZ cosZ

U . ~oV
FL=———% Bisin(2k2)| V2 sinZcosZ |- va—R : (3.25)
YPHo 2 CcosZ cosZ °
a a

The x, y-dependence only appears in certain combinations of sircasdvhich leads to
the following Ansatz fow, = (vi, Vo, V3):

2y . 2nX . 2ny 21X
Vi = & COS—= SIn— + a, Sin—= COS——
a a a a
. 2ny 21X 2ny . 27X
= a3 SIn—= CcoOS—— COS—= Sin— 3.26
V2 = ag sin— o T - Sin— (3.26)

V3 = sin@sin@(+ cos@/cos@(
358 a a % a a’
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

This leads to a coupled set of 6 linear equations for théictentsa = [a;...85)

470 7)° x 40
e 16(2)° -16(z) w 0 0
T 4ArQ) 4ArQ) T
-16(%)" =2 42 g6(1) 0 0
o -Zj 0 0 0 16(%) . (3.27)
~®y, 0 0 o -16(z) 0 '
0 0 0 -2 16(z) 0
_20 _ x\3
0 0 25, 0 0 16(%)"]
- "2 i -
% sin(2k,2)
‘/—27'(V032
;;;o/lga
Vo .
_ | oo sin(2k,2)
27'(V()B :
vpo/lpa
27TVoB
;;;o/lga
Vo .
sopa SN (2k;2)|

The last four equations are satisfied éga, = —d,az andd,a; = —d,a4 and the first and
second equations fa, = —az anda; = —a4. Not considering the continuity equation, the
velocity field of second order ig, v,, reads after straight forward calculations

Vo = Bzi(—) £ sin(2k,2) Vg —( 24’ - %)(Z)ZVR
V2
4

Qk - -
+ (Z) " B cos(2k.2) Vo, (3.28)

with ¢ = 1/vpuod and

— V2 sinZ cosZ
Uo=Vo| V2 sinZrcosZ|. (3.29)
2 cosZ cosz”y

In order to fullfill the continuity equation, it is exploitatiat a gradient fiel@® can be
added without restrictions becauge (V@) = 0. The scalar field is chosen in that way
that in the continuity equation no term includifgor others of orde©(a/L) remains, i.e.
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3.1 Weakly non-linear theory

-1 2 (a\® VoQk2BZ
O = fi (9) 02 By sin(2k,2) coséy cosﬁx. (3.30)
Z(g) + ke 128\n/  v2Auep a a
In summary the velocity is given by
2F
V = (1—62)/[1— |§2 2 ])VR
¢B1vov (3.31)

V2

3
Ly (sin(Zkzz) Vo + £ (9) 02
8 \«

- Vo
cos(2k,2) Vo, + —) + O(e“)
v Y

2 a . . . ...
withy = & (g) {B2. Compared to the first order, the induction equation has ditiadal
term in second order iaand thusB, = 0.

3. Orderin e
In third ordervs is zero because of the linear independence to the lower ordene

induction equation in third order is not homogeneous anyemdhe diferential equation
for the magnetic field8; reads

~AV?B3 + 1 (i)z (Vx{[(Bs- V)va| x va}) =

Zf 2; , - - (3.32)
- ﬁ (Z) (V x {[(Bl . V)VR] X Vo + [(Bl . V)Vz] X VR}>
and in a simpler form
Ju Bs = IR (3.33)

with J,, as the linear dferential operator of equatidn 3121 ahgas the sum of the
righthand side of equatidi3]32. The condition for sohibibf equation[3.3P can be
found by the projection of an arbitrary functign

(Y1 3y Ba) = (3(, y I Ba) = ¥ | IR), (3.34)
where bra-kets denote the integration over one periodagtlyin z-direction ancB;ER is
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

the adjoint matrix ofd,,. If yis the kernel ofST,R, it has to begly | Igr) = 0 so that the
differential equation is solvable. Sindg, is hermitian the adjoint matrice is equal to the
original one

-6 —k0, O
g% =0y =|kd, -02 0. (3.35)
0 0 -4
The kernely of J,,, is
coskz+ ¢)
y = |sinkz+ ¢) (3.36)
0

an therefore equal 1, or phase shifted to it by an angte The righthand side of equation
BE ,IR, is

- 82kaoB1(3voB2 — 4AppuoF2) Z?;Ei
512%vugpmns 0 ‘
V2B3QK2alvy vV2ak, + 7| sink;z
" B2 20 277 + ket | SO
Lo (3.37)
32 B2 | (?os X,z
+ F—ne’/lzv,uop sin &,z
0
3vV2 KiaV3 oka+2n sin 32
0s ¥k,z|.

512 75122u0p 272 + kza?

For(y | Ir) = O], the first term in equation-3.B7 yield the condition for theefparam-
eter, which is undetermined,

82 (3.38)

But obviously(y | Ir) = 0 is not solvable for alp, such that equatidn-3.82 has the trivial
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3.1 Weakly non-linear theory

solutionB; = O for a stationary magnetic field.

Time dependent magnetic field

The result of the mean magnetic field in third order hypottessthat the time dependence
of B in the mean induction equation cannot be neglected. Thaisnlto this problem
can be a time dependent phase of the mean magnetid®feld Vpnt), where the phase
velocity vy, is another perturbation term and also expanded Fhe time derivative oB
gives

oB oB

0 — —
E = _VphE = — (Vpho + € Vpp1 + 62 Vph,Z) 8_2 (6 By + 63 Bg) . (339)

The modeB; is stationary in the kinematic dynamo regime, therefgig = vpn1 = 0
and only—e3vph20,B finally appears ing with

—sink,z
~ Vph20,B1 = —VpnoK, | cosk.z |. (3.40)
0

On account of this the second term in equaflon13.37 becomesdidn of vpy, and
Yllry=0 |¢:7r/2 gives

1 B2k\28°Q (27 — V2aK)
51215A4%2u0p (272 + k2a?2)

This demonstrates that in third orderfthere is a time dependent solution. Using this
dynamic approach, the velocity field becomes

1 ) - 2 3 k,Q - Vo
(1 + 5627) VR+ €2y (sm X,z Vo + i (E) 2 cos X,z Vg, + 7) + O(e“) . (3.42)

V
8 \x y

The factore?y indicates the ratio of Lorentz to driving force and , thusiegia measure
for the accuracy of the approximation. The magnetic fieldhofdt order ine has the
following shape:
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

AT o
3 " 64r2 Hop AV sin <z
' (3.43)
553 ) - sin Xz
L1 a° B3Ok (V272 + V2k?a? — ank) o5 Az
51275 Augv?p 2n2 + a?k? 0
According to that the magnetic energy is
1 (M1- 1.4 1 —
Eg = T f§|B|2dz: 56255 + ZEGI|83|2dZ+ O(€®)
e[ V2 EBRY (VB Bl (VEr + VAR - an) |
= BT 1282 opdy 102455 Augr?p 272 + a2k2 €/
(3.44)
The force field is given by
F=8(%) o+ o0 (3.45)

Summary

The perturbation expansion was extended up to third ordeaird the respective velocity
and magnetic field were determined. The divergence of trecitglfield is zero, neglect-
ing terms of orders im/L or higher order. The magnetic energy is dependent oA Eikt
surprisingly, it appears first in third order ef The equation for the mean magnetic field
in third order ofe only becomes solvable incorporating a time dependenceeakigpec-
tive field and predicts a drift of the dominant mdgle The phase velocity is proportional
to EK* and therewith a new phenomenon which does not occur in theatating case.
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3.2 Results of the numerical model

In the following, the full equations—3.2 ahdB.3 are investigl numerically in a periodic
box model. The box has a quadratic base area of vadiid a heightl. The entire system
rotates about the z-axis, which is defined as perpendicuidnet quadratic base area and
rotates with a rotation rat®. The flow is driven by a volume force, which generates
the G. O. Roberts flow in the laminar purely hydrodynamicmegi Both equations are
integrated simultaneously in a pseudo spectral code, whereelocity and the magnetic
field are expanded in Fourier modes. The transformation fieahto spectral space and
backwards is realized by the fast Fourier transformatianine rift3 from the Numerical

Recipesl(EL&ss_eL'MSG):

V= Z a gikxxrkyyrkaz) | ai*jl d(xixrkyjy+kaz) (3.46)
ijl

a;j contains the three Fourier amplitudes of the corresponaiiode forvy, v, andv, and
a) is the complex conjugated. A second triple of arrays stdresdspective amplitudes
for the magnetic field, which is expanded in the same way. eSihe magnetic and ve-
locity fields are real, only half of the amplitudes have to tmed. The time step is a
combination of an Eulerstep for thefldision part and a second order Crank-Nicolson for
the non-linear terms and the Coriolis force.

3.2.1 Non-linear Navier-Stokes equation
The evolution of the velocity field is described by the full\i&x-Stokes equation, includ-

ing the Coriolis force, witl2 = Q&,, and€, the unit vector in z-direction and the Lorentz
force

1 1
OV+(V-VIV=—"Vp+ WV +F+——(VxB)xB-2(QxV). (3.47)
Y Hop

The force fieldF is chosen such that witR = 0 andd;v = 0 a solution ofv is

V2 sinEx) cos@&y)
V=Va|— V2 cosEx) sinEy)|. (3.48)
2 sinEx) sinZy)
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

According to the result foF in the analytical calculation (e@._3]19), the force fieldhs t
same except for a gradient fidld which depends on the rotation rate and does not appear
in the vorticity equation, because %fx (VL) = 0.

F- 8(%)2 WaVe + V - L(Q) (3.49)

In this case, the gradient field is balanced by the pressackat, so that in fact it doesn’t
contribute to the force term. The pressure is solved in sglegpace by taking the diver-
gence of equation-3.2.1. By this, it is guaranteed that thecitg field is solenoidal.

The dimensionless momentum equation is obtained by thangaafithe variables as fol-
lows:

X — xXa
\Y; — V'V,
,a
t - t'— (3.50)

For simplicity the primes are omitted in the following ancetbimensionless Navier-
Stokes equation reads

1_, 1
v+ (v-V)v=-Vp+ R—eV v+F+(VxB)xB—2@(ezxv) (3.51)

with the Reynolds number Re v, a/v and Ekman number Ek v/Qa?. The evolution
of the magnetic field is described by the induction equdii@) ®hich in dimensionless
form reads

1
OB +Vx(Bxv)= WmVZB (3.52)

with the magnetic Reynolds number Rawv,a/A.
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Dimensionless analytical results

The force terms in the analytical calculations and the nigsaksimulations are not the
same (compare ed. 3149 dnd"3.45). The definition of Rm wittdifierent amplitudes
Vo andv, of the G. O. Roberts flows are not comparable by implicatiomat® why the
amplitudes of the force terms themselves have to be compadiezimagnetic Reynolds
number Rm= v,a/1 is defined by the velocity amplitudg, which is generated by the
force amplitude (ed._3:319) in the absence of any magnettBiet 0 and time derivatives
ov = 0. Accordingly, the force amplitude=3145 generates a G. (heRs flow with the
velocity amplitudevy

Vg=Vo+ — (=] €B? . 3.53
g=Yot 32 (JT) € Yoo ( )

The force terms and thus the velocity amplitudgsindv, have to be the samg = v,,
so that wit{-3.2R the definition of Rm is given by

21/43a262I§2 \/5
Rm = +/2 V2ark Lo/= 3.54
Vaarl + 16r Apuev VL ( )

In order to point out thaiy is the amplitude of the driving force in equation3.45, itrese
to be useful to label it dierently in the following. The magnetic energy in dimensiona
formis

B2 )2 167 2704 L
—— = Z(Rm-Rm)———— /=, 3.55
it 2 M) — 2 (3.55)

with Rm, the kinematic dynamo onset

_ Vol _ _ a,
Rm = == = \2V2ark, = 4\/§L7r. (3.56)

Apart from that, the parameters of the numerical simulatmst obey the assumptions,
made for the analytical approach (seelegl 3.9). The kinerdgtiamo onset is given by
the aspect ratio of the periodic box. In order to get Rm1 (e.g. with Rm = 0.1),

a large aspect ratia/L = Rn¢/(4V27%) ~ 1.8 x 10 has to be taken. The saturated
state is reached when induction anéfusive processes are balanced. Since the dynamo
is sustained by the-effect, the induction of magnetic energy takes place on timkeesca
a/V,, while diffusion occurs on time scalég/A. Finally, the time, the system needs to
saturate, is dominated by the slower process, to which ter @idapts immediately. The
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

dimensionless diusion time ist, ~ Rm(L/a)? and in this case- 1(°. The aspect ratio
has to be chosen in the way that Ren 1 is reasonably satisfied and that the saturation
time is not too high. In the simulations that are presentederiollowing the aspect ration

is taken ad./a = 650 and thus R~ 0.2931. The spatial resolution in all direction is
dim = 8, which includes the first four Fourier modes and the mead.fighe parameters
are varied from Rm= 0.295... 1 and Ek= o ... 10°3 with Re = 10. The most interesting
outputs are the kinetic energy

1
Ek.num = > f Iv|?dV (3.57)

and the magnetic energy

1
Egnum= > f IB]2dV (3.58)

with the dimensiorpueV2. Taking this dimension, the analytical result deduced from
equatiorL.3.85 becomes

1B Rm-Rm)8r2Y* [L (3.59)
B 2puoV?  RmRe 3 a’ '

Equatior33.4¥ represents the magnetic energy in third adeémhecomes with the same
dimensions

2
2
Egs = (T\gﬂ) E3,Rn? R

(3.60)

V2 (V22 + V2k2a? — ank)
1024 272 + 22 '

+ E3, EK* R€ RnY (akz)z(

Hence, the amplitude of the total magnetic energy depen&&kamd Rm and can be split
into different parts with dferent dependencies

A (Rm—-Rm)

~2
=+ B f(Rm)+ C f(Rm) EK”, (3.61)

EB:

where f(Rm) = TR’ gng
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8r27V4 L1
A= il
3 aRe
V2 Y 8r2v4 (L
B= -
(12&2) : —Re (3.62)
gr 214 [ 1 (V2r? + V2Kea? - ank))
c_8n \/iRe(akz)z (V2r? + V2Kk?a? — ank) '
3 a 21677 2n% + a2k?
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

Comparison of numerical and analytical results

The magnetic energy obtained from equalion13.61 and thec&sp numerical results are
shown in Figuréd_3]2. Lines denote the results of the anallytialculation. The symbols
are data points of the numerical simulations. The first Fegun the left side shows the
total magnetic energl¢s num Iin the non-rotating case and the contributions @feitent or-
ders ofEg plotted against Rm. In the non-rotating case, the appraximanatches quite
well with the numerical results up to Rm0.4, which is about one third overcritical.
The right upper plot shows the absolute deviation of the raagenergy of the rotating
system from the non-rotating onEg(Ek = ) — Eg(Ek)| for each Rm. This is repre-
sented by the analytical expressionf(Rm) EK? in equatior 3.61. At Rk 0.32, the
magnetic energy increases with the rotation rate as corditonyethe analytical results.

25

---Eg,*E

E_ .+E

— EB,l

B3’

 Ek=15x10"°
; Ek=c0

= B1 B3

L <> EB,num; Ek=eo

0.4

g 5 T, \ﬁ\g
f10° | TR o M0 1
’“510 N o o EK2
L x Rm=0.295 * *-. ¢
= 0.297 “%
& x 0.3 xS
0.302 x
© 05
° 0.7
ol 1 ‘ ‘
‘ ‘ : 1 -3 —2 = 0
0.% 0.8 1 10 10 10 10
m Ek
10°
—-rRm )3 o/ )
107 (Rm Rmc) /Rm ) o
o
T10° 4 o
04
5
. Rm-Rm )/Rm
O 10 Y ( o
s
o
10 o S
-11
10 : :
10° 0° 10" 10°
Rm—RmC

Figure 3.2: In the left pandtg IS plotted over Rm together with the analytical results
of the magnetic energy of first ord&g; (black), the total magnetic enerdss without
rotation (red) and at Ek 1.5 x 1073, In the middle figure the absolute amplitude of the
rotationally dependent part of the magnetic eneEpfEk = o) — Eg(EK)| is plotted over
Ek. The red dashed lines indicate a proportionality to’ERhe amplitude of each fit in
the middle Figure is plotted over Rm on the right hand sidesmavs a proportionality
to Rm- Rm./Rm (red dashed). The corresponding analytical expressuas g (Rm—
Rm.)3/Rm (black dashed).
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For Rm > 0.32 the magnetic energy decreases with the rotation ratgriSigly, the
dependency on EK is very robust even for Rns 1, which is not shown in this plot. The
red dashed lines denote powerlaws of £k

In the lower panel, the fitted amplitudes to each set of sitiaria at a certain Rm in the
upper right figure is plotted against Rm. It shows the devalemt of the amplitude of the
rotationally dependent part &g over Rm. Related to equati@n-3161, this plot represents
the functionC f(Rm). Contrary to the analytical results, where thelependency appears
in the third order of the perturbation expansion, the amagés show a (Rm Rm;)/Rm
development up to Rns 0.303, which is only 3% overcritical. The black dashed line de-
notes the third order dependency of (RiRm.)®/Rm of the analytical equation, whereas
the amplitude is adapted to fit within the plot. In fact, it i®flers of magnitude lower,
which is already close to the numerical accuracy. Besidesnhtmerical results exhibits
a decreasing trend of the amplitude of the rotationally ddpat part of the magnetic
energy for higher Rm- 0.303.

In order to find the reason for this inconsistency, the magreetd the velocity field are
decomposed into their Fourier components. Therefore,dbpective amplitudes of the
modes of equation_3.16 are compared with the correspondialgtecal amplitudes. The
amplitudes of the velocity field modes of the G. O. Roberts #oevup to a certain accu-
racy

ay221 = IAR
ay281 = IAR
= —ia
21 = TlaR (3.63)
dy281 = l1AR
Az221 = \/éaR
Azo81 = ‘/éaR
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and additional modes with a higher wave vedtnin z-direction

with

Ayo3 =g + ib
Ay 283 = —adp — ic
Ay 227 = —a1 + ib

Ay g7 = Ap — ic

ay03=—a —IC

ayo83=—ay —Ib
Qy07=ay —IC
ay87=ay —ib

dz 23 = %(b + C) + ig(al + a2)
87083 = —gz(b"‘ C) - ig(al + ay)
dz o7 = —gz(b-l- C) + ig(al + a2)

V2

V2
Az 287 = 7(b +C) — '7(31 + ay)

kX2:— kyzzg kZ]_:O
2 4n
ke = - F k2T
Ys a B=T
4
kZ7 = —T

and give the following velocity field taking = 27x/a andy = 2ry/a
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| sinXcosy
Vium = Ar| — COSXSINY

| V2sinXsiny

| — cosxsiny —sinXcosy]
+A;sinZXk,z| sinXcosy |+ A;cos X,z| cosXsiny

| V2 cosxcosy 0

| cosxsiny — sinXcosy
+AzCc0s X,z| sinXcosy |+ AssinZz|- cosXsiny

|- V2 cosXcosy 0

(3.64)

(3.65)
(3.66)

(3.67)

(3.68)



3.2 Results of the numerical model

with Ag = 2ag, A; = 2(a4 + &), A, = 2(c— b), As = 2(c + b) andA, = 2(a4 — &,). The
dimension of the velocity field ig,, and therefore the dimension of the analytical velocity
field in equatiod3.42 isy and gives

Vg 2 | Vo (3.60)
ZlsinXk,z— + —akEkcosX,z—+ ——————
’ ( ! o Vo " 8 kZ & Vo - 8r* — 4a2k§7'[2 Vo

with & = Eg ‘/anRe\/? andvg as the gradient of in x andy direction. Here, the
derivative inz-direction is neglected since this term is of higher ordea/ib. = indicates
the ratio of the Lorentz force to the driving force. It givesiaasure for the validity of the
approximations in the analytical calculation. In the lefhgl of Figurd_312, the numerical
results agree with the analytical results up to Rn0.4 where the ratio of Lorentz to
driving force iIsZ ~ 1/5. The analytical velocity field is composed of the following

modes:

[ sinXcosy —cosxsiny |

v . o

— = Bgr| —cosXsiny |+ B;sinZk,z| sinXcosy

Vg . ~ N
V2 sinxXsiny V2 cosxcosy
: _ ! (3.70)

0 —sinXcosy
+B;3cos %,z 0 + B4 sin X,z| - cosXsiny| .

|- V2 cosxcosy 0

The amplitudes of the ffierent modes of the numerical simulations and the analytic ca
culation are plotted over Ek in Figure B.3. The symbols amragata points of the sim-
ulations and the lines represent the amplitudes of the acallyesult. At Rm= 0.3 (see
left hand side of Fig[Z3]13), the amplitudég and A; split in rotationally dependent and
constant part. The constant part of both matches quite widllthve analytical valueBg
andB;. The corresponding amplitudég and A, of the rotationally dependent solutions
B; andB, are quite diferent and show no monotonous behaviour. Only atBl?, the
increase might be nearly proportional to Ekbut the data coverage in this region is not
suficient for verification.

At Rm = 0.7 (see right hand side of figr—3.3), however, the Ek-deperidsraf the
analytical and numerical amplitude&s( A;) and B3, Bs) coincide quite well. Only the
amplitude of the respective dominant modé&etis from each other. At Rms 0.7 the
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow
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Figure 3.3: Amplitudes of the velocity field at Rm 0.3 (left) and 0.7 (right). The
rotational parts oAr andA; are colored red.

magnetic energy of the corresponding simulation is alresagyificantly higher than the
solution of the analytical result (cf. fid._3.2 (left)). In thocases, the dominant mode
is dependent on Ek, which must come from terms, which have been neglected in the
analytical approach.

The modes of the mean magnetic field are only dependentDimez-component is zero.

Ax112 =g + |b1
ax11s = a4 — iby
ax114 = —ap — ib

Ay 116 = —dp + |b2

_ (3.71)

ay112 = —by +iay

ay118 = —by —iay

ay114 = —bp +ia

ay116 = —bp —iay

with
kx; = ky; =0 kz = % kz, = 6—: (3.72)
2r 6r

kz = T kzs = T (3.73)
(3.74)
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3.2 Results of the numerical model

and gives the following magnetic field

cos(kzz - arctar(g—i)) - cos(3kzz - arctar(‘g‘—g))
Brum = C1 | sin(k.z - arctan(2)) [ + Co | sin(3kz— arctar(2)) (3.75)
0 0

with C; = /4a2 + 4b? andC, = ,/4a2 + 4b2. The dimension of the mangetic amplitude

is /opoVa. With the corresponding dimensiogjorovy, the equation§ 360 afid 3143 yield
the analytical dimensionless magnetic field

y 5 [ coskZ] [— cos &z sinkz
B=—2 |sinkz] + D,| sin&z |+ D,|cos Xz
VPHoVg
- 0 i i 0 0 (3.76)
5 [coskZ] ’sin(3kzz - arctar(g—;)) '
€D, . D
_ D _ Dy
JProve sinkz| + D3 cos(3kzz arctar( DZ))
| 0 | i 0
with D3 = ,/D? + D2 and
D, = iE”Rm Re
64 o (3.77)
1 212 2k%a? — ank '
D, = (V2 + VoK@ — an JEY2 Bkt Re Rmak,
51215 272 + a2k2 :

The magnetic energy of theftkrent modes and the total magnetic energy of the numer-
ical simulations are plotted in Figufe B.4 at Rm0.3 and 07. At both Rm, the main
contribution to the total magnetic energy is given by thergpef the dominant mode.
The amplitude of the magnetic energy in third order at Rf3 is 6 orders of magnitude
smaller. Due to this small amplitudes, the development lbasmooth increase. The ab-
solute saturated state may not yet be reached within thignoahaccuracy. The striking
point, however, is that both first and third order show a iotetl dependence of EK?,
which is contrary to the analytical result.

According to the assumption of equation_3.39, the phase afufang, /b;) in equation
[B.73 has to be time dependéhtirctané, /b;) = wpnh, @and has the dimension/a. Equa-
tion[3:41 then becomes
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Figure 3.4: Absolute amplitudes of the rotationally deparigbart of the magnetic Energy
|Eg(Ek = o) — Eg(EK)| and the respective parts in fiftEz 1 (Ek = o0) — Eg 1(EK)| and third
order|Eg3(Ek = ) — Eg3(Ek)| at Rm= 0.3 (left) and 07 (right).

(V2r — ak)

2 a V2
Wph = € VphZ kz— (27_[2 n k2a2)

= 2Eg1 EK'R
Vg 256_[5 (akZ) B,1 e

(3.78)
Figure[3.5 shows the drift velocity,, of the dominant mode. Symbols are again nu-
merical results and the lines represent analytical res@tsthe left sidewy, is plotted
against Rm- Rm, exemplary for Ek= 5 x 102 and shows a Rm Rm./Rm dependency
for both results. The deviation of the amplitudes is abowcidr of 5. For high Rm,
the drift velocity tends to decrease again. On the right,sigg is plotted against Ek
for Rm = 0.295, Q3 and 05, which all confirm well the Ek-dependency obtained by the
analytical calculation. This result is no contradictiorttte numerical result thdg; is
rotational dependent with Ek The amplitude of the rotationally dependent parEgf

is about 8 orders of magnitude lower than the rotationaltlependent part. The phase
drift of the dominant mode, which was originally a necessargplement to fullfill the
solvability condition, was thereby proven to be a reé&et.
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Figure 3.5: Drift velocityw,n plotted over Rm at Ek 5 x 1072 (left) and Ek (right).
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3.2 Results of the numerical model

3.2.2 Linearised Navier-Stokes equation

Although the analytical calculation reproduces the sainmdevel of the magnetic energy
up to Rm~ 0.4 as well as the dependency onEkit cannot explain why the magnetic
energy is dependent on the rotation rate in the first ordemof-RRm.. Besides, the Ek-
dependency of the perturbed velocity field modesg,irs not clear either. With Re: 10,

the ratio of inertial forces to éiusion might be too large so that the numerical model
including the advection term is not well approximated bydhalytical approach. There-
fore, the simulations were repeated with the linearisedi®te®stokes equation in order
to test the &ect of the advection term on the results and, eventually gossible rea-
sons for the Ek-dependency to appear in the first order of {HRm). Taking the same
dimensionless parameters, the Navier-Stokes equatids rea

1
6tv:—Vp+R—eV2v+F+(V><B)><B—2 (&, xV) (3.79)

1
Re Ek
with the same Reynolds number Re/,a/v = 1 and the Ekman number Ekv/Qa?. The
induction equation does not change and the expressions ahtilytical result remain the
same.

Comparsion of the numerical and analytical results

The upper left panel of Figute3.6 shows the saturated maggrergy plotted over Rm.
Both graphs agree quite well up to Rm0.4. The upper right plot shows the absolute
difference of the magnetic energy in the non-rotating systenpaoed to the rotating
one at diferent Ek. The exponent Ekmatches the numerical results also very nicely.
The corresponding amplitudes of each set of simulationhefupper right panel are
plotted against (Rm+ Rm) in the lower panel. The amplitudes show a development of
(Rm - Rm;)/Rm (red dashed line) up to Rns 0.31, which is about 5% overcritical
and a little bit higher than in the non-linear simulations this region, the magnetic en-
ergy increases with Ek, whereas for Ry0.31 the magnetic energy decreases with EK.
At high Rm, however, the amplitude of the rotationally degemt part decreases very
quickly. In the end, the rotationally dependent parEgfstill appears in the first order of
(Rm-Rm)/Rm.

In the left panel of FigurE3l7, the drift velocityy, is plotted against Rm Rm.. Up to
Rm ~ 0.31, it deviates from the analytical prediction by a factofie¢. The right panel
shows the rotationally dependency of the amplitudes at=RMh295..0.305, which are
proportional to ER*. At high Rm, the drift velocity tends to zero.
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

Figurel38 shows the development of the amplitudes of thecitglfield of the numerical
simulations and the analytical expressions. Without the-lneear term in the Navier-
Stokes equation at Rm 0.3 all numerical amplitudes coincide with the corresponding
analytical amplitudes. At both Rm the amplitudes of the deant mode#\r andA; have
an additional term that is rotationally dependent on’Ek

In Figurel3®, the magnetic energy of the two moBeandBs; is plotted over Ek. In both
cases it increases with Bk whereas the dominant mo@s is six orders of magnitude
larger tharB; at Rm = 0.3 and only two orders of magnitude at Rm0.7. The domi-
nant modeB,, in turn, is responsible for the amplitudg andA,. They are consistently
proportional tdf%% due to the Lorentz force and therewitrEk2, like it is denoted by the
red dashed line in Figuie—3.8. The question remains as to hewotational dependence
enters the dominant mode in the first place, siAgeandA; define the amplitude of,
and therewith the amplitude of the dominant mode.
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Figure 3.6: In the left pandtg IS plotted over Rm together with the analytical results
of the magnetic energy of first ord&g; (black), the total magnetic enerdss without
rotation (red) and at Ek 1.5 x 1073, In the middle figure the absolute amplitude of the
rotationally dependent part of the magnetic eneEpfEk = o) — Eg(EK)| is plotted over
Ek. The red dashed lines indicate a proportionality to’ERhe amplitude of each fit in
the middle Figure is plotted over Rm on the right hand sidesmavs a proportionality
to Rm- Rm./Rm (red dashed). The corresponding analytical expressuas g (Rm—
Rm.)3/Rm (black dashed).
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3.2 Results of the numerical model
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

One explanation must be that any other terms, which wereeotsgl in the induction
equation, in the Lorentz force or any derivativexiim the Navier-Stokes equation must
be responsible for a rotationally dependent termdror A;, which might be covered by
the Ek?-term and becomes invisible in that way.

Since Figuré=318 is just the result of equation B.24, at ldeest orentz force term can be
tested for correctness. By taking the amplitudes of®@ependent parts dEg; of the
numerical simulation and recalculate those partdg&ndA; which are proportional to
~ Ek™? with equatiofiz342. Obviously, both amplitudes are equatiexcept for a factor
of 1/2. The recalculation ofr andA; gives a discrepancy of one order of magnitude to
the original obtained amplitudes in the numerical simolatiwhich makes the Lorentz
force term suspicious to be not well approximated.
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3.2 Results of the numerical model

3.2.3 Outlook

Apparently, the magnetic energy is already dependeft omthe first order ok, as it can
be seen on the right side of Figlrel3.6. However it contradiw analytical results. Espe-
cially the approximated Lorentz force term is not capablespfoducing the amplitudes
of the velocity field which are generated by the dominant m&lace the amplitude of
the responsible term is quite low 1077, it is possible that terms which were neglected
in equation-3B[314 dr 3.P4 could be responsibleCiaio appear in the first order of
the magnetic energy. This means tRathas to be rotationally dependeri; in turn is
defined by the solvability condition (e3._3134). Only the ditaples of two modes of,

Vo = agVR + ay1 Sin K,z Vg (3.80)

contribute to the amplitude d¥,, since both amplitudear anda,; merge in the ampli-
tude of the first term in equatidn-3137, which belongs to thel@joosk,z sink,z 0]. All
other terms become zero on average over xhg{plane or appear in amplitudes of other
modes. In order to get the-dependency in first order of (RARm.)/Rm, Q must appear
in these two modegg andVy.

Expansion of the MHD equation in gL

The only parameter that was left out in the perturbation e isa/L. Starting with
equatior.3B, where/(- V)B appears in first order ia/L, which gives

AV?h = —(B-V)v+(v-V)B (3.81)
andb, up to second order ira{L), becomes

1 /a\?r—= = 1 (a¢ =
<> (;) (@ Vv -(v-VB]+ o= (;) (62B - V)V. (3.82)
The result of the second term, which is in first orderepfidds an additional ffusion
term~ 8,B to the original solutions and has already been worked o M).

The kinematic dynamo onset slightly changes to

8rlak,

= "= 3.83
e 2V2r — ak, (3.83)
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

Consideringb = by + (a/L)b; + (a/L)?b, the Lorentz-force term splits up into several
parts, whereas the rotation of vector terms includrgjways generates contributions to
the order §/L)™* and @/L)". Only (V x b) x b is not considered, becaufig ~ “|B|,
and thus, this term is of higher order in Rm. The contribwgitmthe Lorentz forcé are

Vx[(Vxbo)xB|  O1). a/L. (a/Ly?

Vx [(V xby) x B a/L, (a/L)?, ...

V x |[(V x by) x B (a/L)?, ... (3.84)
V x [(VxB)x bo| a/L, (a/L)?

A% [(Vxﬁ)xbl] (a/L)?, ...

In equationC32M4, terms including derivatives\waf = [vy, Vo, V3] with respect toz also
contributes to odrders ira(L)"**. Solely terms with derivatives in z-direction including
Q are unchanged, sinde is supposed to get large and the partidfedential equation
becomes,

a a
0= a)z(ayV?, + 83V3 — Ea)z(anZ - E8§82V2 + ZHZV]_Q/V +F+Lq

a a
0= —020 M1 + —050V1 — O3Ng — ;0xVs + 20:Q /v + Fo + Ly

L LY

0 = B3y + 050,V — 00,V — OV — 20,/ — 20,WQ/v + F3 + L.

The force ternF only appears in zeroth order afL. The velocity fieldv, is expanded
in orders ofa/L:

a a\?
Vo =Vpo+ EVZ’]_ + (E) Voo + ... (385)

The solution ofv, in zeroth order is equal to equatibn-3.31. In first ordeadf, the
rotationally dependent part o, reappears with slightly changed amplitudes

Vo1 = 2772+—a2k§? p — COS 2(22 \702 + Vb, (386)

)4

y \/i(a)?’ kQ

with
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3.2 Results of the numerical model

(I)lz

-1 V2 (a)5 VoQk;B2

. 2r 2r
2 > - > sin &,z cOS—Y COS—X. (3.87)
4(z) +4(z) ke + ke ©4 v2Aop a a

T

Finally, even in second order, the new terms in the Lorentzfdo not generate any new
modes inv, andv,, becomes

Voo = AZ,RVR + (A2,1 sin Z(ZZ + AZ’ZQ COS 2(22) \702 + VO,, (388)

whereasb, again has the form

. 2n 21
D, = Ay pQ2Sin 2K,z cos;y cos;x. (3.89)

The amplitudes; g, Az1, Arz and A, are not important. The results, however, show
that none of the additional Lorentz force terms generateva nogationally dependent
mode. By calculating the induction terms of equafion BRB2still remains rotationally
independent. The last terms, that remain are those in eqU&i which are non-linear
inv: {(Vx(bxv)-<Vx(bxv)>}. These terms combine small-scale magnetic and
velocity induction &ects. At this point, the analytical possibilities are exdtad.
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

Advanced dealiasing and the flactuative magnetic field

According to the dealiasing of higher wavenumbers, it isspg@e to cut out modes
with admitted wavenumbers but small amplitudes. In this weeyvelocity field in the
numercial simulation can be modified according to the aralyexpression in equa-
tion [369. By takingc = d = 0 the only non-zero amplitudes in equation_B.68 are
Ar, Asand A, of which A4 is rotationally dependent. Additionally, the fields havesalias-

ing in kyy, > 2r/a andk, > 4r/d. Simulations with this kind of prepared velocity field
show a rotational dependence of the magnetic field, whidha#lgtonly consists of the
dominant modéB; and the fluctuating pati. The fluctuative part of the magnetic field
has the following Fourrier amplitudes

Ay oo = ap + Ibz
Axos2 = by — Ay
ayoo8 = a1 — Iby

Ay 288 = b]_ + iaz

Ay = —ap —iby
ay 282 = Dy —iay
Qy228 = —ad2 + |b1 (390)

ay 288 = 0y + 1Ay

Az 202 = \/E(_bl +iay)
Az 282 = ‘/é(—al —iby)
Az 208 = ‘/é(bl +iay)
8,088 = \/E(al —iby)

2

which gives by only considering those amplitudes with indlex

(4(ay + by) cosxcosy — 4(a; — by) sinXsiny) cosk,z
Brum = —(4(a; + by) cosxcosy + 4(a; — by) sinXsiny) sink,z

Jai+a; V2 cosxsinycosk,z + @) + (& + a5 V2 sinXcosysinkz + ¢)

with X = 2rx/aandy = 2ry/a. Contrary to the analytical expression theomponent has
a phaser = arctan(f; + by)/(b, — a;)). Due to this phase shift, the induction term gives
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3.2 Results of the numerical model

a rotationally dependent contribution to the dominant medach can be confirmed by
the analytical calculation. With the prepared velocitydiahd the fluctuative magnetic
field the projection of the induction term yield

fv X (Brum X Vaum) - B1dV ~ Q sing. (3.91)

The phase in the-component is therefore responsible for fdelependency of the mag-
netic field in first order. Since is deduced from equatidn_8.8, it is most likely that the
nonlinear term¥ x (b xv) and({V x (b xv)) are responsible for the phagelncorporating
this phase shift in the analytical calculations, yields

3 Voé% V2 ak, -1
Fo== 1+ ————-—EKk 3.92
27 4 dugp T a2+ a’k? ( )
and the magnetic energy becomes
-1
(Rm— Rm) 8 7 2°1/4 \/f V2  ak .
Eg, = |1+ —————Ek . .
51 " RmRe 3 Val ' 242721 a2 (3.93)

This result, however, gives a decrease of the magnetic griergncreasing rotation
rates which is in contrast to the numerical results at Rn0.4. In order to get the
proportionality of the analytical result, the force termsacond order ot should be
Fo ~ E?i/(l + EK™?). Nevertheless the case that the magnetic energy is lovisréa
creasing the rotation can be observed for Ri.4.
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

3.3 Conclusion

The G. O. Roberts flow is a simple, two-dimensional vectodfi@hich is similar to
many large-scale helical flows such as for example rotatimgective flows generated in
celestial bodies. It is therefore a useful flow for the anefftinvestigation of basic char-
acteristics of dynamos with the help of mean field theory ardkly non-linear theory.
In addition, numerical simulations including all non-lareéerms were performed in the
same parameter regime. This allows for a comparison betwesrerical and analytical
results and thus for testing the applicability of the arniaflitapproximation.

The analytical calculation shows that in the first order of RIRm, the saturation level
of the magnetic energy is independent of the rotation. Ita@pces the magnetic energy
of the simulations without rotation up to Rm 0.4 quite well. At that point, the ratio
of the amplitudes irv,, which occur due to the Lorentz force to those generated &y th
driving forces, isE= ~ 1/5. Assuming that the aspect ratio of the flow columns is of orde
10 in the Earth’s interior and is the Earth’s diameter, one obtains a ratio of approxi-
matelyZ ~ 10° with Re = 10°, Rm = 100 and magnetic field strength of the dipole of
B, ~ 10QuT. The same ratio is expected in experiments, where Rm is the dautEg is
two orders of magnitude higher and Re is two orders of madaitower. With the aspect
ratio taken in this study one obtai&s~ 0.3 for both systems, which is almost equal to
the ratio in the numerical simulatidh ~ 0.25.

In third order, the magnetic energy is proportionaktdEk 2. The condition for solv-
ability predicts a drift velocity of the dominant mode withratational dependence of
~ Ek™, which was confirmed by the numerical simulations. For |a&kge, however, the
drift velocity tends towards zero. The saturation levelref thagnetic energy in the nu-
merical simulations shows quite a robust dependence BR 2 up to Rm= 1, whereas
the amplitude of the rotationally dependent part tends tdsvaero for higher Rm. The
results oLB.ein.em_el_IaL(ZdOQ) found an increase of the etagfiux proportional to the
rotational timescale for slowly rotating objects and amagof fast rotating objects where
the magnetic flux is independent of the rotation rate.

In addition, the magnetic energy of the analytical solui@proportional to &/L)2. In
rotating plane layer convection, the aspect ratio is dependn~ EkY® near the onset
of Rayleigh-Bernard convection, so that the transfer oféresults to convection-driven
systems should be betweenEk™#3 and~ Ek™2. At least the latter power law would
agree with evolution in slowly rotating stalls_(Bﬂ'Ln.eB_H%]Qb). The only hint for a
possible saturation of the magnetic energy is given by theearical results, where the
rotationally dependent part of the magnetic energy tenaarids zero for high Rm.

In global simulations many forces are incorporated in otdenake the system most re-
alistic. The saturation level of the magnetic energy in gladimulations of planetary
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3.3 Conclusion

or stellar dynamos in spherical geometry depends on maranpeers, so that a clear
exponent could not yet be fou ' R0 ratio of the ohmic
dissipation to the total dissipation is a crucial factor aedines the state, at which the
magnetic energy at least becomes independent of the motatie. This state is reached
when all the energy is dissipated by ohmic Idss_(_S_Qhﬂlmﬂd)ZO

The model and its geometries are quitfatient and the only thing they have in common
is that their flow exhibits helicity, which plays a major ratethe dynamo process with
an dominanu-effect in the dynamo mechanism. An interesting extension sfulark
would be the evolution of the magnetic energy in a rotatirfgesigal shell with free slip
boundaries. The G.O. Roberts flow would be generated by ansmliorce like it was
already applied b@lﬂ@b?). The only restriction Wbhbe the resolution, which
limits the aspect ratio. Thus, values of Rm which are as loim #sese simulations could
not be reached. The intermediate regime could be coverddtiétnumerical results of
periodic box simulations at lower aspect ratios.

The dynamo generation in rotating Rayleigh-Bénard coiwedtas been investigated by
(@é ). Rotating convection in a plane layer is mgimilar to the cartesian ge-
ometry of the periodic box, but apart from the vortices offtbw, the dynamo generation
here is more related to the Ekman layers that occur at thedaoigs and which are sen-
sitive to the rotation rate as well. The magnetic energy ld@gin two diferent ways
depending on whether a geostrophic or magnetostrophiodmlia predominant. In the
magnetostrophic balance, the magnetic energy is propaitio ~ EK*/*, whereas it is
~ EK™® in the geostrophic balance. Since the Lorentz force nearibet is rather weak,
the conditions in the geostrophic balance would be moregggiate for a comparison to
the periodic box simulations. Reconsidering a dependehtieeaspect ratio of the pe-
riodic box on ER/3, the exponent of the analytical result and the geostropdiirize are
approximately equal to one.

Nevertheless, the order in which Elappears in the saturated magnetic energy is-Rm
Rm.. Since the amplitude is quite small, it is obvious that sorh#he neglected terms
must be responsible for the rotation to appear in the firserord hereforeyv, in the
Navier-Stokes equation in second order of RiRm., which is responsible for the satu-
rating process, is expanded in orday&. This includes terms with derivatives @f in

z and the Lorentz force, in which the fluctuative part of the meg fieldb has to be
extended up to the second ordesiflL.. Nevertheless, this step does not change the order,
in which the saturated magnetic energy is dependent on thgao, therefore, the two
remaining terms which can be responsiblef@e (b x v)— < V x (b x v) >}.

Comparing analytical and numerical expressions for theufatove magnetic field yield
that thez-component ob has a phase shift irdirection. By this phase, it is possible
to get a rotationally dependent dominant mode. This shoatdbtis responsible for the
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3 Magnetic field saturation in a rotating G. O. Roberts likeei flow

deviation of the analytical results from the numerical tessurhe according modification
of the analytical calculation, however, can not reprodeentumerical results. Thus, the
amplitude ofb has to be dependent 6éhas well. Due to the non-linear terms, a further in-
vestigation of the amplitude df, from whichF, andEg; are deduced, becomediitiult.

A positive proof by modified numerical simulations could betmade.
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