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1 Introduction

Magnetic fields are ubiquitous in the universe and can be found in celestial bodies, galax-

ies, stars including our Sun and planets like the Earth or Jupiter. Due to the fact that at

least in the Earth’s interior, temperatures are well above the Curie temperature, its mag-

netic field cannot result from permanent magnetisation. Moreover, its time dependence

gives rise to the assumption, that the generation of the magnetic field must be the result of

a very complex dynamical process (Moffatt and Proctor 1982). This is supported by the

fact that the diffusive time scale of most of the generated magnetic fields is much shorter

than the life time of the respective objects. Today, it is generally accepted that the mag-

netohydrodynamic (MHD) dynamo effect is responsible for the magnetic field generation

in most stellar objects (Weiss 2002). The idea is that the magnetic fields can be sustained

by self-inductive processes of a moving electrically conducting fluid or plasma.

Most of the plasma flows are convection-driven by temperature gradients in rotating ob-

jects. Busse (1975) developed a model of the geodynamo as a convection-driven fast ro-

tating spherical system. According to the conditions deduced from the Taylor-Proudman

theorem and based on the Rayleigh-Bénard convection (Greenspan 1968, Chandrasekhar

1961), the flow forms vortex tubes aligned with the axis of rotation, in so-called Busse

columns (Busse 1975). This type of helical velocity field is assumed to be predominant

in many convection-driven rotating bodies.

It has been known for a long time that the Earth has a dominant magnetic dipole field

(Merrill et al. 1996). Since the 1950s it is also known that the Sun has a detectable dipole

field, although it is much weaker than the magnetic field of thequiet Sun. In fact, most

of the celestial objects have detectable magnetic fields that are sustained on large spatial

scales, which stands in contrast to the small scale of the energy carrying-vortices of the

underlying flow. One possibility to deal with this scale separation is the mean field ap-

proach (Steenbeck et al. 1966, Krause and Rädler 1980), in which large-scale magnetic

fields are generated by the averaged induction result of small-scale velocity and magnetic

field perturbations. This effect is known as theα-effect (Moffatt 1978). Especially with

regard to the Sun, another effect is crucial for the magnetic field generation. As a result

of the differential rotation within the Sun, the plasma flow exhibits large shear, where

magnetic energy is gained by magnetic field line stretching.This is called theΩ-effect;

therefore, the dynamo of the Sun is known as anα − Ω dynamo (Moffatt 1978).

The first numerical attempts to investigate the dynamo effect were carried out by Gilman and Miller

(1981) and Glatzmaier (1984), who modeled the solar dynamo.Based on this pioneering

work, computer simulations became increasingly importantfor the investigation of plane-

tary or Sun-like objects. As computer power and resolution advanced, two types of direct

numerical simulations were developed. On one hand, convection-driven dynamo simula-

tions in rotating spherical shells have been established, which intend to simulate planet or

star like objects. Here, the implementation of gravitational, buoyancy and Coriolis forces
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1 Introduction

usually causes the generation of Busse-column like flow structures. These models were

able to reproduce the main features of the geodynamo (Glatzmaier and Roberts 1995,

Christensen et al. 1999) and dynamos of other planets and stellar dynamos (Christensen et al.

2009) but are not adaptive to, e.g., galactic dynamos.

Galactic objects are of an enormous extent and thus, have a scale separation from the

large-scale magnetic field down to the smallest diffusive scales that cannot be resolved.

Therefore, on the other hand, corresponding models were performed in periodic boxes

where each one only represents a small part of the whole object. The focus is on the

dynamo generation at the smallest turbulent scales. In these simulations, the flow is

usually driven by helical volume forces that inject energy into large scales of the ve-

locity field. Due to inertial processes, the kinetic energy is distributed over a large

range of spatial scales down to the smallest diffusive ones. Attempts have been made

to understand to what extent flows, evolving turbulence, areable to sustain a dynamo

(Schekochihin et al. 2004b, Brandenburg and Subramanian 2005). Even though such tur-

bulent helical flows have been able to generate large-scale magnetic fields (Brandenburg

2009, Ponty and Plunian 2011, Graham et al. 2012), a fundamental understanding of the

underlying processes is still lacking.

In the advent of this research field, three types of simply-shaped helical velocity fields

and their capability to dynamo action has been investigated. The Ponomarenko dynamo,

the G. O. Roberts dynamo and the Dudley-James dynamo. The Ponomarenko dynamo

is a single vortex tube, embedded in an isolating environment. Additional to the circular

motion, the velocity field has a component parallel to the vorticity field such that the flow

exhibits helicity (Ponomarenko 1973). The G.O. Roberts dynamo consists of a periodic

array of vortex tubes with an alternating up and down streaming flow. The sense of rota-

tion is so that the helicity does not change sign (Roberts 1972). The third type of flows

has a spherical geometry and has been investigated by (Dudley and James 1989), e.g. the

s2t1-flow1. This flow creates helicity with opposite sign in each hemisphere. All of these

flows are basically able to sustain a dynamo, whereas the helical character of the flow is

a crucial property.

Aforementioned basic flows have been taken as prototypes forexperimental setups in or-

der to generate a dynamo in the lab. Based on the Ponomarenko dynamo and the G.O.

Roberts flow, two experiments have already been successful in generating a dynamo:

the Riga (Gailitis et al. 2000) and the Karlsruhe experiment(Muller and Stieglitz 2002),

which were named after the cities where they were built. In these experiments, liquid

sodium was taken as working fluid. It is of high conductivity,melts at comparably low

temperatures (∼ 110 ◦C) and has a similar viscosity as water. It was pumped through

1In radial direction it is quadrupolar (s2) and in azimuthal direction the velocity does not change the
sign over latitude (t1).
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1 Introduction

cylindrical pipes and thereby forced into helical shape. The Riga experiment used only

one pipe and the Karlsruhe experiment a lattice of pipes withalternating up- and down-

flows.

After the success of the first dynamo experiments to create a dynamo, a follow-up gen-

eration of experiments based on the Dudley-James dynamos has been designed in spheri-

cal geometry, which were built in Madison (Nornberg et al. 2006), Grenoble (Nataf et al.

2008) and Maryland (Rieutord et al. 2012). Another experiment was designed in cylin-

drical geometry (Monchaux et al. 2007) and is located in Carderache. The latter one

generates a Van-Karman like flow and is therefore called the VKS experiment. In these

experiments the flows are less constrained than in the previous ones in Karlsruhe or Riga.

The liquid sodium was driven by rotating impellers or spheres which generate a large-

scale mean flow of the same topology as those of Dudley and James (1989). Due to a

strong impellent which is necessary to create the conditions for dynamo generation, the

fluid becomes highly turbulent. The dynamo efficiency of the flow thereby decreases in

such a way that so far, no experiment succeeded in creating a dynamo until today with the

exception of the VKS experiment. In that case, the use of softiron impellers significantly

changes the magnetic boundary properties (Berhanu et al. 2010). The insights that have

been gained in relation to MHD turbulence and small-scale dynamo theory are helpfull for

the understanding. Because of the driving, small-scale structures can evolve and create a

competing or disturbing effect to the large-scale dynamo generation of the mean flow.

The performance of experiments is somewhat complex and provide insight which are

limited by the measurement techniques. Flow structures aremade visible using dye in

water experiments or by pulsed Doppler velocimetry. Most importantly, magnetic fields

can only be measured at the surface. In order to achieve a better understanding of these

complex processes and their interrelations, numerical codes have been designed for in-

situ analysis, which is not possible by surface measurements. The experimental results,

in turn, are the only way to confirm these numerical models. However, the computational

abilities are not sufficient to resolve the fields in the parameter range of the real objects

they are adapted to. The transfer of respective results to real objects is only possible by

exponential powerlaws Christensen and Aubert (2006), Christensen et al. (2009).

Computationally based work has been performed related to the Karlsruhe dynamo. Tilgner

(1997) could predict the onset of magnetic field amplification and the saturation level of

the field by numerical simulations. This dynamo experiment,however, uses a constrained

flow, where turbulence plays a minor role. Thus, the simulation could be performed in the

laminar regime, which, in contrast to turbulence simulations, is not computationally de-

manding. Close to the dynamo onset the Lorentz force is smallcompared to other forces

so that it can be treated as a weakly non-linear effect in the mean field picture and solved

analytically up to the first perturbation order (Tilgner andBusse 2001).
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1 Introduction

Bayliss et al. (2007) and Reuter et al. (2009, 2011) studied the dynamo mechanisms in

flows related to the Madison experiment based on laminar wave-like motion and in highly

turbulent flows. The parameter for the onset of magnetic fieldamplification could be

determined, which was shown to be independent of the degree of turbulence. Since the

accessible parameter regime of the simulations is far to low, the results had to be extrap-

olated to those parameters relevant for the experiment. Although the mean flow should

be able to sustain a dynamo, it is still unclear why the flow in the experiment is that

inefficient. With respect to the VKS experiment, the dynamo threshold has also been

investigated and magnetic field topologies of existing dynamos could be reproduced by

Giesecke et al. (2010a) and Pinter et al. (2010). Especiallythe effect of soft-iron impellers

on the dynamo efficiency was reproduced by numerical simulations (Giesecke et al. 2010b).

In order to reach higher magnetic Reynolds numbers, anotherexperiment in spherical ge-

ometry was built in Maryland (Zimmerman 2010), which is larger and more powerful than

previous experiments. It has a diameter of 3 meters and stronger motors in order to create

higher rotation rates, which are necessary for dynamo action. Even though the topol-

ogy of the mean flow of spherical Couette experiments2 is similar in the experiments

in Carderache and Madison, the respective numerical analysis of Guervilly and Cardin

(2010) showed that the dynamo onset is increasing with the rotation rate of the inner

sphere, contrary to the respective numerical analysis of the other experiments. For the

spherical Couette flow, this means that an increasing degreeof turbulence lowers the dy-

namo efficiency. According to the results of Guervilly and Cardin (2010), this experiment

will fail to create a dynamo as well. Therefore, it is worth investigating how this exper-

iment needs to be modified in order to get a flow that is more efficient to generate a

dynamo.

This PhD thesis consists of two parts which treat two fundamental aspects in dynamo

theory. The first part focuses on the kinematic dynamo threshold of the spherical Cou-

ette flow. Since previous work on this system failed to come upwith promising results

for spherical Couette experiments to succeed in creating a dynamo, the simulations are

going to be repeated in order to compare the results with a different driving mechanism.

The spherical Couette system is driven by the moving boundaries (in this case, only the

inner sphere is rotating), which are coupled to the fluid by viscous drag. Compared to

the Maryland experiment this is represented by smooth boundaries. Since the boundary

layer is dependent on the rotation of the inner sphere, the efficiency of the flow could

be increased by a driving force that drives the flow in a constant distance from the inner

boundary so that it becomes independent from the rotation rate and increases the mo-

2The spherical Couette is a system of two concentric spheres with two different radii. The spherical gap
is filled with a viscous (electrically conducting) fluid. In this context the spherical Couette flow is generated
by a single rotation of the inner sphere, whereas the outer sphere is stationary.
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1 Introduction

mentum transfer. Accordingly, the Maryland experiment canbe modified by rough inner

boundaries or blades attached to the inner sphere. In this part the characteristics of both

flows and their efficiency to dynamo action is compared. Thereby the mechanism of the

dynamo plays a crucial role and on which scales the magnetic field is generated. The

results are partly published in Finke and Tilgner (2012).

The second part deals with the saturation mechanism of a magnetic field in a rotating

system. The relation of rotation, convection and magnetic field has been investigated by

Mangeney and Praderie (1984), Noyes et al. (1984), Pizzolato et al. (2003) for main se-

quence stars. Especially Reiners et al. (2009) found that inslow rotating low-mass stars

(M-type dwarfs) the surface magnetic field increases with the rotation rate of the respec-

tive object. In fast rotating M-stars, however, the surfacemagnetic field becomes rota-

tionally independent at a certain rotation rate. The dependence of the magnetic energy‘s

saturation level on the rotation rate has been investigatedin several numerical models

(Christensen and Aubert 2006, Schrinner et al. 2012, Tilgner 2012). Neither the exponent

for the increase of the magnetic field with the rotation rate nor the saturation mechanism

could be consistently reproduced. Therefore, the saturation of the magnetic field within

a G. O. Roberts like driven flow in a rotating frame of reference is investigated, since the

flow structure in such celestial bodies is believed to have a similar shape. Once a small

magnetic field rises within a flow, at a certain point its Lorentz force reaches a strength

comparable to the driving force and reorganises the flow, so that the magnetic field satu-

rates.

This part focuses on the effect of the rotation rate on the saturation mechanism of the

dynamo and the reorganisation of the velocity field by the Lorentz force. As long as the

parameters are close to the kinematic dynamo onset, the Lorentz force is small and can be

treated as a weakly non-linear perturbation in the mean fieldpicture. The approximated

MHD equations are solved analytically in a rotating periodic box, where the flow is driven

by a force field corresponding to the G.O. Roberts flow similarto Tilgner and Busse

(2001). In order to test whether these analytical assumptions are reliable, numerical sim-

ulations of the full MHD equation are performed.

Since the mean flows of many rotating celestial objects are assumed to have the similar

basic properties as the G.O. Roberts flow and their magnetic fields are usually generated

on large scales, it is a promosing approach to achieve basic understanding from such a

simple and analytically treatable model.
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2 Kinematic dynamo onset of spherical Couette flows

The spherical Couette consists of two concentric spheres ofradii r i of the inner andro

of the outer sphere with an aspect ratio ofη = r i/ro = 1/3, which is shown in Figure

2.1. The gap between the spheres is filled with a fluid, which isdriven by the rotation of

the inner sphere at a fixed rotation rate, while the outer boundary is stationary. Due to the

viscous coupling of the fluid and the spheres, a shear layer develops at the inner boundary,

in which the fluid is accelerated and centrifuged outward in an equatorial jet and finally

recirculates within the entire rest of the volume to the inner sphere. The axisymmetric

streamlines of the flow are shown in a meridional cut in Figure2.1 on the left side. The

velocity field in direction of the rotation is indicated in a contour plot on the right hand

side. The highest values are near the inner sphere.

The general geometry of the mean flow is quadrupolar due to themeridional circulation

with opposite helicity in each hemisphere. It is topological similar to the s2t1-flow, which

has already been investigated by Dudley and James (1989) andis basically able to create a

dynamo. This kind of flow is called the non-rotating spherical Couette flow. Considering

an electrically conducting fluid, the focus of this work is onhow a magnetic seed field

evolves therein and how the onset of magnetic field amplification changes with respect to

the rotation rate. The dynamo onset is denoted by the critical magnetic Reynolds num-

ber Rmc, which thereby serves as a measure for the dynamo quality. These questions are

closely linked to the dynamo mechanism of the flow.

The spherical Couette flow in this sense has already been deeply investigated with respect

to purely hydrodynamic aspects by Hollerbach et al. (2006) and magnetohydrodynamic
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Figure 2.1: Scheme of the spherical Couette system with streamlines of the axisymmet-
ric poloidal flow (left) and a contour plot of the axisymmetric toroidal flow (right) in a
meridional cut.
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2 Kinematic dynamo onset of spherical Couette flows

aspects by Hollerbach (2009) and with the focus on dynamo action by Guervilly and Cardin

(2010). The latter one is related with the generation of a dynamo in the spherical Couette

experiment in Grenoble (Nataf et al. 2008). The results of Guervilly and Cardin (2010)

are, however, discouraging, since the onset shows an increasing Rmc with higher rotation

rates of the inner core. The magnetic Prandtl number Pm remains of order one in the

entire parameter range of the Reynolds number Re, so that theconditions in the exper-

iment can not be reached by extrapolation. The aspect ratio is slightly different and the

conductivity of the boundaries are the same as of the fluid. With respect to these results

no dynamo can occur in this experimental setup.

Keeping this problem in mind, the spherical Couette is simulated again in order to confirm

the results. These results are compared with properties of another Couette flow, which is

driven by a volume force in one tenth of the gap width at the inner core and intends to

simulate the spherical Couette flow with a rough inner sphere. It is assumed that the

boundary layer and the equatorial jet are crucial to dynamo action due to shears in the

velocity field.

In the first simulations, in which rigid walls are used to drive the fluid at the inner core,

the boundary layer thickness decreases with increasing Re.At high Re the boundary layer

and the equatorial jet are decreased much, but contain most parts of the kinetic energy,

which might be unfavourable to dynamo action. The volume force, on the contrary, gen-

erates a much higher momentum transfer and a heavier mixing by the driving mechanism,

so that the meridional circulation is increased and that theboundary layer thickness is lim-

ited by the acting range of the force to one tenth of the gap width. In this way, the dynamo

efficiency of the flow might be improved and conclusions can be drawn with respect to

possible improvements of experimental setups to make the generation of a dynamo more

likely.

In the first section, the differential equations of the dynamo model, the parameter of the

system and the numerical implementation are introduced. The results of the spherical

Couette flow with smooth boundaries are presented in the second section and those with

rough boundaries in the third one. Finally in the conclusionthe results are compared.

13



2 Kinematic dynamo onset of spherical Couette flows

2.1 Dynamo model

2.1.1 Differential equation

Because of the geometry of the spherical gap, this problem isdescribed in spherical co-

ordinates (r, θ, φ). The axis of rotation of the inner sphere is (1,0,0). The evolution of

a magnetic seed fieldB = (Br , Bθ, Bφ) within a moving electrically conducting fluid of

velocity v can be described by the induction equation in the magnetohydrodynamic ap-

proximation (Moffatt 1978)

∂tB + ∇ × (B × v) = λ∇2B ∇ · B = 0 (2.1)

whereλ = 1/(σµ0) is the magnetic diffusivity, σ is the electric conductivity andµ0 the

vaccum permeability. Since there are no magnetic monopolesthe magnetic field is diver-

gence free. The time evolution of the magnetic field depends on two effects. The induc-

tion term on the left side is responsible for generating magnetic field lines by deforming

and stretching processes whereas the second term on the right hand side describes dif-

fusive processes, which let the magnetic field decay. These equations deal with a dense

plasma where the collision frequency is large compared to the cyclotron frequency of the

charged particles, so that the mean free path is very short and velocities are small com-

pared to the speed of light. In that way the plasma behaves like a fluid and its velocity

field v = (vr , vθ, vφ) can be described by the Navier-Stokes equation

∂tv + (v · ∇)v = −1
ρ
∇p+ ν∇2v + F ∇ · v = 0. (2.2)

ν is the kinematic viscosity,ρ is the density,p is the pressure andF is a volume force

which will be defined later. Near the onset of dynamo action, the magnetic field strength

is low enough so that the back reaction of the magnetic field onthe plasma via the Lorentz

force can be neglected. In kinematic dynamo theory, the velocity field then behaves inde-

pendently from the magnetic field. The induction equation islinear inB and the temporal

evolution of the magnetic Field is given byB ∼ est with growthratess as Eigenvalues,

which indicates whether the magnetic fieldstrength grows ordecays. The kinematic dy-

namo onset is defined bys = 0. In addition, in these studies, we assume the plasma as

incompressible, which is a good assumption for the conditions, e.g., in the earth’s core

or in liquid sodium experiments. Henceρ is constant and the continuity equation just

yields a velocity field which is divergence free. In the following the reference scales of

the variables are defined:

14



2.1 Dynamo model

t → t′
1
Ωi

x → x′d

v → v′dΩi

p → p′ρd2Ω2
i

F → F′dΩ2
i

(2.3)

Time is scaled by the reciprocal inner core’s rotation rateΩi and the length is scaled by

the gap widthd. In the dimensionless system the gap width is from now on equal to

unity and with the aspect ration ofη = r i/r0 = 1/3 the radii arer i = 0.5 andro = 1.5.

In the following only the dimensionless variables are considered and for simplicity the

primes are omitted. All reference scales are collected intothe following dimensionless

Parameters

Re=
Ωid2

ν

Rm=
Ωid2

λ
(2.4)

Pm=
Rm
Re
=
ν

λ

The Reynolds number Re describes the balance of inertial to viscous forces and the mag-

netic Reynolds number Rm is a measure for the ratio of inductive to dissipative effects

of the magnetic field. By varying Rm, the growthrates of the magnetic fieldstrength

changes and the onset of a magnetic instability at the kinematic dynamo onset at Rmc can

be found. The dimensionless MHD equations then read

∂tB + ∇ × (B × v) =
1

Rm
∇2B ∇ · B = 0, (2.5)

∂tv + (v · ∇)v = −∇p+
1

Re
∇2v + F ∇ · v = 0. (2.6)

These dimensionless parameters, however, are made on the basis of the inner boundary

velocity, which is taken as a measure for the characteristicvelocity of the fluid. A more

convenient quantity to describe the dynamical state of the system would be the temporal

and spatially averaged dimensionless velocityvrms of the saturated state, which has to be

15



2 Kinematic dynamo onset of spherical Couette flows

calculated aposteriori.

vrms =

√

2Ekin

V
Ekin = 〈

∫

1
2

v2dV〉 (2.7)

Ekin is the kinetic energy integrated over the whole spherical gap and the brackets de-

note temporal averaging. The appropriate lapse of time has to be considered well. The

advective turnover timeτa is the time, a fluid particle needs to complete one meridional

circulation. The length of this path isLa ≈ 2d + π/2(r i + ro) ≈ 5d and the timeLa/vc

with vc = Ωid vrms as the characteristic velocity along this path. Since the time in the

dimensionless equations is related to the reciprocal rotation rate, like in equation 2.3 the

corresponding dimensionless advective time scale isτ′a = vc/(La ∗ Ωi)t = vrms/5t. Taking

vrms = 0.1 the advective turnover timeτa = 1 would bet = 50 rotational time steps. An

appropriate time range for averaging would be a few ten advective turnover times. Based

on this characteristic velocity the dimensionless parameters look like

Re= Revrms

Rm= Rm vrms.
(2.8)

In table 2.1, the parameter limits of the simulations and theMaryland experiment are

shown.

Simulation Experiment

Re 1.6× 104 5× 107

Rm 104 950

Re 103

Rm 800

Pm ∼ 1 10−5

Table 2.1: Parameter limits of the simulations and the Maryland experiment (Zimmerman
2010).

Boundary conditions

The two different surface types of the inner boundary are simulated by specific boundary

conditions in combination with variation of the volume force F. The smooth boundary
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2.1 Dynamo model

is realised by no-slip conditions, where the velocity of thefluid at the inner boundary is

equal to the inner core’s velocity and at the outer boundary equal to zero. The volume

forceF in equation 2.6 is zero

v = Ωi × r at r = r i , v = 0 atr = ro. (2.9)

Only the very inner layer of the fluid is forced by the boundaryand the momentum transfer

occurs by viscous drag. Thus, the boundary layer thickness depends on the viscosity and

finally on Re.

In the rough surface simulations, the fluid is driven by a volume force which is equal to

one in one tenth of the gap width near the inner sphere and zeroin the rest of the volume.

The volume forceF has the following shape

F = (− tanh(60/d · (r − r i − d/10))/2+ 0.5) sinθ êφ (2.10)

and points inφ-direction withêφ, the respective unit vector. Figure 2.2 shows the radial

dependence of the force amplitude which is one at the inner boundary and decreases

very steep to zero atr i + d/10. In this way the boundary layer is supposed to remain

at a constant thickness ofd/10 for Re→ ∞. This kind of driving force extends the

boundary layer thickness to the region where the force term is equal to one. In this way the

energy injection rate into the fluid motion by the driving mechanism is increased and the

momentum is transferred more efficiently in the whole volume. In order to avoid jumps

in the velocity profile at the inner boundary, there, the boundary condition is free slip.

This means that the radial component is zero at the inner boundary so that impermeability

is satisfied. The radial stresses are zero as well. The outer boundary still has no-slip

conditions. The disadvantage is that the force is time integrated and the boundary velocity

saturates arbitrarily so that the dimensionless inner cores rotation rate might not be one.

That is quite an important point to be mentioned, because thedimensionless output of the

Figure 2.2: Radial dependence of the amplitude of the driving force
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2 Kinematic dynamo onset of spherical Couette flows

two simulations cannot be compared directly. In the first case thevφ is kept fix by the no-

slip condition toΩir i = 0.5 at the inner boundary, whereas in the second case the volume

force is time integrated and creates an arbitraryvφ = ω′i r i which is not appropriate to what

the dimensionless inner core’s rotation rate should be, namely 1. With the introduced

scalings of time and length (see eq. 2.3) the integration of the Navier-Stokes equation 2.6

gives a solution

∂tṽ + (ṽ · ∇)ṽ = −∇p̃+
1

R̃e
∇2ṽ + F̃ (2.11)

incorporating the following transformation

v = αṽ

p = α2p̃

F = α2F̃

t = t̃/α

Re= R̃e/α.

By choosingα = Ω′i the new solution of̃v has a time averaged inner core’s rotation rate

of 1. On account of that another set of dimensionless parameters is necessary

Re′ = ReΩ′i

Rm′ = RmΩ′i
(2.12)

whereΩ′i is the time averaged inner core’s rotation rate in the dynamically saturated state

Ω′i =
3

8πr i

∫ 2π

0
dφ

∫ π

0
dθ sin2 θ〈vφ(r = r i, θ, φ, t)〉. (2.13)

Inside the inner sphere and beyond the outer sphere the electric conductivity is zero.

Output of physical quantities

An estimate for the energy dissipation can be deduced from the Navier-Stokes equation

by multiplication withv and integrating over the spherical gap:
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2.1 Dynamo model

∂t

∫

1
2

v2dV =
1

Re
τ − 1

Re

∫

(∂ivj)
2dV+

∫

F · vdV (2.14)

with

τ = −
∫ 2π

0
dφ

∫ π

0
dθr3 sin2 θ

(

∂rvφ −
vφ
r

)

. (2.15)

Since the non-linear term in the Navier-Stokes equation just redistributes kinetic energy

to different scales it generates no energy losses. Only the energy dissipation by diffusion,

boundary drag and other volume force terms remains. For the no-slip simulations the

force termF is zero so that in the dynamically saturated state the time averaged torqueτ

is a direct measure for the energy dissipation. In the secondsimulation the inner boundary

is free slip and the torque is equal to zero. Therefore the energy dissipation rate becomes

∫

F̃ · ṽdV =
1

Ω′3i

∫

F · vdV. (2.16)

The torque at the outer boundary is neglected because there,the velocity is much lower.

In Kolmogorov’s dimensional theory of turbulence, the energy dissipationǫ is defined by

the scales of the energy carrying vorticesǫ ∼ v3
0/l0. The dimensions of the torque in the

simulation is [τ] = kgm2/s2 → ρd5Ω2
i . Apart from that, we get the energy dissipation

rate ǫ ∼ τΩi/ρd3. The torque should therefore evolve likeτ ∼ ρd3v3
0/Ωi l0. Without

dimensions and takingl0 = d it simply readsτ ∼ (v0/Ωid)3.

Important quantities which are investigated are the kinetic energy

Ekin =

∫

|v|2dV, (2.17)

the magnetic energy

EB =

∫

|B|2dV, (2.18)

and the kinetic helicity

H = (∇ × v) · v. (2.19)
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2 Kinematic dynamo onset of spherical Couette flows

2.1.2 Numerical realisation

A pseudo spectral method for incompressible flow simulations in spherical geometry has

been worked out by Tilgner (1999). In this geometry it is suitable to describe the equations

in spherical coordinates (r, θ, φ). Since both fields, the velocity field and the magnetic

field, are solenoidal, their three components can be described by two scalar functions

respectively. The convenient way to do this is a toroidal-poloidal decomposition of these

vector fields

v = ∇ × ∇ × (Φv êr) + ∇ × (Ψv êr)

B = ∇ × ∇ × (ΦB êr) + ∇ × (ΨB êr) ,
(2.20)

whereêr denotes the unit vector in radial direction.ΦB,v is the poloidal field andΨB,v the

toroidal field. In this way the divergence of both fields is equal to zero. The toroidal part

of the vector fields has no radial components and points tangentially to spherical surfaces.

A purely radial vector field, like a dipole field, would be described by a poloidal field.

The poloidal and toroidal scalar fields are expanded in spherical harmonics.

Φv = r
∞
∑

l=1

l
∑

m=−l

[Φv]
m
l (r)P̂m

l (cosθ)eimφ

Ψv = r2
∞
∑

l=1

l
∑

m=−l

[Ψv]
m
l (r)P̂m

l (cosθ)eimφ

ΦB =

∞
∑

l=1

l
∑

m=−l

[ΦB]m
l (r)P̂m

l (cosθ)eimφ

ΨB =

∞
∑

l=1

l
∑

m=−l

[ΨB]m
l (r)P̂m

l (cosθ)eimφ,

(2.21)

whereP̂m
l (cosθ) are simply the Legendre Polynomials with the prefactors which appear

in the spherical harmonics

P̂m
l (cosθ) =

√

4π
2l + 1

(l +m)!
(l −m)!

Pm
l (cosθ). (2.22)

By this definition, the components of the velocity field are
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2.1 Dynamo model

vr =

∞
∑

l=1

l
∑

m=−l

l(l + 1)
r

[Φv]
m
l (r)P̂m

l (cosθ)eimφ

vθ =
∞
∑

l=1

l
∑

m=−l

∂

∂r
[Φv]

m
l (r)

∂

∂θ
P̂m

l (cosθ)eimφ +
imr
sinθ

[Ψv]
m
l (r)P̂m

l (cosθ)eimφ

vφ =
∞
∑

l=1

l
∑

m=−l

im
sinθ

∂

∂r
[Φv]

m
l (r)P̂m

l (cosθ)eimφ − r [Ψv]
m
l (r)

∂

∂θ
P̂m

l (cosθ)eimφ.

(2.23)

Except for the respective prefactorr and r2 of the poloidal and toroidal fields (see eq.

2.21), the magnetic field is obtained by the same formulars. Since the velocity and the

magnetic field is real [Φ]m∗
l = [Φ]−m

l and [Ψ]m∗
l = [Ψ]−m

l , with ∗ denoting the complex

conjugated quantity, only one half of the complex Fourier components (m≥ 0) have to be

stored. In radial direction the spectral amplitudes are expanded in Chebychev polynomials

Tn(x) = cos(narccosx). With x = 2(r − r i) − 1 and taking the collocation points at

r j = r i +
1
2

(

1+ cos
j − 1

Nr − 1

)

, j = 1...Nr , (2.24)

the expansion function becomesTn(r j) = cos
(

nπ j−1
Nr−1

)

, which is just a cosine transforma-

tion. By this method the grid point density is higher at the boundaries, which increases

the resolution of boundary layers. The timestep for the fields is a Crank-Nicolson scheme

of second order.

The boundary conditions in the smooth surface simulations arise from 2.9. Since in di-

mensionless variablesΩi is equal one, the toroidal field at the inner boundary is

[Ψv]
m=0
l=1 (r = r i) =

√

4π
3
. (2.25)

All other components [Ψv]
m
l (r = r i, ro) and [Φv]

m
l (r = r i , ro) are zero.

In the rough surface simulation this boundary condition is replaced by the force term,

which defines the toroidal field according to equation 2.10

[Ψv]
m=0
l=1 (r) =

√

4π
3

(− tanh(60/d · (r − r i − d/10))/2+ 0.5). (2.26)
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2 Kinematic dynamo onset of spherical Couette flows

The main difference between equation 2.25 and 2.26 is that the latter one is integrated in

time, whereas the first one is just a Dirichlet boundary condition. After a number of time

steps, some important quantities are stored like,e.g., thekinetic energy1
2

∫

v2dV. Inserting

2.23, the kinetic energy can be expressed for each spectral component. In this way the

different contributions of axissymmetric, non-axisymmetric toroidal and poloidal fields to

the total kinetic energy can be separated and spectral distributions can be analyzed.

EΦ = 4π
∫

∑

l

l
∑

m=1

l(l + 1)
2l + 1

(l +m)!
(l −m)!

(

l(l + 1)| [Φv]
m
l |2 + |r

∂

∂r
[Φv]

m
l + [Φv]

m
l |2

)

EΨ = 4π
∫

∑

l

l
∑

m=1

l(l + 1)
2l + 1

(l +m)!
(l −m)!

r4| [Ψv]
m
l |2

(2.27)

The time step is limited by the CFL-number which is dependenton the velocity and

resolution (Fletcher 1991)

min

























r

lmax

√

v2
θ
+ v2
φ

























(2.28)

If the time step exceeds this limit, numerical information would pass to the next but one

gridpoint within one time step and the numerical solution diverges.
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2.2 Smooth surface

2.2 Smooth surface

In the following, the results of the smooth surface simulations are presented. A smooth

surface implies that the fluid is coupled to the boundary onlyby viscous drag. In the

simulation, this is done by so-called no-slip boundary conditions, which have exactly

this effect. The fluid velocity equals the boundary velocity inφ-direction at the inner

core. All other components are zero. The momentum of the fluidis transferred outwards

by viscous drag so that near the inner boundary,vφ decreases rapidly outward in radial

direction. In this region, the fluid moves in the equatorial plane and flows outward in

an equatorial jet towards the outer sphere. The recirculation takes place in the entire

rest of the volume. The basic topology of the flow is similar tothe s2t1-flow and has

opposite helicity in the two different hemispheres.s2 denotes a quadrupolar poloidal

field andt1 means that the toroidal velocity does not change sign over latitude. Such a

flow has been studied by Dudley and James (1989) and is basically capable to create a

dynamo.

In the first subsection, the purely hydrodynamic propertiesof the system will be described

in dependence on Re. For this purpose equation 2.6 was integrated in time and only

the parameter Re was changed. The main focus is on the onset ofthe hydrodynamic

instability with a dominant wave numberm= 2, a possible dominant wave numberm= 3

and developing turbulence at high Re. In the subsequent subsections, the evolution of

a weak magnetic seed field within this moving plasma is investigated. In order to do

this, the equations 2.6 and 2.5 are integrated simultaneously, where Re and Rm are the

two relevant parameters. The kinematic dynamo threshold for several Re between 103

and 1.667× 104 is found by adapting the parameter Rm so that the growth rates of the

magnetic fieldstrength is zero. Here, the nearest values ats = 0 for s < 0 ands > 0 are

linearly interpolated. The most important issue is the dynamo mechanism of the specific

flow at different Re. At low Re, it consists of a single wave propagation and evolves strong

turbulence at high Re. This is relevant to answer the question, in which way these results

can be extrapolated to the parameter regime of liquid sodiumexperiments.

In these simulations, Re will be varied from 103 up to a value of 1.667× 104, which

requires a resolution of 32 radial grid points. 128 in latitude and 256 in azimuthal direction

with respective dealiasing at 85 and 170 up to Re≈ 2 × 104. From there, the radial

resolution is increased to 64 with 256 in latitude and 512 inφ-direction and respective

dealiasing at 170 and 340. An important point is that the boundary layer should be well

resolved, which means that at least 5 grid points should be within the boundary layer. For

the highest value of Re= 1.667× 104, it is only resolved by 4 grid points. In order to

check the reliability of these results, one simulation at the kinematic dynamo onset was

repeated with 128 radial gridpoints.
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2 Kinematic dynamo onset of spherical Couette flows

2.2.1 Hydrodynamic properties

The basic state of the spherical Couette flow is axisymmetricwith respect to the axis of

the inner core’s rotation and symmetric with respect to the equatorial plane. By increasing

Re, the hydrodynamic system undergoes two transitions.

The first occurs at a critical value of Reh ≈ 1500 (Reh ≈ 105), where small non-

axisymmetric perturbations increase and an instability develops in form of a propagating

wave on the equatorial jet with a dominant azimuthal wave numberm= 2. Amplitudes of

higher harmonics of this wave number also increase, whereasamplitudes of odd modes

decrease in time. This is shown in Figure 2.3, where the spectrum of the kinetic energy

is plotted over spherical harmonic orderm. The amplitude of the dominant wave number

m = 2 is approximately 10−3 and the next harmonic is already about one order of mag-

nitude lower. In the right panel, a snapshot of the isosurface of 3% of the maximal local

kinetic energy atRe= 133 is plotted. The local kinetic energy is simply the absolute value

of the velocity vector at each grid point. It can be seen that values of 97% of the maximal

local kinetic energy are within the boundary layer near the inner core and the equatorial

jet. Thus, the highest velocities are located there. The instability bends the equatorial jet

on two opposite parts respectively up and down, like it is shown in the figure.

The azimuthal wave number ofm= 2 is in agreement with Hollerbach et al. (2006), who

computed the linear onset of non-axisymmetric instabilities and their most unstable az-

imuthal wave number for a wide range of aspect ratios. At an aspect ratio ofη = 1/3,

the first instability develops at Re≈ 1500 with the most unstable azimuthal wave number

10
0
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110

−8

10
−4

10
0

m

E
kin
m

Figure 2.3: Snapshots of the kinetic energy spectrum plotted against spherical harmonic
degreem (left) and isosurface of 3% of the maximum local kinetic energy (right) atRe=
133.
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2.2 Smooth surface

Figure 2.4: Temporally and spatially averaged spectra ofEkin plotted againstm (left) and
l (right) atRe= 300 (black) and 970 (red).

changing fromm = 3 to m = 2. Guervilly and Cardin (2010) performed full three-

dimensional simulations with an aspect ratio ofη = 0.35. They found a corresponding

onset of the instability with the same azimuthal wave numberof m= 2.

Another transition occurs at Res = 2800 (Res = 178). Beyond this value, in addition,

non-axisymmetric instabilities with odd wave numbersm occur. For further increasing

Re, the spectrum begins to flatten and approaches a power law of m−5/3. This is shown in

Figure 2.4, where on the left side the kinetic energy is plotted against spherical harmonic

orderm at Re = 300 and 970. The large scales of the velocity, however, remain on the

same order of magnitude. The azimuthal wave numberm = 2 remains dominant at least

up to Re ≈ 300. In the right panel, the kinetic energy spectrum is plotted against the

spherical harmonic orderl. The spectrum also approaches a powerlaw ofl−5/3 at highRe.

The kinetic energy spectra develops the same powerlaw like in Kolmogorov’s theory of

turbulence (Davidson 2004), although it is plotted againstspherical harmonic order and

degree. Kolmogorov, on the contrary, argues on the bases of spectral properties of plane

waves. The correct relation between a plane wave vectork and the spherical harmonic de-

greel is k2 = l(l + 1) (Lorenzani 2001). This implies that the concept of an inertial range

and a dissipation scale can be applied on the spectral properties of spherical harmonics.

The scale, at which the power spectra kink and become steeperthanl−5/3, therefore indi-

cates the viscous scalelν which shifts to higher wave numbers for increasing Re.

In Figure 2.5, the three characteristic regimes, Re< Reh (left panel), Reh < Re < Res

(middle panel) and Re> Res (right panel), are displayed. The components of the veloc-

ity field are shown as snapshots in a meridional cut. The radial component at the top,

the θ-component in the middle and theφ-component at the bottom. On the left side, at

small Re< Reh, the velocity is axisymmetric with respect to the axis of rotation. The

radial component shows high velocities in the equatorial plane towards the outer sphere,

while everywhere else it is at least one order of magnitude lower. Theθ-component has

relatively large velocities at the inner boundary, where the fluid flows into the equatorial
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2 Kinematic dynamo onset of spherical Couette flows

Figure 2.5: Snapshots ofvr (top), vθ (middle) andvφ (bottom) in a meridional cut at
Re= 1.25× 103 (left), 2.5× 103 (middle) and 104 (right).

plane, and at the outer boundary, where it circulates back tothe poles. Theφ-component

is large near the inner core within the boundary layer. Compared to the other components,

vφ reaches the highest values, being six times larger than the radial velocity in the equato-

rial jet and one order of magnitude larger than the absolute maximum ofvθ. In the central

plot for Reh < Re< Res, the first non-axisymmetric instability with the azimuthalwave

numberm= 2 is shown. Accordingly, the equatorial jet is bended up- anddownward and

the symmetry with respect to the axis of rotation is only given by a shift ofφ → φ + π
or φ → φ + π/2 and an additional reflection with respect to the equatorialplane. Due to

the increase of Re, the equatorial jet as well as the boundarylayer becomes thinner. Fi-

nally, on the right side, at high Re, the symmetry is entirelybroken, the velocity becomes

increasingly small scale structured and turbulence develops. The equatorial jet and the

boundary layer further diminish.

The boundary layer is defined as the distance, within which the φ-velocity averaged on

spherical surfaces ˆvφ(r) drops below the mean of the boundary velocity ˆvφ(r i) and the

radially averaged velocityvφ

dB =
v̂φ(r i) + vφ

2
. (2.29)

In Figure 2.6, on the left side, the boundary layer thicknessof theφ-velocity is plotted. It

decreases proportional to Re−1/2 as predicted by laminar boundary layer theory Acheson

(1990). On the right side,Ekin is plotted. Because of the weak mixing, it saturates at
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Figure 2.6: Boundary layer thicknessdB plotted against Re−1/2 (left) and Ekin plotted
against Re−1. The vertical dashed lines indicates the transitions at Reh and Res.

quite low Re and approaches a constant value ofEkin ≈ 0.023. In this limit, the viscosity

can be neglected. The only remaining parameters, on which the kinetic energy depends,

areΩi andρ. The dimensional kinetic energy is therefore proportionalto Ω2
i ρ and the

dimensionless kinetic energy becomes constant. The vertical dashed lines in Figure 2.6

indicate the two mentioned transitions in the characteristics of the velocity field.

An important aspect for a later discussion about the efficiency of dynamo action is that

the boundary layer thickness as well as the strength of the equatorial jet decrease when

the inner sphere rotates faster. At all Re, the largest contributions to the kinetic energy are

localised within the boundary layer and the equatorial jet.Hence, at high Re, the kinetic

energy is concentrated in a small volume near the inner sphere and the equatorial plane

and is not well distributed within the entire spherical gap.

Another important quantity is the torque at the inner boundary. It gives a direct measure

of the energy dissipation. In dimensionless form the torquereads

τ = −
∫ 2π

0

∫ π

0
r3 sinθ2

[

∂vφ
∂r
−

vφ
r

]

dθdφ, (2.30)
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Figure 2.7: Dimensionless torque plotted against Re.
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which, together withvφ from equation 2.23, leads to

τ(θ, φ)|r i = sinθ
∑

m,l

[

im
sinθ

1

r2
i

(

r2
i

∂2

∂2
[Φv]

m
l − 2 [Φv]

m
l

)

P̂m
l (cosθ)−

r i
∂

∂r
[Ψv]

m
l

∂

∂θ
P̂m

l (cosθ)

]

eimφ.

(2.31)

Figure 2.7 shows the temporally averaged torqueǫ =< τ > /Re as a function of Re and

decreases with Re−0.62. Giving the assumption that∂rvφ ∼ d−1
B , equation 2.30 would yield

a proportionality of Re−1/2 for ǫ. The deviation might arise from the fact that∂rvφ at r i is

not the same as it is across the boundary layer.

The dimensional torque isτρΩid3ν. The three diameter experiment in Maryland mea-

sured a torqueτ′ρν2r i that increases with Re1.89. With the same dimension, the torque in

the simulations yield a proportionality ofτ′ ∼ τRe∼ ǫRe2 ∼ Re1.38. The deviation comes

most probably from the fact, that the boundary shear layer inthe simulations is still lami-

nar. The experiments exhibits strong turbulent flows, in which the shear layer destabilizes

at relatively low Re compared to the possible limit (Zimmerman 2010).

It is well known that in turbulent plasma flows, the helicity plays a crucial role in gener-

ating magnetic fields, since helical flows are often favourable for dynamo action (Moffatt

1978). They can produce a large-scale dynamo via theα-effect, as it was shown in

the experiments in Karlsruhe (Muller and Stieglitz 2002), and in numerical simulations

Brandenburg (2009), Graham et al. (2012). The spherical Couette flow is topologically

related with thes2t1-flow of Dudley and James (1989), which includes a zonal flow in

φ-direction and a meridional component. That, in turn, creates helicity of opposite sign

in the two hemispheres. In Figure 2.8 snapshots of the isosurfaces of the kinetic helic-

ity are plotted forRe = 130 and 970. Red color marks positive helicity and blue color

marks negative helicity surfaces of one percent of the maximal and minimal helicity, re-

spectively. This means that helicity from 1% up to 100% of themaximal/minimal helicity

amplitude is concentrated at the inner boundary and near theequatorial plane. This is

reasonable, since in these simulations, the meridional circulation is quite weak compared

to the boundary velocity, and the helicity is dominated by the strongφ-rotation within the

boundary layer. Enhancing the helicity in the entire volumeto an equal value by increas-

ing the meridional circulation would probably increase thedynamo quality, which could

be achieved by a better coupling between the moving boundaryand the fluid.

There is a surprising observation related with the dominantwave number of the non-

axisymmetric instability. Usually for Reh < Re < Res, small non-axisymmetric pertur-

bations increase with the dominant modem = 2. At Re > Res, all modes are unstable

and the spectra of the velocity field looks like those in Figure 2.4. Starting from this state

and lowering Re below Res, amplitudes of high wavenumbers are damped by diffusion
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2.2 Smooth surface

Figure 2.8: Snapshots of the isosurface of 1% of the maximum kinetic helicity atRe =
132 (left) and 970 (right). Blue indicates negative and red positive helicity. The respective
maximal/minimal values are± 3.5 and± 10.0

and the non-axissymmetric instabilities turn again into a single wave propagation, like

discussed in the first paragraphs. By this means, it is possible that the dominant wave

number becomesm = 3 and only every third wave number inm remains as additional

stable wave number. The left panel of Figure 2.9 shows the kinetic energy spectra plotted

against spherical harmonic degreem. Hollerbach et al. (2006) found the most unstable

mode for this aspect ratio to be on the transition fromm = 2 to 3. However, in simula-

tions with an aspect ratio ofη = 0.4, growing non-axisymmetric instabilities still have a

dominant wavenumber ofm = 2, although the linear onset predicts a different one. On

the right side, an snapshot of the isosurface of 3% of the maximal local kinetic energy is

shown. According to the dominant wave number, the equatorial jet has three wave crests.

The left panel of Figure 2.10 shows the bifurcation diagram of the kinetic energy of the

two branches with different wave numbersm= 2 (black) andm= 3 (blue), which get sep-

arated at the onset of the first non-axisymmetric instability and slowly merge atRe> Res.

The kinetic energy of the simulation, where the instabilityexhibits a dominant wave num-

ber of m = 3 is higher than the corresponding simulation withm = 2. The right panel

shows the dimensionless torqueǫ at the inner boundary for the same simulations. These

values ofEkin andǫ represent the state, where∂tEkine = 0. From Equation 2.14, it fol-

lows that the viscous dissipation is balanced by the energy input, expressed by the torque.

Thus, the energy dissipation withm= 2 is slightly higher than withm= 3.

29



2 Kinematic dynamo onset of spherical Couette flows

10
0

10
110

−8

10
−4

10
0

m

E
kin
m

Figure 2.9: Snapshots of the kinetic energy spectrum plotted against the spherical har-
monic degreem (left) and isosurface of 3% of the maximum local kinetic energy (right)
atRe= 130.

1500 2500
4

5

6

x 10
−3

Re

ε

m=3
m=2

Figure 2.10: Kinetic energy bifurcation diagram (left) andthe dimensionless torque at the
inner boundary (right) of them= 2 andm= 3 instability.

2.2.2 Kinematic dynamo threshold

In the following, the results of the magnetohydrodynamic simulations are presented. Ad-

ditionally to the momentum equation (eq. 2.6), the induction equation (eq. 2.5) was

solved numerically and intergated in time. Thereby, the behaviour of the magnetic field

within the plasma flow was investigated. Further, solutionsof zero growth rate were eval-

uated, which denote the kinematic dynamo threshold Rmc. The dynamo onset and the

evolution of a seed magnetic field in the spherical Couette flow has already been inves-

tigated by Guervilly and Cardin (2010) incorporating the full non-linear equations1. The

aspect ratio in their studies wasη = 0.35 and the magnetic boundary conditions were

1In this sense, non-linear means the MHD equations includingthe Lorentz force in the Navier-Stokes
equation
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different. They implemented boundaries, which had the same conductivity as the fluid

and also investigated ferromagnetic boundaries. The conductivity of the boundary was

found to be irrelevant for Rmc, but enhanced the saturation level of the magnetic energy.

The crucial result was that the dynamo onset Rmc increases with Re, which makes this

kind of flow unfavourable for dynamo experiments. The extrapolation of the results to the

parameter regime relevant for the experiment yields unreachable Rmc.

In order to find the onset of magnetic field amplification, Rm isincreased for several Re

until the growth rate becomes positive. The transition Rmc is determined by linear interpo-

lation. Figure 2.11 shows the simulations in the (Re,Rm)-plane and in the (Re,Pm)-plane.

The vertical dashed lines denote the transitions Reh and Res between the three character-

istic velocity fields, which were described in the previous section. The thick black dashed

line between the red dots and the blue asterisks shows the dynamo threshold. In addi-

tion lines of constant Pm= 1 in the upper panel andRm = 800 in the lower panel are

plotted. To point out an interesting aspect, note that Pm is larger than one except for the

simulation at the highestRe≈ 970. Since Pm represents the ratio of kinematic viscosity

and magnetic diffusivity, it also indicates the ratio of the smallest scales of the velocity

field and the magnetic field and the ratio of viscous dissipation to ohmic diffusion. For

Pm> 1, the dissipation scale of the magnetic field is smaller. This will turn out to be an

important point at high Re, when the velocity field is highly turbulent.

Figure 2.11: Dynamo onset in the (Re,Rm)-plane (upper panel) and in the (Re,Pm)-plane
(lower panel). Failed dynamos are indicated by red dots and acting dynamos by blue
asterisks. The thick dashed line marksRmc for m = 2 and the blue thick solid line for
m= 3. The straight lines are Pm= 1 (upper panel) andRm= 800 (lower panel). Vertical
dashed lines mark the transitions Reh and Res.
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2 Kinematic dynamo onset of spherical Couette flows

In the following, the three regions- axisymmetric flow, nearly stationary instability, and

turbulent regime- are investigated with respect to the behaviour of the magnetic field and

the dynamo mechanism.

2.2.3 Stationary regime

The shape of the velocity field is axisymmetric up to Reh ≈ 1500 (Reh = 105). In this

regime, no dynamo action could be found even at large Pm= 10. This is in agreement

with Guervilly and Cardin (2010), who didn’t find any dynamo action for an axisymmet-

ric velocity field either. Since Dudley and James (1989) proved that this kind of flow

is basically capable of creating a dynamo, at very high Rm, the generation of magnetic

energy should occur. On account of that, the ratio of meridional circulation to toroidal

kinetic energy could be crucial to improve the dynamo efficiency.

Once the flow becomes unstable atRe> Reh, the flow is able to sustain a dynamo at low

Pm. The development of the dynamo threshold atReh < Re < Res has a characteristic

peak atResy ≈ 140 (Fig. 2.11). At first, Rmc increases withRe forRe< Resy, and then

decreases forRe> Resy up to the second transition atRes. There, it increases again and

remains nearly constant up to highRe. Most striking is that the shape of the velocity

does not change significantly within the rangeReh < Re< Res but the dynamo threshold

changes significantly. The main evolution of the velocity field is the decrease of bound-

ary layer thickness and the thickness of the equatorial jet.The dominant azimuthal wave

number remainsm= 2 within this range ofRe.

Time series of the radial velocity at a fixed point in the equatorial plane are plotted in the

left panel of Figure 2.12. The focus is on the temporal variation and not on the amplitude

so that the curves are just plotted on top of each other for a better comparability. It can be

seen that the phase velocity of the propagating wave decreases with increasingRe.

In the right panel in Figure 2.12, the time evolution of the torque at the inner core, ob-

tained by equation 2.31, is displayed for differentRe. The amplitude of the oscillation is

about 1% of the total mean torque. The fact that the torque at the inner core is not constant

suggests a superposition of higher harmonics and the dominant propagating instability. A

single wave propagation would exert a constant torque. The next higher wave number

m= 4 is only one order of magnitude lower than the dominant one. The frequency of the

torque’s oscillation decreases withRe as well, similar to the phase velocity of propagating

wave on the equatorial jet.

The dynamo onset decreases significantly with the occurrence of the non-axisymmetric

hydrodynamic instability atReh. Thus, the generation of the magnetic field must be

closely related to the this propagating instability.

Such wave-like motion can approximately be composed of a stationary state and a time
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Figure 2.12: Time evolution ofvr at a fixed point in the equatorial plane (left) and the
torque (right) atRe= 114 (red), 133 (black) and 162 (blue). The amplitudes are arbitrary
since the focus is on the time dependence

dependent phase. This has already been done in simulations related with the Madison ex-

periment by Reuter et al. (2009). They found that growth rates exhibit resonance effects,
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Figure 2.13: Kinetic energy spectra (black) and magnetic energy spectra (red) plotted
againstm (left) and according time evolution of the magnetic energy (right) atRe= 133
(top) and 162 (bottom).
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2 Kinematic dynamo onset of spherical Couette flows

depending on the phase velocity of the propagating wave.

Figure 2.13 shows the spectrum of magnetic and kinetic energy plotted against spheri-

cal harmonic degreem on the left side and the respective time evolution of the magnetic

energy on the right side atRe = 133 (top) and 162 (bottom). These plots contrast the

evolution of the magnetic field slightly before and behind the peak atResy in the dynamo

threshold (Fig. 2.11). The spectra show that atRe< Resy the same modes of the velocity

field are excited in the magnetic field. As a consequence, the magnetic field and the ve-

locity field have the same symmetry with respect to the axis ofrotation with a dominant

azimuthal wave numberm= 2. Amplitudes of higher harmonics of this wave number are

amplified as well, whereas the energy in odd wave numbers dissipates. Once the kinetic

energy has saturated and the non-axisymmetric instabilityhas fully developed, the time

evolution of the magnetic energy can be represented by a superposition of an exponential

increase and an oscillation.

On the contrary atRe > Resy, the magnetic energy in odd wave numbers increases in

time and dissipates in even wave numbers. Thereby, the hemispherical symmetry of the

magnetic field breaks up. The time evolution of the magnetic energy now exhibits a time

independent growth rate, and an oscillation can be observed.

In order to investigate the effect of the phase velocity of the propagating instability on the

dynamo threshold and on the time evolution of the magnetic energy, only the induction

equation is integrated. A stationary velocity field with fully developed instability is taken

for the induction term in equation 2.1. By varying the mean flow of this velocity field, the

drift velocity of the propagating wave can be altered artificially:

[Ψ̃v]
m=0
l=1 (r) = [Ψv]

m=0
l=1 (r) − ω̃

√

4π
3
. (2.32)

Figure 2.14: Growth ratess plotted against phase velocity ˜ω for different Rm (left). The
velocity fields are generated with hydrodynamic simulations at the corresponding Re. The
right panel shows the time evolution of the magnetic energy in the full simulation and in
the corresponding frozen flux simulation.
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The induction equation is then just a linear differential equation with a constant differential

operatorℑ
∂

∂t
B = ℑB, (2.33)

for which temporally averaged exponential growth rates canbe found in dependence of

Rm. The change of the drift is given by ˜ω. Since the constant differential operator in equa-

tion 2.33 is time-independent with solutionsB ∼ est, eigenvaluess indicate the growth

rate of the respective magnetic field. The time evolution of the velocity field in Figure 2.12

shows a phase velocity of the instability of about∼ 1.6%− 1.9% of the inner sphere’s ro-

tation rate. Note that an azimuthal wave number ofm= 2 creates two wave crests, so that

every second wave crest belongs to one full rotation of the instability.

In Figure 2.14, the growth rates at Rm= 4 × 103 are plotted against ˜ω for two different

frozen velocity fields. The velocity fields were taken from hydrodynamic simulations at

Re= 2×103 and 1.7×103. The simulations with Re= 1.7×103 were repeated with a differ-

ent Rm. The according drift velocities and growth rates of the full simulations are plotted

as circles (red for Re= 1.7× 103; Rm= 4× 103 and black Re= 2× 103; Rm= 4× 103).

Only the evolution ofs at Re= 2 × 103 shows a monotonous behaviour over the entire

range ofω̃. The sets of simulations with the same velocity field at Re= 1.7 × 103 but

different Rm (red and green crosses), however, show that the variation of ω̃ significantly

effects the growth rate. In the range of the dynamical simulations atω̃ ≈ 1.6− 1.9%, the

growthrate decrease with diminishing phase velocity, as shown in Figure 2.14. This result

agrees with the behaviour of the dynamo threshold up toRe= 133.

Nevertheless, the growth rates of the frozen flux simulations are totally different from

those of the full simulations. In Figure 2.14 (right), the temporal evolution of the magnetic

energy of a frozen velocity field simulation is plotted together with the corresponding

dynamical simulation. In both types of simulation, the frequency of the magnetic energy

oscillation changes slightly with the phase velocity of thepropagating wave. Also, in both

cases, the superposition of an exponential growth and an oscillation can be observed.

Therefore, the conclusions drawn from these frozen flux simulations can only be seen as

a qualitative result. The oscillatory behaviour of the magnetic energy, however, seems

to be generated in the stationary part of the velocity field, since it is also present in the

frozen velocity field simulations. On the other hand, phase velocities, for which the time

evolution of the magnetic energy is pure exponential, were not found. Even at Re> Resy,

where the full simulations suggests such a behaviour, the frozen flux simulations do not

show it. Therefore, the symmetry breaking of the magnetic field at Re= Rehy must be on

account of the slight time dependence of the velocity field, due to the superpostition of

the dominant mode and higher harmonics.

In Figure 2.15, snapshots of the magnetic field are shown at three points in time during

one maximum of the magnetic energy to another (right panel ofFigure 2.14). The patches
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2 Kinematic dynamo onset of spherical Couette flows

Figure 2.15: Snapshots ofBr (top), Bϑ (middle) andBϕ (bottom) in a meridional cut
during one frozen flux simulation from one maximum (left) to the minimum (middle) to
the next maximum (right).

of maximal and minimal magnetic field strength vanish beforethey finally reappear with

opposite sign. The same mechanism can also be observed in full dynamical simulations,

where the patches move with the propagating instability. This can be seen as a special

kind of a propagating magnetic wave in a frozen flux of plasma.

Magnetic field strength is generated due to magnetic field line stretching in the vicinity of

velocity gradients at the boundary layer and the equatorialjet. In the rangeReh < Re <

Res, this occurs mainly near the wave crests, as well as above andbelow the equatorial

plane, as seen in Figure 2.16. It shows snapshots of 10% of thetotal local magnetic energy

and 3% of the maximum local kinetic energy atRe= 114, 133 and 162. The local mag-

netic energy is the absolute value of the magnetic field vector at each grid point. The main

contribution to the magnetic energy comes from the toroidalmagnetic field. Them = 2

symmetry of the magnetic field at the two lowestRe is clearly visible. AtRe= 162, the

symmetry of the magnetic field with respect to the two hemispheres breaks. The change

in the symmetry of the magnetic field seems responsible for the increased dynamo effi-

ciency. So far, it remains unclear, which small-scale characteristics of the velocity field

actually trigger this change in the amplification of different modes.

As a first approach, it is assumed that the change in the symmetry of the amplified mag-

netic field modes is responsible for the significant change inthe efficiency of the flow to
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Figure 2.16: Snapshots of isosurfaces of 3% of the maximum local kinetic energy (red)
and 10% of the maximum local magnetic energy (blue) atRe= 114 (left), 133 (right) and
162 (bottom).

dynamo action. In order to verify this assumption, one can consider the dynamo threshold

of them = 3 instability, which is additionally plotted in Figure 2.11for Reh < Re< Res

(blue thick line). Two things can be seen. First, the threshold is lower form= 3 than it is

for m = 2. Secondly, it increases monotonously with Re. The spectral distribution of the

magnetic and kinetic energy is plotted in Figure 2.17 forRe= 133, whereas the symme-

try of the magnetic field does not undergo any change in the rangeReh < Re < Res. At

anyRe, the amplitude of every third wave numberm is amplified, whereas the others de-

crease. The magnetic field and the velocity field have the samesymmetry. The evolution

of the magnetic energy is plotted in Figure 2.17 on the right hand side and shows also a

similar exponential increase with a superposed oscillatory behaviour like in the top panel

of Figure 2.13.
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Figure 2.17: Kinetic (black) and magnetic (red) energy spectra plotted against spheri-
cal harmonic degreem at Re = 133 (left) and the corresponding time evolution of the
magnetic energy (right).

Figure 2.18: Snapshot of the isosurface of 3% of the maximum local kinetic energy (red)
and 10% of the maximum local magnetic energy (blue) during a simulation with a domi-
nantm= 3 instability.

Figure 2.18 shows again isosurfaces of 3% of the maximum local kinetic energy and 10%

of the maximum local magnetic energy. The generation of magnetic energy occurs in the

vicinity of the propagating wave crests, where the velocityfield is strongly sheared. The

main contribution to the magnetic energy is given by the toroidal component of the mag-

netic field. Here, the symmetry of the velocity field and the magnetic field, respectively,

agree as well. Since the magnetic field is generated in the vicinity of the wave crests of

the equatorial jet, it is likely that them= 3-instability is more efficient to dynamo action

than withm= 2.

Remembering the two branches of the kinetic energy form= 2 andm= 3, plotted against

Re in Figure 2.10, another explanation for the increased efficiency could be that in this
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range, the kinetic energy of the flow withm = 3 is 10% higher than withm = 2, which

increases the induction.

2.2.4 Dynamo mechanism in the turbulent regime

At Res ≈ 2800, instabilities develop over the entire range of wave numbersm. The

regularity of the velocity field entirely breaks up, whereasm = 2 still remains the dom-

inant mode at first. Due to the appearance of many modes, the velocity field temporally

fluctuates without any periodicity anymore. The temporallyfluctuations lower the dy-

namo quality and the dynamo threshold increases immediately. Figure 2.19 shows the

evolution of the non-axisymmetric toroidal kinetic energy(left) and the magnetic energy

(right) of a simulation atRe= 210, which is close above Res. The plot in the left panel

shows the temporal development of a small non-axisymmetricperturbation and the satu-

ration of the corresponding toroidal kinetic energy. It remains nearly constant for a short

time and finally develops a strong time dependence, which indicates the destabilisation

of higher modes on the equatorial jet. The corresponding time evolution of the magnetic

field shows a nearly constant growth rate as far as the dominant mode has developed.

With the onset of strong time fluctuations, the growth rate becomes time dependent as

well and decreases significantly. The growth rate even changes sign so that the dynamo

eventually shuts down. At that point, the dynamo is still mainly driven by the dominant

wave numberm = 2, whereas the time dependence due to the instability of higher wave

numbers decreases the efficiency of the flow to dynamo action.

Important points to discuss in this context include, first, the effect of small-scale velocity

structures to dynamo action, which become increasingly dominant the higher Re gets.

Secondly, the question, if the dynamo threshold remains at aconstant Rmc for Re→ ∞.

Figure 2.19: Time evolution of the non-axisymmetric toroidal kinetic energy (left) and
the magnetic energy (right) atRe= 210.
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2 Kinematic dynamo onset of spherical Couette flows

This, in turn, is related to the question, whether, thirdly,the turbulent spherical Cou-

ette flow is a small-scale dynamo (and thus driven by small-scale velocity vortices) or a

large-scale dynamo, where them = 2 instability and the mean flow mainly generate the

magnetic field. One crucial parameter in this discussion is Pm, which indicates the ratio

of the dissipative scales of the fluid and the magnetic field. Except for simulations at the

highestRe= 970, the dynamo threshold is at Pm> 1 (Fig. 2.11). Since Pm= 1 denotes

an important transition, where the smallest scales of both fields are on comparable length

scales, the extrapolation of these results to higher Re haveto be well considered.

These considerations are relevent to many astrophysical objects, where turbulent gas flows

at very low Pm can create large magnetic fields, which are comparable to the size of the

same objects. A lot of research has focused on the improvement of our understanding

of turbulent dynamos at very low Pm. In order to get sufficient Rm so that dynamo

action is achieved, the simulations require high Re and, thus, are computationally de-

manding. In these simulations, the scale of the generated magnetic field can be much

larger than the energy carrying vortices of the flow. The dynamo is a large-scale dynamo,

which can be described, for instance, with the help of the mean field theory (Moffatt

1978, Krause and Rädler 1980). In these cases, helicity plays a crucial role. Turbulent

simulations at small Pm have been made using, e.g., randomlypolarised helical waves

(Brandenburg 2009) or helical G.O. Roberts like forced flows(Ponty and Plunian 2011),

who succeeded to gain large-scale dynamos. On the other handit is also possible that

the magnetic energy is generated on scales which are comparable or smaller than the tur-

bulent eddies (Schekochihin et al. 2004b, Iskakov et al. 2007, Schekochihin et al. 2007).

This kind is of fluctuative dynamo was investigated for example in homogeneous isotropic

turbulence.

In the following, it will be shown that the dynamo of the spherical Couette flow is a large-

scale dynamo and that this result implies that the dynamo threshold is independent on Re.

Although spherical Couette flows exhibit anisotropic turbulence, the following argumen-

Figure 2.20: Spectral distribution of kinetic and magneticenergy in homogeneous
isotropic turbulence at large (left) and low Pm (right) (Schekochihin et al. 2004b).
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tation is based on homogeneous isotropic turbulence.

The usual approach to deal with homogeneous isotropic turbulence is to distinguish be-

tween different scales that exist within the system. A sketch of these scales is shown in

Figure 2.20. Here, it has to be guaranteed that by identifying different length scales, a suf-

ficient scale separation is given. The largest length scale is defined by the container sized

of the specific object, which constrains the flow. In case thatthe fluid is driven by a large-

scale motion like, e.g., the mean flows in convection cells orimpeller-driven flows like

in some mentioned dynamo experiments, the next smaller scale is defined by the energy

injection scalel0. In the Kolmogorov picture of turbulence, this large vortexbreaks up

into smaller vortices, so that the energy is transferred to smaller scales (Davidson 2004).

At these scales, non-linear inertial processes are dominant. For this reason, it is called

inertial range. Since energy is neither dissipated nor injected within the inertial range, but

only redistributed to smaller structures, the energy flux isconstant over the entire range.

The spectral kinetic energy decays with powerlaw ofl−5/3. Finally, at the dissipative scale

lν, inertial processes become comparable to dissipation processes, where the kinetic en-

ergy is transformed into thermal energy. The kinetic energyspectrum kinks at that point

and the spectrum continues steeper than the inertial range.Kolmogorov’s dimensional

theory of turbulence gives for the viscous scalelν ∼ Re−3/4l0. Considering a magnetic

field that is stretched and twisted within these turbulent vortices, it is required to get a

scale for the induction processes of the fluid at first. The generation of magnetic energy

is mainly described by the induction term in the induction equation 2.1

∇ × (B × v) = (v · ∇)B − (B · ∇)v. (2.34)

The first term on the right side describes changes of the magnetic field by plasma convec-

tion. The second term describes stretching processes of themagnetic field lines by veloc-

ity gradients, which are mainly responsible for magnetic field amplification in turbulent

Figure 2.21: Temporally and spatially averaged turbulent rate of strain plotted againstm
(left) andl (right) atRe= 300 (black) and 970 (red).
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2 Kinematic dynamo onset of spherical Couette flows

flows. The square of the stretching term|Bi∂ivj |2 ∼ El
kinl

2 is a measure for the turbulent

rate of strain and gives a powerlaw of∼ l1/3 in the Kolmogorov picture (Chertkov et al.

1999). It peaks at the viscous scale, where the induction process is most efficient. The

temporally and spatially averaged spectra of the turbulentrate of strain are plotted in Fig-

ure 2.21 forRe= 300 and 970.

In homogeneous and isotropic turbulence, the magnetic energy is generated at the vis-

cous scale. There, the viscous eddy turnover time equals themagnetic diffusion time,

which defines an estimate for the fourth length scale, the resistive scalelλ ∼ Pm−1/2lν
(Biskamp 2003). Two scenarios arise from this definition: low-Pm (Pm≪ 1) and high-

Pm (Pm≫ 1) dynamos.

For Pm≫ 1 (left panel in Fig. 2.20), the magnetic energy is generatedby the most effi-

cient vortices at the viscous scale and accumulated in the subviscous range atlλ (Schekochihin et al.

2004b). If Re is cranked up, presumably Rm would increase as well, since the scale at

which dynamo action occurs is directly affected by the viscous scales and would shift to

lower scales. In this case, the behaviour of the dynamo is unpredictable concerning the

extrapolation to higher parameter ranges.

For Pm≪ 1 (right panel in Fig. 2.20), the dynamo is generated somewhere within the

inertial range and is not affected by the smaller viscous scales. If Re is cranked up, the

dynamo would not be effected by even smaller viscous scales and Rmc would remain

constant (Fauve and Petrelis 2007). This has already been worked out by some numer-

ical works by Schekochihin et al. (2004a), Ponty et al. (2005), Iskakov et al. (2007) and

Mininni (2007). In all simulations, the same phenomenon of an overshooting Rmc as a

bump in the threshold appears at Pm/ 1 before it saturates at a constant level at higher

Re. In Ponty et al. (2005, 2007), this effect was found at 0.06 . Pm. 0.2, which could

not be reached in these simulations due to computational limitations. This effect was re-

lated to a bottleneck effect, the accumulation of kinetic energy at scales slightly larger

than the viscous scale (Brandenburg and Nordlund 2011). In the kinetic energy spectra

Figure 2.22: Temporally and spatially averaged Magnetic energy spectra plotted against
m (left) andl (right) atRe= 300 (black) and 970 (red).
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Figure 2.23: Temporally and spatially averaged toroidal (red) and poloidal (black) mag-
netic (left) and kinetic (right) energy spectra plotted against l at Re= 970.

(Figure 2.21), no such bottleneck can be found.

Another explanation for the bump in the threshold was given by the presence of helicity

at the resistive scale by Malyshkin and Boldyrev (2010). In the end, a convincing expla-

nation is still lacking so that this phenomenon is not well understood by now.

For Re= 300 and 970, the magnetic energy spectra are plotted againstl andm in Figure

2.22. At high Re, the magnetic energy is located at large scales and even atRe = 970

the l = 1-component is dominant. The results seem to be similar to those of Brandenburg

(2009), where the magnetic field generation in helical turbulence simulations was investi-

gated. This strongly suggests a large-scale dynamo that is created in the spherical Couette

flow by large-scale motions. Only the simulation at the highest Re = 970 raises doubt,

because a local maximum emerges atl ≈ 10, which still is within the inertial range of the

kinetic energy spectrum (Fig. 2.21). It seems to suggest an acting dynamo at two different

scales. In Figure 2.23, the toroidal and poloidal parts of the magnetic and kinetic energy

spectra are plotted separately. Apparently, the large-scale toroidal magnetic field is gener-

ated by the velocity shear of the boundary layer, which is dominant atl = 1 in the toroidal

kinetic energy. The generation of the poloidal magnetic energy occurs at some intermedi-

ate scalel ≈ 10. The only significant intermediate scale between the scale of the boundary

shear and the viscous scale is the scale of the equatorial jet, where the maximum polodial

magnetic energy is generated. In order to make sure that thisdynamo is dominant at large

scales, another simulation was performed atRe= 970, where the mean part of the flow is

subtracted from the velocity field before integrating the induction equation. The magnetic

energy decreases significantly at Pm= 1, as well as the peak atl = 1 in the magnetic

energy spectrum. This implies that the large-scale dynamo is dominant and apparently

generated by anΩ-effect of the boundary layer shear. The turbulent eddies alone are not

able to sustain the dynamo. Hence, increasingRe has no effect on the dynamo threshold,

since the dynamo is created within the inertial range and only a turbulent tail is added to

the kinetic energy spectrum. With increasingRe, Pm drops below unity and the magnetic
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Figure 2.24: Temporally and spatially averaged magnetic energy (red) and turbulent rate
of strain (black) spectra atRe= 300 (top left), 400 (top right), 600 (bottom left) and 970
(bottom right).

field is too rough to be affected by the fluid at the viscous scale. Because of the magnetic

diffusion, the magnetic field is not influenced by the turbulent eddies of further decreasing

scale size. That is why the dynamo threshold is seen to be constant in the limit Re→ ∞.

The transition of the dynamo scale from low to high Re can be seen in Figure 2.24, where

the turbulent rate of strain is plotted overl together with the magnetic energy spectrum

at Re = 300, 400, 600 and 970. At lowRe, the magnetic energy is generated at large

scales, where the dynamo is mainly driven by the dominant non-axisymmetric instability.

At Re= 970, finally, the magnetic energy shows these two maxima, which are far within

the inertial range.

Based on this finding, the threshold can be extrapolated to the parameter range relevant

for experiments. The plateau of the dynamo threshold is atRmc = 800. In all dynamo

experiments, the working fluid is liquid sodium with Pm≈ 10−5 andν ≈ 10−6. Based

on these numbers, the experimental setup has to reachRe = 8 × 107. For such highRe,

the kinetic energy is already constantEkin ≈ 0.023 andvrms ≈ 0.058, which finally gives

Re = 1.4 × 109. The corresponding rotation frequency isf = Reν/2πd2 = 223s−1. In

order to get an estimate for the energy dissipation, the dataof Figure 2.7 are also extrap-

olated to that Re and one yieldsτ ≈ 1.8× 10−6. The energy dissipation per unit mass is
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ǫ ∼ τΩ3
i d

2 ≈ 1.8 × 103W/kg. Within a volume ofVol ≈ 13m3 and a density of liquid

sodium withρ ≈ 103kg/m3, the total energy dissipation is approximatelyǫ ≈ 23GW,

which is a quite unrealistic number owing to very high rotation rates.

The low efficiency of this flow to sustain a dynamo might have two crucial reasons. First,

the high rotation rates are needed because the boundary layer, across which the momen-

tum is transferred to the fluid, decreases with the rotation rate. Almost the entire kinetic

energy is gained within the boundary layer and only there, large shears occur so that the

dynamo is generated in a very small part of the spherical gap.Another important aspect

for the efficiency is the ability to generate poloidal and toroidal magnetic field lines like-

wise, in order to close the dynamo circle. A toroidal magnetic field is generated mainly

within the boundary layer, where the field lines are wound up around the inner sphere.

The poloidal magnetic field is mainly obtained around the equatorial jet, where the field

lines are pushed outwards in radial direction. Equation 2.34 shows that the induction of

B is proportional to the shearB j∂ jvi. Assuming that the length scales of the equatorial

jet and the boundary layer are of same order of magnitude, theratio of the shear across

the boundary layer to the shear across the equatorial jet is just the ratio of their maximum

velocities. This ratio can be taken as a measure for the dynamo efficiency. In this flow,

the ratio is approximately 5. In conclusion, the efficiency can be improved by increasing

the momentum transfer in the whole volume and a lower ratio ofthe toroidal to poloidal

velocity shear.
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2 Kinematic dynamo onset of spherical Couette flows

2.3 Rough surface

The obtained results for a spherical Couette flow driven by a pure viscous coupling be-

tween the inner core and the fluid leads to parameters, which cannot be reached by the cor-

responding experiment in Maryland. Although with smooth boundaries, the inner sphere

rotates quite fast (f = 223s−1) at the kinematic dynamo onset, the momentum transfer

across the boundary layer to the entire volume is very low, sothat the averagedvrms is

only one tenth of the boundary velocity.

Therefore, a second numerical setup is investigated, wherea volume force is introduced

in the Navier-Stokes equation. The force intends to simulate a rough surface, which in-

creases the coupling between the rotating inner sphere and the fluid. Thereby, the fluid is

stirred more.

The outline of this section is similar to the previous one. Inthe first section, the purely

hydrodynamic properties of the system are investigated by integrating the Navier-Stokes

equation 2.6 in time. The only parameter that is changed is Re. The shape of the velocity

field undergoes two transitions from an axisymmetric field toa state where the first non-

axisymmetric instability develops with a dominant azimuthal wave numberm = 2. At

high Re, the flow becomes Kolmogorov-like turbulent. The main focus is on the evolu-

tion of the boundary layer thickness, the kinetic energy andthe evolution of hydrodynamic

instabilities.

In the second section, the evolution of a weak magnetic seed field in this flow is inves-

tigated. Therefore, the induction equation 2.5 is integrated additionally. The main focus

is on the kinematic dynamo onset in the parameter space of Re and Rm. The results are

compared with those of the smooth surface simulation with respect to the dynamo effi-
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Figure 2.25: Snapshots of the kinetic energy spectrum plotted againstm (left) and isosur-
face of 20% of the maximum local kinetic energy atRe= 106 (right).
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2.3 Rough surface

ciency of the respective flow and the dynamo mechanism. The results are extrapolated to

parameters of the liquid Sodium experiment in Maryland. Finally, a conclusion is drawn,

whether a rough surface could be a reasonable improvement ofthe experiment and what

are the reasons therefore.

The parameter Re is varied from 102 up to 2.5× 103, whereas Pm is again of order unity.

Since the boundary layer is expanded to one tenth of the gap width, its thickness is not

crucial as a measure for the radial resolution anymore. The resolution is 32 in radial, 128

gridpoints in latitude and 256 in azimuthal direction with dealising at 85 and 170 respec-

tively. At Re= 103, the driving force is already generating large averaged velocitiesvrms,

so that the resolution has to be 64 in radial, 256 gridpoints in latitude and 512 in azimuthal

direction with dealising at 170 and 340 respectively.

2.3.1 Hydrodynamic properties

The basic shape of the velocity field is similar to that created by no-slip boundary condi-

tions. The driving force generates a boundary layer, in which the velocity is accelerated in

φ-direction and flows outwards in an equatorial jet to the outer sphere. Within the entire

rest of the volume, it recirculates back again to the inner sphere and the equatorial jet. The

main difference is a thicker boundary layer, which is independent on Re, as it was wanted.

Thereby, the momentum transfer into the entire spherical shell is increased. Hence, the

equatorial jet is much larger compared to the size in the firstsimulations. At low Re, the

flow is axisymmetric and destabilizes at comparatively low values Reh = 425 (Reh = 95).

The stronger driving force generates higher velocities so that non-linear inertial forces

become dominant.

At that point, small non-axisymmetric perturbations develop as a propagating wave on

the equatorial jet with a dominant wave numberm = 2. Only amplitudes of even wave

Figure 2.26: Temporally and spatially averaged kinetic energy spectrum plotted against
m (left) andl (right) atRe= 320 (black) and 1100 (red).
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Figure 2.27: Boundary layer thickness of the volume force+ and the no-slip× simulations

plotted against Re−1/2 (left). Kinetic energy plotted againstRe
−1

(right). The red dashed

lines represent the respective power laws of Re−1/2 (left) andRe
1/2

(right)

numbers are excited so that kinetic energy in harmonics ofm = 2 is gained and in odd

wave numbers it dissipates. Figure 2.25 shows the kinetic energy spectrum over spherical

harmonic degreem (left) and a snapshot of the isosurface of 20% of the maximum local

kinetic energy (right) atRe= 106. Compared to the no-slip simulation, the contribution

of the boundary layer and the equatorial jet to the total kinetic energy is ten times less.

Thus, in this case, the kinetic energy is distributed more equally within the entire volume.

At Res = 465 (Res = 108), only slightly higher than Reh, amplitudes of odd wave num-

bers increase in time as well. The kinetic energy spectrum becomes increasingly smooth

and approaches power laws inm−5/3 andl−5/3, which implies Kolmogorov-like turbulence.

In Figure 2.26, the kinetic energy spectra are plotted againstmandl atRe= 320 and 1100.

Since the inner boundary velocity increases with Re, the spectra are normalised with re-

spect to the amplitude of them= 1-mode. In this way the spectra can be better compared.

In Figure 2.27, the evolution of the boundary layer thickness is plotted against Re−1/2 and

Figure 2.28: Inner sphere’s rotation rateΩ′i (left) and energy dissipationǫ plotted against

Re. The red dashed lines show the respective proportionalities ofRe
1/6

andRe
−1/4
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compared with the results of the no-slip simulations. As it is expected, the boundary layer

thickness does not drop below the defined roughness size of one tenth of the gap width,

which is much larger than in the other set of simulations. Theconsequence is that the

kinetic energy, which is plotted in Figure 2.27, is about oneto two orders of magnitude

larger than in the smooth surface simulation (Fig. 2.6). In the simulated range, it increases

with Re1/2 and is far away from saturating, as it should for large Re. In all figures the ver-

tical dashed lines denote the transitions Reh and Res.

In the left panel of Figure 2.28, the inner sphere’s rotationrateΩ′i is plotted against

Re. The developing of the values is non-monotonous and showsa powerlaw only for

Re > Res of Re1/6. Although its increase is quite low, the exponent is important for the

extrapolation to experimental parameter regimes. Compared to the powerlaw of the ki-

netic energy, it becomes clear that these two exponents are not reasonable forRe→ ∞.

In this limit the spatially averaged velocity would exceed the driving velocity. The ratio

of vrms/(r iΩi) gives a measure for the validity of the extrapolated result. At Re ≈ 106,

the ratio becomes one. Slightly below this value, the kinetic energy is supposed to

reach the saturated state and become constant. The right panel shows the energy dissi-

pation, which is computed from the integralΩ′−3
i

∫

F · vdV, is plotted againstRe. The

evolution is not quite well understood since it decreases but not that fast. The best

fit is denoted by the red dashed line and shows a development proportional toRe
−1/4

.

Figure 2.29: Snapshots of the three componentsr (top), θ (middle) andφ (bottom) of
velocity field at Re= 102 (left), 4.5× 102 (middle) and 2.5× 103 (right).
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2 Kinematic dynamo onset of spherical Couette flows

Figure 2.30: Temporally and zonally av-

eraged components of the radial (top),

meridional (middle) and azimuthal (bot-

tom) component of the velocity field

with smooth (left) and rough boundaries

(right).

Acting on the assumption that turbulence has

emerged so far that it is Kolmogorov-like, the

energy dissipation rate should evolve likeǫ ∼
(v0/Ωid). The velocity of the energy carry-

ing vortex is denoted byv0 and represents the

vortex of the driving force and should be pro-

portional toΩid. Thus, the energy dissipation

should be constant.

The shape of the velocity field is shown as

snapshots in Figure 2.29 for the three dif-

ferent states: Axisymmetric (left), first non-

axisymmetric instability (middle), turbulent

state (right). At low Re, on the left side, the

shape is axisymmetric. The radial component

(top panel) shows the equatorial jet, which is

comparably thick to that one of the smooth sur-

face simulations. The boundary layer, which

can be seen inBθ (central panel) andBφ (bot-

tom panel), has increased as well. As it was

already mentioned, theφ-velocity at the inner

boundary is not equal to 0.5 anymore so that

Ωi cannot be seen as the time scaling quantity

anymore. Due to the change of the boundary

force the ratio of toroidal to poloidal kinetic

energy has changed. The maximal radial ve-

locity is only one third of the maximum value of theφ-component, as well as theθ-

component. In the short range of Reh < Re< Res the non-axisymmetric instability can be

observed as a propagating wave with azimuthal wave numberm = 2 (middle plot). The

equatorial jet is bent up- and downward due to the instability. Compared to the snapshots

of the smooth surface simulations, it can already be seen in the φ-component that the

momentum transfer due to the force term increases the velocity amplitude in the entire

volume. Finally at the highest Re, the regularity of the flow is completely broken and the

velocity field is getting increasingly small-scale. Compared to the smooth surface simu-

lations,vφ has significant values, almost all over the entire volume.

These differences at highRe become more obvious in Figure 2.30, where the temporally

and zonally averaged components of the velocity field of a smooth surface simulation at

Re = 970 and of a rough surface simulation atRe = 1100 are shown. The radial com-

ponent in the latter case shows a much stronger jet, which is as already mentioned due to
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2.3 Rough surface

the increased momentum transfer and therewith a higher masstransport. This is related

to the thickness of the boundary layer ofvθ andvφ at the inner core. Due to an extension

of the driving force to one tenth of the gap width, the boundary layer is much thicker and

the momenta are better transferred in the entire volume. Thevelocity componentvφ has

significant values all over the spherical gap contrary to thesmooth surface simulations,

where theφ-component is large only close to the inner sphere. Apart from that, the ratio

of polodial to toroidal shear is decreased by about a factor of 2.

In Figure 2.31, isosurfaces of 10% of the maximum local helicity are plotted. Compared

to the smooth surface simulations (Fig. 2.8), the helicity has also significant values apart

from regions near the inner sphere. The maximum and minimum helicity is increased by

a factor of 4. Thus, the efficiency of the flow to dynamo action is enhanced as well.

Figure 2.31: Snapshots of the isosurface of 10% of the maximum kinetic helicity at
Re = 106 (left) and 1100 (right). Blue indicates negative helicity and red positive. The
respective maximum and minimum values are (± 1.58) and (-45.57/37.17)
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2 Kinematic dynamo onset of spherical Couette flows

2.3.2 Kinematic dynamo threshold

In the following, the results of the simulations integrating the full MHD equations are

presented. The focus is on the kinematic dynamo onset and thedynamo mechanism in

comparison with the results of the previous section. Figure2.32 shows the dynamo results

of the simulations in the (Re,Rm)-plane and in the (Re,Pm)-plane. The dynamo onset is

indicateted by the dashed thick black line. The developmentof Rmc is quite similar to

the no-slip simulations. In axisymmetric flows, no dynamo could be found for values of

Pm < 10. This implies, that the generation of magnetic field linesat low Re is closely

related to the occurrence of non-axisymmetric instabilities. Nevertheless, slightly above

this onset atReh < Re< 100, no dynamo up to Pm= 9 could be found either. The reason

for that might be related to the phase velocity of the propagating wave on the equatorial

jet. Since the focus is on the turbulent regime in this section, an according investigation

with frozen flux simulations was omitted. But, as it was shownin Figure 2.14, the depen-

dence of the growth rate on the phase velocity is not monotonous and quite unpredictable

and at this particular phase velocity the dynamo might be very inefficient.

At Re > 100, amplitudes in even wave numbersm of the magnetic energy spectrum in-

crease and the symmetry of the magnetic field becomes similarto that of the velocity field

with a dominant azimuthalm= 2-periodicity. In the left panel of Figure 2.33, the kinetic

Figure 2.32: Dynamo onset in the (Re,Rm)-plane (top) and in the (Re,Pm)-plane (bottom).
Failed dynamos are indicated red and working dynamos blue. The thick dashed line marks
Rmc and the vertical dashed lines denote the transitionsReh andRes. The straight lines
are Pm= 1 (top) andRm= 600 (bottom).
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Figure 2.33: Snapshots of the magnetic (red) and kinetic (black) energy spectrum (left)
and isosurfaces of 20% of the total kinetic energy (red) and 20% of the total magnetic
energy (blue) (right) atRe= 106.

and magnetic energy spectrum is plotted againstm. In the right panel, isosurfaces of 20%

of the maximum local kinetic energy and 20% of the maximum local magnetic energy

are shown. This plot emphasizes the close relation of magnetic field generation to the

propagating instability, because magnetic energy is mainly located at the equatorial jet.

There, the magnetic field exhibits a strong toroidal component.

The phase velocity of the propagating wave decreases with increasingRe like in the no-

slip case. Nevertheless it is not suprising that in this case, Rmc decreases with increasing

Re contrary to the observations in the no-slip simulations.Since, as it was shown in

Figure 2.14 (left), the growth rate behaves non-monotonously against the phase velocity.

Obviously, no general conclusion can be drawn from the relation of the phase velocity to

the dynamo efficiency of the flow. The case of growing amplitudes in odd modesof the

magnetic energy spectrum (Fig. 2.13 does not appear. The state, where only amplitudes

of even wave numbers and higher harmonics are excited, appears in a very short range of

Re. The driving force creates high velocities so that inertial forces destabilize the equato-

rial jet already at low Re.

At Re > Res, all modes of the kinetic energy spectrum are excited. The velocity field

is increasingly fluctuating in time andRmc increases withRe. According to the smooth

surface simulations (Fig. 2.19), the temporal fluctuationshave a destructive effect on the

dynamo.

At Re= 320, them = 2-mode is still the dominant mode. Therefore, it is quite interest-

ing, why the threshold suddenly kinks and remains at a constant Rm= 600 forRe> 220.

Obviously, at a certain point, the raising amplitudes of thesmall-scale velocity field fluc-

tuations have no effect on the dynamo quality anymore. In Figure 2.34, four temporally

and spatially averaged spectra of the turbulent rate of strain and the magnetic energy are
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Figure 2.34: Temporally and spatially averaged turbulent rate of strain (black) and mag-
netic energy spectra (red) plotted againstl at Re = 218 (top left), 525 (top right), 825
(bottom left) and 1100 (bottom right).

plotted againstl for Re = 218, 525, 825 and 1100. The spectra show that the peak of

l2Ekin, which marks the viscous dissipation scale, is shifted to smaller l, as it is expected.

At Re = 218, the generation of magnetic field lines takes places predominantly at large

scales, like it is the case at smallerRe. There, the dominant mode is stillm = 2 and

drives the dynamo. AtRe = 320, the scales where the dynamo is mainly generated

decrease and the dynamo mechanism seems to change. The peak of the magnetic en-

ergy spectrum shifts to smaller wave numbers, which suggests a small-scale dynamo.

This has already been discussed in helical forced turbulence by Brandenburg (2009),

Brandenburg and Nordlund (2011). There, dynamos occur somewhere between a small

and large-scale dynamo but shifts to large scales as Pm decreases.

In the smooth surface simulations, the dynamo acts on large scales due to the boundary

shear layer and on a second intermediate scale, which is associated with the scale of the

equatorial jet. In the rough surface simulation, no such large scale in the magnetic energy

spectra can be identified, since the shear at the boundary layer is not distinct anymore.

Nevertheless, a scale of the equatorial jet and the boundarylayer can be obtained from

the temporally and zonally averaged velocity field (Fig. 2.30). This can also be seen in

Figure 2.35, where the magnetic and kinetic energy spectra are splitted into toroidal and

54



2.3 Rough surface

10
0

10
1

10
2

10
0

10
2

l

E
B
l

 

 

pol
tor

10
0

10
1

10
210

−3

10
−2

10
−1

10
0

10
1

l

l2  E
ki

n
l

 

 

pol
tor

Figure 2.35: Toroidal (red) and poloidal (black) magnetic (left) and kinetic (right) energy
spectra plotted againstl at Re= 970.

poloidal parts. Obviously, the magnetic energy spectra show no small-scale dynamo, so

that the maximum in the spectra can be associated with an intermediate scale dynamo as

well.

At Re = 1100, the resistive scale is already within the inertial range, since Pm= 0.7.

There, the intermediate scale of the equatorial jet is of similar order than the viscous scale

and the small-scale dynamo becomes the dominant magnetic energy generating mecha-

nism. Nevertheless, it has to be pointed out that a clear scale separation is not obvious

in the spectra, which complicates the interpretation. Therefore, additional simulations

were made in which the mean flow was subtracted from the velocity field in the induction

equation. In these simulations acting dynamos suddenly shut down, which indicates that

a large-scale mean flow is still necessary to generate the dynamo and that the turbulent

eddies are not able to sustain it alone.

Although the shape of the boundary shear is smeared over the driving range compared to

the sharply sheared boundary layer of the smooth simulation, the dynamo mechanism can

be seen as similar, since the basic topology of the flow is the same. Therefore, the max-

imum in the spectra of the magnetic energy must be due to a scale, which is comparable

to that of the equatorial jet, which is definitely larger thanthe viscous scale and the dy-

namo is not a small-scale dynamo but a dynamo at an intermediate scale. Obviously, the

resistive scale and the intermediate scale are also not separated sufficiently. The dynamo

threshold, therefore, is seen constant for even higherRe. The turbulent tail of the kinetic

energy spectrum just elongates and the generation of magnetic energy occurs further on

within the inertial range.

In this dynamo threshold, the bump, which is supposed to appear at Pm/ 1, cannot be

observed as well as in the work of Brandenburg and Nordlund (2011). The reason for that

could be, on the one hand, that there is no bottleneck visiblein the kinetic energy spectra

or, on the other hand, it appears at lower Pm. The region of 0.06 . Pm . 0.2, where it

was found by Ponty et al. (2005, 2007) in the dynamo threshold, could not be reached in
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2 Kinematic dynamo onset of spherical Couette flows

the simulations either.

In Figure 2.36, the threshold of both sets of simulations areplotted against Re and Rm

together with the results of Guervilly and Cardin (2010). Comparing the two different

surface types of this chapter gives a significant difference in the range of Re, where the

two flows are completely destabilised. This leads to essentially different ranges of rota-

tion rates. The results of the smooth surface simulation shows compared to the results

of Guervilly and Cardin (2010) a quite similar development,accounting for the fact that,

there, the non-linear equations including the Lorentz force are solved. Due to the Lorentz

force the wave-like motion at Reh < Re < Res cannot evolve unaffected as in the kine-

matic case. At high Re, where the dynamo threshold kinks to the plateau, it is not clear

whether the other curve would do so as well, if Re was increased a little bit further.

The extrapolation of the numerical results to the parameterregime relevant for the liquid

sodium experiment in Maryland has to be regarded carefully.First, the kinetic energy in-

creases withRe
1/2

. Only a saturated state could give a certain result in the limit Re→ ∞.

It is not clear, up to whichRe this exponent would be correct. Secondly, the time scaling

Ωi is not equal to one, as it is shown in Figure 2.29 and depends onRe (see fig. 2.28).

The respective power laws forvrms andΩi are inconsistent forRe→ ∞. Hence, the ratio

of vrms/(r iΩi) has to be seen as a measure of the saturation state and must besmaller than

one.

Based on the obtained power laws, the dynamo threshold atRmc = 600 with Pm= 10−5

(liquid sodium) givesRe= 6×107 for the experiment. The extrapolation of the kinetic en-

ergy up to this value yieldsEkin ≈ 300 andvrms ≈ 6.6. The temporally averaged boundary
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Figure 2.36: Kinematic dynamo onset with smooth and rough boundaries and the results
of Guervilly and Cardin (2010). Vertical dashed lines denote the transitions Reh and Res
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rotation rate isΩ′i ≈ 9 and Re′ ≈ 9×107 gives finally a frequency of aboutf ≈ 14s−1. The

ratio of averaged to boundary velocity, however, yieldsvrms/(r iΩi) ≈ 1.4 so that this result

has no validity. WithΩ′i ≈ 9, the kinetic energy can be at leastEkin ≈ 140. This represents

the case, that except for a thin boundary layer at the outer sphere, the fluid velocity within

the entire volume is almost equal to the boundary velocity. This gives Re′ ≈ 1.2 × 108

with a rotation rate off ≈ 19s−1 and can be seen as lower limit. The experiment is able to

spin the inner sphere with a rotation frequency of 15s−1. Even though the obtained result

is some kind of a lower limit, in this configuration no dynamo can occur.
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2 Kinematic dynamo onset of spherical Couette flows

2.4 Conclusion

In this part, two different surface types were applied to drive the non-rotating spherical

Couette system in order to investigate the capability of their flows to generate a dynamo.

So far, dynamo experiments in spherical geometry failed to sustain a dynamo and recent

results of numerical simulations by Guervilly and Cardin (2010) found that the condi-

tions to sustain a dynamo cannot be achieved by spherical Couette flow in experiments.

Therefore, another driving mechanism, which intend to simulate a rough surface, was

investigated. By means of this, the efficiency of the flow to dynamo action shall be in-

creased. Based on the results, the spherical Couette experiments like that one in Maryland

needs to be improved in such a way that it might be a capable to sustain a dynamo.

The parameter range of Re can be divided into three regions inwhich the characteristic

of the velocity field changes significantly. At low Re, the flowis axisymmetric where

no dynamo occurs at moderate Rm. At a critical Reh, small perturbations develop and a

non-axisymmetric instability with a dominant azimuthal wave numberm = 2 occurs as

a propagating wave on the equatorial jet. The azimuthal wavenumber remains the same

in this rangeReh < Re < Res and only the boundary layer thickness and the phase ve-

locity of the drifting wave changes slightly. Within this range of Re, the symmetry of the

magnetic field changes significantly and the dynamo threshold decreases abruptly. The

first increase of Rmc could be found in the decreasing phase velocity of the propagating

instability. The reason for sudden change in the symmetry ofthe magnetic field could

only be narrowed down. It seems to be triggered by the time dependence of the velocity

field, which could not be captured by the frozen flux simulations since the actual field is a

superposition of the dominant mode and higher harmonics. Obviously, the change in the

efficiency of the flow to create a dynamo is directly related to thebreaking of the sym-

metry of the magnetic field. This could be confirmed by simulations where the dominant

azimuthal wave number ism = 3 and every third higherm are gained as well. Here the

symmetry ofB is always the same asv so that Rmc increases monotonously. Still, the

reason why the configuration with a broken symmetry ofB is more efficient to dynamo

action, remains unclear.

In the third region, at Re> Res the regularity ofv is entirely broken and at high Re, it be-

comes Kolmogorov-like turbulent. The dynamo threshold shows a plateau atRmc ≈ 800,

which remains constant at high Re. Since the dynamo is sustained at large scales, a fur-

ther increase of Re only elongates the turbulent tail of the spectra and has no effect on the

dynamo. Surprisingly, these results resemble those of Guervilly and Cardin (2010), but

only up to the Re where the threshold kinks to the plateau. Onetrivial reason could be

that Re has not been increased sufficiently to see this plateau. Nevertheless, the extrap-

olation to relevant values of the dynamo experiment in Maryland yields rotation rates of
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f ≈ 223s−1, which is an unreachable number. Apparently, the main problem is the lack

of momentum transfer from the boundary layer to the fluid. Theinner sphere has to ro-

tate very fast, since the energy is not transferred efficiently in the entire volume. Another

problem is that the high ratio of toroidal to poloidal velocity shear. The magnetic field

is only sheared significantly within a small layer near the inner boundary and near the

equatorial jet and the dynamo circle is not closed uniformly.

Including a driving force in the Navier-Stokes equation, the system intends to simulate

the spherical Couette flow with a rough surface, which limitsthe boundary layer of the

flow to a thickness of one tenth of the gap width. In this way, the ratio of toroidal to

poloidal shear of the flow is reduced and the momentum transfer from the boundary layer

to the whole gap is increased. From this it follows that the kinetic helicity is increased

as well and is not located near the boundary layer only. The kinematic dynamo onset of

the system shows the same qualitative distinction into three regions as the result of the

smooth surface simulations: An axisymmetric flow, the destabilisation of the equatorial

jet at a comparatively low Re with the same dominant azimuthal wave numberm= 2 and

finally at high Re Kolmogorov-like turbulence whereRmc ≈ 600 remains also constant.

This value is lowered by one fourth so that the flow can be regarded as more efficient

which is found to be due to the better ratio of toroidal to polodial shear. The dynamo is

generated at scales larger than the viscous scale and therefore independent on Re. Coming

from thisRmc, a lower limit of the rotation rate of the experiment in Maryland is eval-

uated to bef ≈ 19s−1, which unfortunately is still beyond the experiment’s possibilities

(Rieutord et al. 2012). The dynamo threshold has to be lowered to Rmc ≈ 320 in order

to get a lower limit off ≈ 15s−1. For this purpose, the ratio of poloidal to toroidal could

be improved by taking an additional poloidal forcing term inorder to find the optimal

efficiency of the flow to dynamo action2. With Re ≈ 3.4 × 107, however, this is still

far above where the kinetic energy is supposed to saturate which would be still another

uncertainty.

2Private communications with Dr. Emmanuel Dormy
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Figure 3.1: Left: Sketch of a convectional driven flow structure in a fast rotating spher-
ical shell which forms a vortex columnar structure, so-called Busse-Columns (by Busse
(1975)). Right: G. O. Roberts flow in a periodic box of widtha and heightL. The flow in
thex, y-plane is indicated by arrows and thez-component by the underlying contour plot.
Red denotes up and yellow down streaming flow (Roberts 1972).

Most of the celestial bodies like stars or planets, which sustain a magnetic field by dy-

namo action are rotating very fast so that Coriolis forces dominates over diffusion effects.

Additionally, in some objects, the flow is driven by convection due to high temperature

gradients from the inner core to the outer boundary. In such systems the velocity field

has a specific shape, which is nearly independent with respect to the axis of rotation due

to the Taylor-Proudman theorem (Greenspan 1968) and are supposed to form a series of

vortex tubes with alternating up and down flows, which are parallel aligned with respect

to the axis of rotation. Those vortex tubes which are shown schematically in the left panel

of Figure 3.1 are known as Busse columns (Busse 1975). and arefavourable to dynamo

action due to their helical structure. It is believed that the flow structure in such celestial

bodies is quite similar.

The magnetic field that is generated in many stars can have a detectable dipolar compo-

nent (Morin et al. 2008). The relation between magnetic fields of convection-driven stars

and their rotation rate has already been investigated by Mangeney and Praderie (1984),

Noyes et al. (1984), Pizzolato et al. (2003). Furthermore, it has been found that in slowly

rotating low-mass stars (M-type dwarfs) the surface magnetic field increases with the ro-

tation rate and at a certain rotation rate, the surface magnetic field becomes independent

of the rotation rate (Reiners et al. 2009). The dependence ofthe magnetic field in rotating

systems on the rotation rate has also been investigated numerically in spherical geometry

by Christensen and Aubert (2006), Schrinner et al. (2012) and in rotating plane layer con-

vection by Tilgner (2012). However, no consistent dependence of the magnetic energy on
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

the rotation rate could be found. The impact of the rotation of the system on the generated

magnetic field in dynamos is thereby barely understood.

In order to better understand the mechanism of the dynamo generation in such flows and

the saturation process of the magnetic field, the G.O. Roberts flow is taken as a simple toy

model for analytical approaches (Roberts 1972). One possible expression for this flow is

vR = v0



























√
2 sin(2πa x) cos(2πa y)

−
√

2 cos(2πa x) sin(2π
a y)

2 sin(2πa x) sin(2π
a y)



























. (3.1)

On the right hand side in Figure 3.1, the G. O. Roberts flow is shown in a vector plot in

the (x, y)-plane with an underlying contourplot showing thez-component of the flow. It

is a two-dimensional periodic flow, where thex- andy-components of the velocity are

arranged in vortex cells of widtha/2, in which the z-component of the velocity field is

pointing alternately in positive or negative direction. The heightL of the box defines the

periodicity length of the magnetic field. The growing mode ofthe magnetic field in the

kinematic regime has the following shape: B= [cos 2πz/L, sin 2πz/L, 0]. The length scale

of the growing magnetic field mode is thereby much larger thanthe length scalea of the

small-scale velocity vortices and the dynamo becomes the more efficient the larger the

aspect ratioL/a is. Due to this scale separation, the evolution of a magneticfield in this

velocity field can be determined with the help of mean field theory (Krause and Rädler

1980). The back reaction of the magnetic field on the flow via the Lorentz force is small

compared to the driving force close to the kinematic dynamo onset. Thus, it is treated as

a weakly non-linear perturbation.

This theoretical approach has already been done in non-rotating G. O. Roberts like driven

flows by Tilgner (1997) and Tilgner and Busse (2001), in orderto compare analytical

calculations with experimental results of the Karlsruhe experiment (Muller and Stieglitz

2002), which actually was inspired by the G. O. Roberts flow. The agreement shows fun-

damental insight in the relevant processes of the saturation mechanism.

In this chapter, this analytical approach of weakly non-linear theory is extended to a ro-

tation of the system about thez-axis and compared to respective numerical simulations

of the full MHD equations. The influence of the rotation on thespecific modes in the

saturated regime are investigated in the mean field picture.The different contributions to

the Lorentz force, which are based on large- and small-scalemagnetic fields, are studied

with respect to estimates of the magnitude of their amplitudes.

Although these calculations are performed in the laminar regime, this study can give basic

insight of the interaction of the velocity and magnetic fields in a rotating system. Con-
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

clusions with respect to other helical driven turbulent models or even real objects are

reasonable, since parts of their magnetic field are believedto extend over large length

scales in both regimes and are generated by convectional columns with a similar mean

flow.
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3.1 Weakly non-linear theory

3.1 Weakly non-linear theory

On the basis of the Navier-Stokes equation and the continuity equation of an incompress-

ible fluid

∂tv + (v · ∇)v = −1
ρ
∇p+ ν∇2v + F +

1
µ0ρ

(∇ × B) × B + 2(v ×Ω) , ∇ · v = 0, (3.2)

and the induction equation

∂tB + ∇ × (B × v) = λ∇2B, ∇ · B = 0, (3.3)

the saturation mechanism of the magnetic energy and its dependence on the rotation rate

Ω is investigated with the help of mean field theory and weakly non-linear theory.

The magnetic field

The length scaleL of the magnetic field mode, which is generated within the G.O.Roberts

flow is much larger than the sizea of the vortices. Due to this scale separation the mag-

netic field can be split into a z-dependent mean part averagedover one periodicity cell

and a fluctuating part (Krause and Rädler 1980), given by

B = B + b (3.4)

and fullfilling the equations

〈B〉 = 〈B + b〉 = B, 〈b〉 = 0, (3.5)

where the brackets mean averaging over one periodicity cellin x- and y- direction

〈...〉 = 1
a2

∫ x+a

x
dx

∫ y+a

y
dy... . (3.6)

The mean magnetic fieldB is thereby independent ofx andy and varies on a lengthscale

L in z-direction. Performing the averaging of the magnetic field, the induction equation

(eq. 3.3) yields
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

∂tB + 〈∇ × (b × v)〉 = λ∇2B. (3.7)

Subtracting the averaged induction equation (eq. 3.7) fromthe full induction equation

(eq. 3.3) yields the induction equation forb as

∂tb − (B · ∇)v + (v · ∇)B = λ∇2b − {∇ × (b × v) − 〈∇ × (b × v)〉} . (3.8)

Close to parameters of the dynamo onset the time derivative of b is small compared to the

diffusive part (∂tb ≪ λ∇2b). It is assumed in the following

v0a
λ
≪ 1

a
L
≪ 1 =⇒ |b| ≪ |B| (3.9)

with the amplitudev0 of the G.O. Roberts flow such that equation 3.8 reduces to

λ∇2b = −(B · ∇)v (3.10)

andb turns out to be

b =
1
2λ

( a
2π

)2

(B · ∇)v +O
(a
L

)2

, (3.11)

where only terms of zeroth order ina/L are left. Inserting the approximation ofb into the

induction equation 3.7, the evolution of the mean magnetic field is given by

∂tB + 〈∇ ×
{

1
2λ

( a
2π

)2 [

(B · ∇)v
]

× v
}

〉 = λ∇2B. (3.12)

The velocity field

The fluid motion is driven by a time independent force fieldF = F fR within a rotating

frame of reference, whereas the rotation is about thez-axis. The evolution of the velocity

field v is described by the Navier-Stokes equation in equation 3.2.This equation includes

the Coriolis force and the Lorentz force term, which is responsible for the mangetic field

saturation. In the stationary state at low Re the inertial terms as well as the time derivative

can be neglected. In the following the rotation of equation 3.2 will be used so that the

pressure gradient term vanishes, giving
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3.1 Weakly non-linear theory

0 = ν∇ × ∇2v + F∇ × fR+2∇ × (v ×Ω) +
1
µ0ρ
∇ × [(∇ × B) × B] ,

∇ · v = 0.
(3.13)

Using the mean field approach forB, the Lorentz force term splits up into three non-

vanshing terms

(∇ × B) × B =
(

∇ × B
)

× B +
(

∇ × B
)

× b + (∇ × b) × B. (3.14)

Due to the derivative ofB with respect toz the first and second term is of first order ina/L

and therewith small compared to the third term, which is of zeroth order ina/L, so that

here it is assumed that(∇ × B) × B ≈ (∇ × b) × B. With equation 3.11 the Navier-Stokes

equation gives

0 = ν∇ × ∇2v + F∇ × fR + 2∇ × (v ×Ω)

+
1
µ0ρ
∇ ×

{[

∇ × 1
2λ

( a
2π

)2

(B · ∇)v
]

× B

}

.
(3.15)

Near the kinematic onset of dynamo action the Lorentz force is small compared to the

other forces and is treated as a perturbation term in the following. Since the perturbation

is singular, the velocity field, the mean magnetic field and the amplitude of the force field

are expanded in orders ofǫ

v = vR+ǫv1 + ǫ
2v2 + ǫ

3v3 + ...

F = F0+ǫF1 + ǫ
2F2 + ǫ

3F3 + ... (3.16)

B = ǫB1 + ǫ
2B2 + ǫ

3B3 + ...,

whereasǫ is an unknown parameter at first.

0. Order in ǫ

In zeroth order 3.15 reduces to the simple relation
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

0 = ν∇ × ∇2vR + F0 · ∇ × fR + 2∇ × (vR ×Ω). (3.17)

The axis of rotation is aligned with the z-axisΩ = [0, 0,Ω] so that the Coriolis term is

equal to zero

∇ × (vR ×Ω) = (Ω · ∇)vR = 0, (3.18)

since the derivative of the velocity field is zero in direction of the axis of rotation. The

Force amplitude is in zeroth order

F0 = 8π2/a2νv0 with fR = vR/v0. (3.19)

1. Order in ǫ

In first order ofǫ the Navier-Stokes equation has no additional terms compared to the

zeroth order, since the last term in equation 3.15, the Lorentz force, is of order∼ B
2
.

Hence,v1 = 0 andF1 = 0. The induction equation in zeroth order represents the growth

of the dominant mode at the kinematic dynamo onset

− λ∇2B1 + 〈∇ ×
{

1
2λ

( a
2π

)2 [

(B1 · ∇)vR

]

× vR

}

〉 = 0 (3.20)

and yields

ℑvRB1 :=



























−∂2
z −kz∂z 0

kz∂z −∂2
z 0

0 0 −∂2
z



























B1 = 0 (3.21)

where the differential operator is abbreviated byℑvR andkz is the wave number in the

z-direction of the dominant mode of the magnetic field

kz =

√
2

4
a
π

v2
0

λ2
⇔ v2

0 = 2
√

2
π

a
kzλ

2. (3.22)

Considering periodic boundary conditions,B1 has the following shape
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3.1 Weakly non-linear theory

B1 = B̂1



























coskzz+ θ

sinkzz+ θ

0



























. (3.23)

The heightL of the box is chosen such thatkz = 2π/L is the fastest growing mode. The

dominant mode can have an arbitrary phaseθ due to the periodic boundary conditions.

Since the phase has no impact on the results, it is equal to zero in the following.

2. Order in ǫ

In second order ofǫ, the Lorentz force term appears in the Navier-Stokes equation for the

first time. Thus, it describes the modification ofv due to the magnetic field in first order

0 = ν∇ × ∇2v2 + 2∇ × (v2 ×Ω) + F2 · ∇ × fR

+
1
µ0ρ
∇ ×

{[

∇ × 1
2λ

( a
2π

)2

(B1 · ∇)vR

]

× B1

}

.
(3.24)

The derivative ofB1 in z-direction is of order 1/L, whereasb andv vary on scales 1/a, so

that in the following derivatives inzare neglected (∂z≪ ∂x, ∂y) as far as terms withΩ are

not involved, becauseΩ can indeed become large. The Lorentz force termFL is in this

approximation

FL =

√
2

2
v0

νρµ0λ

π

a



























B̂2
1 sin(2kzz)



























−
√

2 sin2πy
a cos2πx

a√
2 sin2πx

a cos2πy
a

2 cos2πx
a cos2πy

a



























− B̂2
1

vR

v0



























. (3.25)

The x, y-dependence only appears in certain combinations of sin andcos which leads to

the following Ansatz forv2 = (v1, v2, v3):

v1 = a1 cos
2πy
a

sin
2πx
a
+ a2 sin

2πy
a

cos
2πx
a

v2 = a3 sin
2πy
a

cos
2πx
a
+ a4 cos

2πy
a

sin
2πx
a

(3.26)

v3 = a5 sin
2πy
a

sin
2πx
a
+ a6 cos

2πy
a

cos
2πx
a
.
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This leads to a coupled set of 6 linear equations for the coefficientsa = [a1...a6]
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=
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.

The last four equations are satisfied for∂za2 = −∂za3 and∂za1 = −∂za4 and the first and

second equations fora2 = −a3 anda1 = −a4. Not considering the continuity equation, the

velocity field of second order inǫ, v2, reads after straight forward calculations

v2 =
B̂2

1

4

( a
2π

)2

ζ sin(2kzz) ṽ0 −












B̂2
1

4
ζ − F2

2νv0













( a
2π

)2

vR

+

√
2

4

( a
2π

)5

ζ
Ωk
ν

B̂2
1 cos(2kzz) ṽ0z, (3.28)

with ζ = 1/νρµ0λ and

ṽ0 = v0
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. (3.29)

In order to fullfill the continuity equation, it is exploitedthat a gradient field∇Φ can be

added without restrictions because∇× (∇Φ) = 0. The scalar fieldΦ is chosen in that way

that in the continuity equation no term includingΩ or others of orderO(a/L) remains, i.e.
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Φ =
−1

2
(

π
a

)2
+ k2

√
2

128

(a
π

)5 v0Ωk2
zB̂

2
1

ν2λµ0ρ
sin(2kzz) cos

2π
a

y cos
2π
a

x. (3.30)

In summary the velocity is given by

v =


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ǫ4
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(3.31)

with γ = 1
16

(

a
π

)2
ζB̂2

1. Compared to the first order, the induction equation has no additional

term in second order inǫ and thusB2 = 0.

3. Order in ǫ

In third orderv3 is zero because of the linear independence to the lower orders. The

induction equation in third order is not homogeneous any more. The differential equation

for the magnetic fieldB3 reads

−λ∇2B3 +
1
2λ

( a
2π

)2

〈∇ ×
{[

(B3 · ∇)vR

]

× vR

}

〉 =

− 1
2λ

( a
2π

)2

〈∇ ×
{[

(B1 · ∇)vR

]

× v2 +
[

(B1 · ∇)v2

]

× vR

}

〉
(3.32)

and in a simpler form

ℑvR B3 = IR (3.33)

with ℑvR as the linear differential operator of equation 3.21 andIR as the sum of the

righthand side of equation 3.32. The condition for solvability of equation 3.32 can be

found by the projection of an arbitrary functiony

〈y | ℑvR B3〉 = 〈ℑ†vR
y | B3〉 = 〈y | IR〉, (3.34)

where bra-kets denote the integration over one periodicitycell in z-direction andℑ†vR is
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the adjoint matrix ofℑvR. If y is the kernel ofℑ†vR, it has to be〈y | IR〉 = 0 so that the

differential equation is solvable. SinceℑvR is hermitian the adjoint matrice is equal to the

original one

ℑ†vR
= ℑvR =
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. (3.35)

The kernely of ℑvR is

y =
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(3.36)

an therefore equal toB1 or phase shifted to it by an angleϕ. The righthand side of equation

3.32 ,IR, is

IR =
8
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(3.37)

For 〈y | IR〉 = 0 |ϕ=0 the first term in equation 3.37 yield the condition for the free param-

eter, which is undetermined,

F2 =
3
4

v0

λρµ0
B̂2

1. (3.38)

But obviously〈y | IR〉 = 0 is not solvable for allϕ, such that equation 3.32 has the trivial
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3.1 Weakly non-linear theory

solutionB3 = 0 for a stationary magnetic field.

Time dependent magnetic field

The result of the mean magnetic field in third order hypothesizes that the time dependence

of B in the mean induction equation cannot be neglected. The solution to this problem

can be a time dependent phase of the mean magnetic fieldB(z− vpht), where the phase

velocityvph is another perturbation term and also expanded inǫ. The time derivative ofB

gives

∂B
∂t
= −vph

∂B
∂z
= −

(

vph,0 + ǫ vph,1 + ǫ
2 vph,2

) ∂

∂z

(

ǫ B1 + ǫ
3 B3

)

. (3.39)

The modeB1 is stationary in the kinematic dynamo regime, thereforevph,0 = vph,1 = 0

and only−ǫ3vph,2∂zB1 finally appears inIR with

− vph,2∂zB1 = −vph,2kz
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. (3.40)

On account of this the second term in equation 3.37 becomes a function of vph,2 and

〈y | IR〉 = 0 |ϕ=π/2 gives

vph,2 =
1

512

B̂2
1kzv2

0a
6Ω

π5λ2ν2µ0ρ

(2π −
√

2ak)
(2π2 + k2a2)

. (3.41)

This demonstrates that in third order ofǫ, there is a time dependent solution. Using this

dynamic approach, the velocity field becomes

v =
(

1+
1
2
ǫ2γ

)

vR+ ǫ
2γ










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sin 2kzz ṽ0 +

√
2

8

(a
π

)3 kzΩ

ν
cos 2kzz ṽ0z +

∇Φ
γ













+O
(

ǫ4
)

. (3.42)

The factorǫ2γ indicates the ratio of Lorentz to driving force and , thus, gives a measure

for the accuracy of the approximation. The magnetic field of third order inǫ has the

following shape:
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B3 =
1

64π2
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(3.43)

According to that the magnetic energy is

EB =
1
L

∫

1
2
|B|2dz=

1
2
ǫ2B̂2

1 +
1

2L
ǫ6

∫

|B3|2dz+O(ǫ8)

= EB,1 +


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(3.44)

The force field is given by

F = 8
(

π

a

)2

νv0 + ǫ
23
4

v0

λµ0ρ
B̂2

1. (3.45)

Summary

The perturbation expansion was extended up to third order inǫ and the respective velocity

and magnetic field were determined. The divergence of the velocity field is zero, neglect-

ing terms of orders ina/L or higher order. The magnetic energy is dependent on Ek−2 but

surprisingly, it appears first in third order ofǫ. The equation for the mean magnetic field

in third order ofǫ only becomes solvable incorporating a time dependence of the respec-

tive field and predicts a drift of the dominant modeB1. The phase velocity is proportional

to Ek−1 and therewith a new phenomenon which does not occur in the non-rotating case.
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3.2 Results of the numerical model

3.2 Results of the numerical model

In the following, the full equations 3.2 and 3.3 are investigated numerically in a periodic

box model. The box has a quadratic base area of widtha and a heightd. The entire system

rotates about the z-axis, which is defined as perpendicular to the quadratic base area and

rotates with a rotation rateΩ. The flow is driven by a volume force, which generates

the G. O. Roberts flow in the laminar purely hydrodynamic regime. Both equations are

integrated simultaneously in a pseudo spectral code, wherethe velocity and the magnetic

field are expanded in Fourier modes. The transformation fromreal to spectral space and

backwards is realized by the fast Fourier transformation routine rlft3 from the Numerical

Recipes (Press et al. 1986):

v =
∑

i jl

ai jl e−i(kxi x+kyj y+kzlz) + a∗i jl ei(kxi x+kyj y+kzlz) (3.46)

ai jl contains the three Fourier amplitudes of the correspondingmode forvx, vy andvz and

a∗i jl is the complex conjugated. A second triple of arrays stores the respective amplitudes

for the magnetic field, which is expanded in the same way. Since the magnetic and ve-

locity fields are real, only half of the amplitudes have to be stored. The time step is a

combination of an Eulerstep for the diffusion part and a second order Crank-Nicolson for

the non-linear terms and the Coriolis force.

3.2.1 Non-linear Navier-Stokes equation

The evolution of the velocity field is described by the full Navier-Stokes equation, includ-

ing the Coriolis force, withΩ = Ωêz, andêz the unit vector in z-direction and the Lorentz

force

∂tv + (v · ∇)v = −1
ρ
∇p+ ν∇2v + F +

1
µ0ρ

(∇ × B) × B − 2(Ω × v) . (3.47)

The force fieldF is chosen such that withB = 0 and∂tv = 0 a solution ofv is

v = va
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. (3.48)
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

According to the result forF in the analytical calculation (eq. 3.19), the force field is the

same except for a gradient fieldL, which depends on the rotation rate and does not appear

in the vorticity equation, because of∇ × (∇L) = 0.

F = 8
(

π

a

)2

νvavR + ∇ · L(Ω) (3.49)

In this case, the gradient field is balanced by the pressure gradient, so that in fact it doesn’t

contribute to the force term. The pressure is solved in spectral space by taking the diver-

gence of equation 3.2.1. By this, it is guaranteed that the velocity field is solenoidal.

The dimensionless momentum equation is obtained by the scaling of the variables as fol-

lows:

x → x′a

v → v′va

t → t′
a
va

(3.50)

B → B′
√
µ0ρva

p → p′ρv2
a.

For simplicity the primes are omitted in the following and the dimensionless Navier-

Stokes equation reads

∂tv + (v · ∇)v = −∇p+
1

Re
∇2v + F + (∇ × B) × B − 2

1
Re Ek

(êz × v) (3.51)

with the Reynolds number Re= vaa/ν and Ekman number Ek= ν/Ωa2. The evolution

of the magnetic field is described by the induction equation 3.3, which in dimensionless

form reads

∂tB + ∇ × (B × v) =
1

Rm
∇2B (3.52)

with the magnetic Reynolds number Rm= vaa/λ.
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Dimensionless analytical results

The force terms in the analytical calculations and the numerical simulations are not the

same (compare eq. 3.49 and 3.45). The definition of Rm with thedifferent amplitudes

v0 andva of the G. O. Roberts flows are not comparable by implication. That’s why the

amplitudes of the force terms themselves have to be compared. The magnetic Reynolds

number Rm= vaa/λ is defined by the velocity amplitudeva, which is generated by the

force amplitude (eq. 3.49) in the absence of any magnetic field B = 0 and time derivatives

∂tv = 0. Accordingly, the force amplitude 3.45 generates a G. O. Roberts flow with the

velocity amplitudevg

vg = v0 +
3

32ν

(a
π

)2

ǫ2B̂2
1

v0

λρµ0
. (3.53)

The force terms and thus the velocity amplitudesvg andva have to be the samevg = va,

so that with 3.22 the definition of Rm is given by

Rm=
√

2
√

2aπkz+
21/43
16π

a2ǫ2B̂2
1

λρµ0ν

√

a
L
. (3.54)

In order to point out thatvg is the amplitude of the driving force in equation 3.45, it seems

to be useful to label it differently in the following. The magnetic energy in dimensional

form is

ǫ2B̂2
1

ρµ0
=
νλ

a2
(Rm− Rmc)

16π 2−1/4

3

√

L
a
, (3.55)

with Rmc, the kinematic dynamo onset

Rmc =
v0a
λ
=

√

2
√

2aπkz =

√

4
√

2
a
L
π2. (3.56)

Apart from that, the parameters of the numerical simulationmust obey the assumptions,

made for the analytical approach (see eq. 3.9). The kinematic dynamo onset is given by

the aspect ratio of the periodic box. In order to get Rm≪ 1 (e.g. with Rmc = 0.1),

a large aspect ratioa/L = Rm2
c/(4
√

2π2) ≈ 1.8 × 10−4 has to be taken. The saturated

state is reached when induction and diffusive processes are balanced. Since the dynamo

is sustained by theα-effect, the induction of magnetic energy takes place on time scales

a/va, while diffusion occurs on time scalesL2/λ. Finally, the time, the system needs to

saturate, is dominated by the slower process, to which the other adapts immediately. The
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

dimensionless diffusion time isτλ ∼ Rm(L/a)2 and in this case∼ 106. The aspect ratio

has to be chosen in the way that Rm≪ 1 is reasonably satisfied and that the saturation

time is not too high. In the simulations that are presented inthe following the aspect ration

is taken asL/a = 650 and thus Rmc ≈ 0.2931. The spatial resolution in all direction is

dim= 8, which includes the first four Fourier modes and the mean field. The parameters

are varied from Rm= 0.295... 1 and Ek= ∞ ... 10−3 with Re= 10. The most interesting

outputs are the kinetic energy

EK,num=
1
2

∫

|v|2dV (3.57)

and the magnetic energy

EB,num=
1
2

∫

|B|2dV (3.58)

with the dimensionρµ0v2
a. Taking this dimension, the analytical result deduced from

equation 3.55 becomes

EB,1 =
1
2

ǫ2B̂2
1

ρµ0v2
g

=
(Rm− Rmc)

Rm Re
8 π 2−1/4

3

√

L
a
. (3.59)

Equation 3.44 represents the magnetic energy in third orderand becomes with the same

dimensions
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
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.

(3.60)

Hence, the amplitude of the total magnetic energy depends onEk and Rm and can be split

into different parts with different dependencies

EB = A
(Rm− Rmc)

Rm
+ B f(Rm)+C f(Rm) Ek−2, (3.61)

where f (Rm)= (Rm−Rmc)3

Rm and
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(3.62)
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

Comparison of numerical and analytical results

The magnetic energy obtained from equation 3.61 and the respective numerical results are

shown in Figure 3.2. Lines denote the results of the analytical calculation. The symbols

are data points of the numerical simulations. The first Figure on the left side shows the

total magnetic energyEB,num in the non-rotating case and the contributions of different or-

ders ofEB plotted against Rm. In the non-rotating case, the approximation matches quite

well with the numerical results up to Rm≈ 0.4, which is about one third overcritical.

The right upper plot shows the absolute deviation of the magnetic energy of the rotating

system from the non-rotating one|EB(Ek = ∞) − EB(Ek)| for each Rm. This is repre-

sented by the analytical expressionC f(Rm) Ek−2 in equation 3.61. At Rm< 0.32, the

magnetic energy increases with the rotation rate as confirmed by the analytical results.
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Figure 3.2: In the left panelEB,num is plotted over Rm together with the analytical results
of the magnetic energy of first orderEB,1 (black), the total magnetic energyEB without
rotation (red) and at Ek= 1.5× 10−3. In the middle figure the absolute amplitude of the
rotationally dependent part of the magnetic energy|EB(Ek = ∞)− EB(Ek)| is plotted over
Ek. The red dashed lines indicate a proportionality to Ek−2. The amplitude of each fit in
the middle Figure is plotted over Rm on the right hand side andshows a proportionality
to Rm− Rmc/Rm (red dashed). The corresponding analytical expression gives∼ (Rm−
Rmc)3/Rm (black dashed).
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For Rm > 0.32 the magnetic energy decreases with the rotation rate. Surprisingly, the

dependency on Ek−2 is very robust even for Rm> 1, which is not shown in this plot. The

red dashed lines denote powerlaws of Ek−2.

In the lower panel, the fitted amplitudes to each set of simulations at a certain Rm in the

upper right figure is plotted against Rm. It shows the development of the amplitude of the

rotationally dependent part ofEB over Rm. Related to equation 3.61, this plot represents

the functionC f(Rm). Contrary to the analytical results, where theΩ-dependency appears

in the third order of the perturbation expansion, the amplitudes show a (Rm− Rmc)/Rm

development up to Rm≈ 0.303, which is only 3% overcritical. The black dashed line de-

notes the third order dependency of (Rm−Rmc)3/Rm of the analytical equation, whereas

the amplitude is adapted to fit within the plot. In fact, it is 5orders of magnitude lower,

which is already close to the numerical accuracy. Besides, the numerical results exhibits

a decreasing trend of the amplitude of the rotationally dependent part of the magnetic

energy for higher Rm> 0.303.

In order to find the reason for this inconsistency, the magnetic and the velocity field are

decomposed into their Fourier components. Therefore, the respective amplitudes of the

modes of equation 3.46 are compared with the corresponding analytical amplitudes. The

amplitudes of the velocity field modes of the G. O. Roberts floware up to a certain accu-

racy

ax,221 = iaR

ax,281 = iaR

ay,221 = −iaR

ay,281 = iaR

az,221 =
√

2aR

az,281 =
√

2aR

(3.63)
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and additional modes with a higher wave vectorkz in z-direction

ax,223 = a1 + ib

ax,283 = −a2 − ic

ax,227 = −a1 + ib

ax,287 = a2 − ic

ay,223 = −a2 − ic

ay,283 = −a1 − ib

ay,227 = a2 − ic

ay,287 = a1 − ib

az,223 =

√
2

2
(b+ c) + i

√
2

2
(a1 + a2)

az,283 = −
√

2
2

(b+ c) − i

√
2

2
(a1 + a2)

az,227 = −
√

2
2

(b+ c) + i

√
2

2
(a1 + a2)

az,287 =

√
2

2
(b+ c) − i

√
2

2
(a1 + a2)

(3.64)

with

kx2 =
2π
a

ky2 =
2π
a

kz1 = 0 (3.65)

ky8 = −
2π
a

kz3 =
4π
L

(3.66)

kz7 = −
4π
L

(3.67)

and give the following velocity field taking ˜x = 2πx/a andỹ = 2πy/a
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−
√

2 cosx̃cosỹ
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(3.68)
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with ÃR = 2aR, Ã1 = 2(a1 + a2), Ã2 = 2(c− b), Ã3 = 2(c+ b) andÃ4 = 2(a1 − a2). The

dimension of the velocity field isva, and therefore the dimension of the analytical velocity

field in equation 3.42 isvg and gives

v
vg
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(3.69)

with Ξ = EB

√
2 21/4

4π Re
√

a
L andvΦ as the gradient ofΦ in x andy direction. Here, the

derivative inz-direction is neglected since this term is of higher order ina/L. Ξ indicates

the ratio of the Lorentz force to the driving force. It gives ameasure for the validity of the

approximations in the analytical calculation. In the left panel of Figure 3.2, the numerical

results agree with the analytical results up to Rm≈ 0.4 where the ratio of Lorentz to

driving force isΞ ≈ 1/5. The analytical velocity field is composed of the following

modes:

v
vg
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(3.70)

The amplitudes of the different modes of the numerical simulations and the analytic cal-

culation are plotted over Ek in Figure 3.3. The symbols are again data points of the sim-

ulations and the lines represent the amplitudes of the analytical result. At Rm= 0.3 (see

left hand side of Fig. 3.3), the amplitudesAR andA1 split in rotationally dependent and

constant part. The constant part of both matches quite well with the analytical valuesBR

andB1. The corresponding amplitudesA3 andA4 of the rotationally dependent solutions

B3 andB4 are quite different and show no monotonous behaviour. Only at Ek≈ 10−2, the

increase might be nearly proportional to Ek−1, but the data coverage in this region is not

sufficient for verification.

At Rm = 0.7 (see right hand side of fig. 3.3), however, the Ek-dependencies of the

analytical and numerical amplitudes (A3,A4) and (B3, B4) coincide quite well. Only the

amplitude of the respective dominant mode differs from each other. At Rm= 0.7 the
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Figure 3.3: Amplitudes of the velocity field at Rm= 0.3 (left) and 0.7 (right). The
rotational parts ofAR andA1 are colored red.

magnetic energy of the corresponding simulation is alreadysignificantly higher than the

solution of the analytical result (cf. fig. 3.2 (left)). In both cases, the dominant mode

is dependent on Ek−2, which must come from terms, which have been neglected in the

analytical approach.

The modes of the mean magnetic field are only dependent onz. Thez-component is zero.

ax,112 = a1 + ib1

ax,118 = a1 − ib1

ax,114 = −a2 − ib2

ax,116 = −a2 + ib2

ay,112 = −b1 + ia1

ay,118 = −b1 − ia1

ay,114 = −b2 + ia2

ay,116 = −b2 − ia2

(3.71)

with

kx1 = ky1 = 0 kz2 =
2π
L

kz4 =
6π
L

(3.72)

kz8 = −
2π
L

kz6 = −
6π
L

(3.73)

(3.74)
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and gives the following magnetic field
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(3.75)

with C1 =

√

4a2
1 + 4b2

1 andC2 =

√

4a2
2 + 4b2

2. The dimension of the mangetic amplitude

is
√
ρµ0va. With the corresponding dimension

√
ρµ0vg, the equations 3.60 and 3.43 yield

the analytical dimensionless magnetic field
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(3.76)

with D3 =

√

D2
1 + D2

2 and

D1 =
1

64π2
E3/2

B,1Rm Re

D2 =
1

512π5

(
√

2π2 +
√

2k2a2 − aπk)
2π2 + a2k2

E3/2
B,1 Ek−1 Re Rmakz

(3.77)

The magnetic energy of the different modes and the total magnetic energy of the numer-

ical simulations are plotted in Figure 3.4 at Rm= 0.3 and 0.7. At both Rm, the main

contribution to the total magnetic energy is given by the energy of the dominant mode.

The amplitude of the magnetic energy in third order at Rm= 0.3 is 6 orders of magnitude

smaller. Due to this small amplitudes, the development has no smooth increase. The ab-

solute saturated state may not yet be reached within this numerical accuracy. The striking

point, however, is that both first and third order show a rotational dependence of∼ Ek−2,

which is contrary to the analytical result.

According to the assumption of equation 3.39, the phase shift arctan(a1/b1) in equation

3.75 has to be time dependent∂t arctan(a1/b1) = ωph,n and has the dimensionva/a. Equa-

tion 3.41 then becomes
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Figure 3.4: Absolute amplitudes of the rotationally dependent part of the magnetic Energy
|EB(Ek = ∞)−EB(Ek)| and the respective parts in first|EB,1(Ek = ∞)−EB,1(Ek)| and third
order|EB,3(Ek = ∞) − EB,3(Ek)| at Rm= 0.3 (left) and 0.7 (right).

ωph = ǫ
2vph,2 kz

a
vg
=

√
2

256π5
(akz)

2 EB,1 Ek−1 Re
(
√

2π − ak)
(2π2 + k2a2)

(3.78)

Figure 3.5 shows the drift velocityωph of the dominant mode. Symbols are again nu-

merical results and the lines represent analytical results. On the left side,ωph is plotted

against Rm−Rmc exemplary for Ek= 5× 10−2 and shows a Rm−Rmc/Rm dependency

for both results. The deviation of the amplitudes is about a factor of 5. For high Rm,

the drift velocity tends to decrease again. On the right side, ωph is plotted against Ek

for Rm = 0.295, 0.3 and 0.5, which all confirm well the Ek-dependency obtained by the

analytical calculation. This result is no contradiction tothe numerical result thatEB,1 is

rotational dependent with Ek−2. The amplitude of the rotationally dependent part ofEB,1

is about 8 orders of magnitude lower than the rotationally independent part. The phase

drift of the dominant mode, which was originally a necessarysupplement to fullfill the

solvability condition, was thereby proven to be a real effect.

10
−3

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

Rm−Rm
c

ω
ph

 

 

ω
ph,n

ω
ph

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

Ek−1

Ek

 

 

Rm = 0.295
Rm=0.3
Rm=0.5

Figure 3.5: Drift velocityωph plotted over Rm at Ek= 5× 10−2 (left) and Ek (right).
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3.2.2 Linearised Navier-Stokes equation

Although the analytical calculation reproduces the saturation level of the magnetic energy

up to Rm≈ 0.4 as well as the dependency on Ek−2, it cannot explain why the magnetic

energy is dependent on the rotation rate in the first order of Rm− Rmc. Besides, the Ek-

dependency of the perturbed velocity field modes inv2 is not clear either. With Re= 10,

the ratio of inertial forces to diffusion might be too large so that the numerical model

including the advection term is not well approximated by theanalytical approach. There-

fore, the simulations were repeated with the linearised Navier-Stokes equation in order

to test the effect of the advection term on the results and, eventually givepossible rea-

sons for the Ek-dependency to appear in the first order of (Rm− Rmc). Taking the same

dimensionless parameters, the Navier-Stokes equation reads

∂tv = −∇p+
1

Re
∇2v + F + (∇ × B) × B − 2

1
Re Ek

(êz× v) (3.79)

with the same Reynolds number Re= vaa/ν = 1 and the Ekman number Ek= ν/Ωa2. The

induction equation does not change and the expressions of the analytical result remain the

same.

Comparsion of the numerical and analytical results

The upper left panel of Figure 3.6 shows the saturated magnetic energy plotted over Rm.

Both graphs agree quite well up to Rm≈ 0.4. The upper right plot shows the absolute

difference of the magnetic energy in the non-rotating system compared to the rotating

one at different Ek. The exponent Ek−2 matches the numerical results also very nicely.

The corresponding amplitudes of each set of simulations of the upper right panel are

plotted against (Rm− Rmc) in the lower panel. The amplitudes show a development of

(Rm − Rmc)/Rm (red dashed line) up to Rm≈ 0.31, which is about 5% overcritical

and a little bit higher than in the non-linear simulations. In this region, the magnetic en-

ergy increases with Ek, whereas for Rm> 0.31 the magnetic energy decreases with Ek.

At high Rm, however, the amplitude of the rotationally dependent part decreases very

quickly. In the end, the rotationally dependent part ofEB still appears in the first order of

(Rm− Rmc)/Rm.

In the left panel of Figure 3.7, the drift velocityωph is plotted against Rm− Rmc. Up to

Rm ≈ 0.31, it deviates from the analytical prediction by a factor offive. The right panel

shows the rotationally dependency of the amplitudes at Rm= 0.295...0.305, which are

proportional to Ek−1. At high Rm, the drift velocity tends to zero.
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Figure 3.8 shows the development of the amplitudes of the velocity field of the numerical

simulations and the analytical expressions. Without the non-linear term in the Navier-

Stokes equation at Rm= 0.3 all numerical amplitudes coincide with the corresponding

analytical amplitudes. At both Rm the amplitudes of the dominant modesAR andA1 have

an additional term that is rotationally dependent on Ek−2.

In Figure 3.9, the magnetic energy of the two modesB1 andB3 is plotted over Ek. In both

cases it increases with Ek−2, whereas the dominant modeB1 is six orders of magnitude

larger thanB3 at Rm= 0.3 and only two orders of magnitude at Rm= 0.7. The domi-

nant modeB1, in turn, is responsible for the amplitudeAR andA1. They are consistently

proportional toB̂2
1 due to the Lorentz force and therewith∼ Ek−2, like it is denoted by the

red dashed line in Figure 3.8. The question remains as to how the rotational dependence

enters the dominant mode in the first place, sinceAR andA1 define the amplitude ofF2

and therewith the amplitude of the dominant mode.
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Figure 3.8: Amplitudes of the velocity field at Rm= 0.3 (left) and 0.7 (right). The
rotational parts ofAR andA1 are colored red.
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One explanation must be that any other terms, which were neglected in the induction

equation, in the Lorentz force or any derivatives inz in the Navier-Stokes equation must

be responsible for a rotationally dependent term inAR or A1, which might be covered by

the Ek−2-term and becomes invisible in that way.

Since Figure 3.8 is just the result of equation 3.24, at leastthe Lorentz force term can be

tested for correctness. By taking the amplitudes of theΩ-dependent parts ofEB,1 of the

numerical simulation and recalculate those parts ofAR andA1 which are proportional to

∼ Ek−2 with equation 3.42. Obviously, both amplitudes are equal toǫ2γ except for a factor

of 1/2. The recalculation ofAR andA1 gives a discrepancy of one order of magnitude to

the original obtained amplitudes in the numerical simulation, which makes the Lorentz

force term suspicious to be not well approximated.
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3.2 Results of the numerical model

3.2.3 Outlook

Apparently, the magnetic energy is already dependent onΩ in the first order ofǫ, as it can

be seen on the right side of Figure 3.6. However it contradicts the analytical results. Espe-

cially the approximated Lorentz force term is not capable ofreproducing the amplitudes

of the velocity field which are generated by the dominant mode. Since the amplitude of

the responsible term is quite low∼ 10−7, it is possible that terms which were neglected

in equation 3.8, 3.14 or 3.24 could be responsible forΩ to appear in the first order of

the magnetic energy. This means thatF2 has to be rotationally dependent.F2 in turn is

defined by the solvability condition (eq. 3.34). Only the amplitudes of two modes ofv2

v2 = aRvR + av1 sin 2kzz ṽ0 (3.80)

contribute to the amplitude ofF2, since both amplitudesaR andav1 merge in the ampli-

tude of the first term in equation 3.37, which belongs to the mode
[

coskzz sinkzz 0
]

. All

other terms become zero on average over the (x, y)-plane or appear in amplitudes of other

modes. In order to get theΩ-dependency in first order of (Rm−Rmc)/Rm,Ωmust appear

in these two modesvR andṽ0.

Expansion of the MHD equation in a/L

The only parameter that was left out in the perturbation expansion isa/L. Starting with

equation 3.8, where (v · ∇)B appears in first order ina/L, which gives

λ∇2b = −(B · ∇)v + (v · ∇)B (3.81)

andb, up to second order in (a/L), becomes

b ≈ 1
2λ

(a
π

)2 [

(B · ∇)v − (v · ∇)B
]

+
1
4λ

(a
π

)4

(∂2
zB · ∇)v. (3.82)

The result of the second term, which is in first order ofǫ, adds an additional diffusion

term∼ ∂zB to the original solutions and has already been worked out byTilgner (2004).

The kinematic dynamo onset slightly changes to

Rmc =
8π2akz

2
√

2π − akz

. (3.83)
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

Consideringb = b0 + (a/L)b1 + (a/L)2b2 the Lorentz-force term splits up into several

parts, whereas the rotation of vector terms includingb always generates contributions to

the order (a/L)n+1 and (a/L)n. Only (∇ × b) × b is not considered, because|b| ≈ vga
λ
|B|,

and thus, this term is of higher order in Rm. The contributions to the Lorentz forceL are

∇ ×
[

(∇ × b0) × B
]

O(1) , a/L , (a/L)2

∇ ×
[

(∇ × b1) × B
]

a/L , (a/L)2 , ...

∇ ×
[

(∇ × b2) × B
]

(a/L)2 , ... (3.84)

∇ ×
[(

∇ × B
)

× b0

]

a/L , (a/L)2

∇ ×
[(

∇ × B
)

× b1

]

(a/L)2 , ... .

In equation 3.24, terms including derivatives ofv2 = [v1, v2, v3] with respect toz also

contributes to odrders in (a/L)n+1. Solely terms with derivatives in z-direction including

Ω are unchanged, sinceΩ is supposed to get large and the partial differential equation

becomes,

0 = ∂2
x∂yv3 + ∂

3
yv3 −

a
L
∂2

x∂zv2 −
a
L
∂2

y∂zv2 + 2∂zv1Ω/ν + F1 + L1

0 =
a
L
∂2

x∂zv1 +
a
L
∂2

y∂zv1 − ∂3
xv3 − ∂2

y∂xv3 + 2∂zv2Ω/ν + F2 + L2

0 = ∂3
xvy + ∂

2
y∂xvy − ∂2

x∂yvx − ∂3
yvx − 2∂xvxΩ/ν − 2∂yvyΩ/ν + F3 + L3.

The force termF only appears in zeroth order ofa/L. The velocity fieldv2 is expanded

in orders ofa/L:

v2 = v2,0 +
a
L

v2,1 +

(a
L

)2

v2,2 + ... . (3.85)

The solution ofv2 in zeroth order is equal to equation 3.31. In first order ofa/L, the

rotationally dependent part ofv2,0 reappears with slightly changed amplitudes

v2,1 =
γ

2π2 + a2k2
z

√
2

8

(a
π

)3 k3
zΩ

ν
cos 2kzz ṽ0z+ ∇Φ1 (3.86)

with

92



3.2 Results of the numerical model

Φ1 =
−1

4
(

π
a

)4
+ 4

(

π
a

)2
k2 + k4

√
2

64

(a
π

)5 v0Ωk4
zB̂

2
1

ν2λµ0ρ
sin 2kzz cos

2π
a

y cos
2π
a

x. (3.87)

Finally, even in second order, the new terms in the Lorentz force do not generate any new

modes inv2 andv2,2 becomes

v2,2 = A2,RvR+
(

A2,1 sin 2kzz+ A2,2Ω cos 2kzz
)

ṽ0z+ ∇Φ2, (3.88)

whereasΦ2 again has the form

Φ2 = A2,ΦΩ sin 2kzz cos
2π
a

y cos
2π
a

x. (3.89)

The amplitudesA2,R, A2,1, A2,2 andA2,Φ are not important. The results, however, show

that none of the additional Lorentz force terms generate a new rotationally dependent

mode. By calculating the induction terms of equation 3.32,F2 still remains rotationally

independent. The last terms, that remain are those in equation 3.8 which are non-linear

in v: {∇ × (b × v)− < ∇ × (b × v) >}. These terms combine small-scale magnetic and

velocity induction effects. At this point, the analytical possibilities are exhausted.
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Advanced dealiasing and the flactuative magnetic field

According to the dealiasing of higher wavenumbers, it is possible to cut out modes

with admitted wavenumbers but small amplitudes. In this waythe velocity field in the

numercial simulation can be modified according to the analytical expression in equa-

tion 3.69. By takingc = d = 0 the only non-zero amplitudes in equation 3.68 are

AR,A1andA4 of whichA4 is rotationally dependent. Additionally, the fields have a dealias-

ing in kx,y > 2π/a andkz > 4π/d. Simulations with this kind of prepared velocity field

show a rotational dependence of the magnetic field, which actually only consists of the

dominant modeB1 and the fluctuating partb. The fluctuative part of the magnetic field

has the following Fourrier amplitudes

ax,222 = a1 + ib2

ax,282 = b1 − ia2

ax,228 = a1 − ib2

ax,288 = b1 + ia2

ay,222 = −a2 − ib1

ay,282 = b2 − ia1

ay,228 = −a2 + ib1

ay,288 = b2 + ia1

az,222 =
√

2(−b1 + ia1)

az,282 =
√

2(−a1 − ib1)

az,228 =
√

2(b1 + ia1)

az,288 =
√

2(a1 − ib1)

,

(3.90)

which gives by only considering those amplitudes with index1

bnum=
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with x̃ = 2πx/a andỹ = 2πy/a. Contrary to the analytical expression thez-component has

a phaseϕ = arctan((a1 + b1)/(b1 − a1)). Due to this phase shift, the induction term gives
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a rotationally dependent contribution to the dominant mode, which can be confirmed by

the analytical calculation. With the prepared velocity field and the fluctuative magnetic

field the projection of the induction term yield

∫

∇ × (bnum× vnum) · B1dV ∼ Ω sinϕ. (3.91)

The phase in thez-component is therefore responsible for theΩ-dependency of the mag-

netic field in first order. Sinceb is deduced from equation 3.8, it is most likely that the

nonlinear terms∇× (b×v) and〈∇× (b×v)〉 are responsible for the phaseϕ. Incorporating

this phase shift in the analytical calculations, yields

F2 =
3
4

v0B̂2
1

λµ0ρ


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
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2

24π
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z
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(3.92)

and the magnetic energy becomes

EB,1 =
(Rm− Rmc)

Rm Re
8 π 2−1/4

3
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
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
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−1

. (3.93)

This result, however, gives a decrease of the magnetic energy for increasing rotation

rates which is in contrast to the numerical results at Rm< 0.4. In order to get the

proportionality of the analytical result, the force term insecond order ofǫ should be

F2 ∼ B̂2
1/(1 + Ek−2). Nevertheless the case that the magnetic energy is loweredby in-

creasing the rotation can be observed for Rm> 0.4.
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3.3 Conclusion

The G. O. Roberts flow is a simple, two-dimensional vector field, which is similar to

many large-scale helical flows such as for example rotating convective flows generated in

celestial bodies. It is therefore a useful flow for the analytical investigation of basic char-

acteristics of dynamos with the help of mean field theory and weakly non-linear theory.

In addition, numerical simulations including all non-linear terms were performed in the

same parameter regime. This allows for a comparison betweennumerical and analytical

results and thus for testing the applicability of the analytical approximation.

The analytical calculation shows that in the first order of Rm− Rmc, the saturation level

of the magnetic energy is independent of the rotation. It reproduces the magnetic energy

of the simulations without rotation up to Rm≈ 0.4 quite well. At that point, the ratio

of the amplitudes inv2, which occur due to the Lorentz force to those generated by the

driving forces, isΞ ≈ 1/5. Assuming that the aspect ratio of the flow columns is of order

10 in the Earth’s interior andL is the Earth’s diameter, one obtains a ratio of approxi-

matelyΞ ≈ 103 with Re = 109, Rm = 100 and magnetic field strength of the dipole of

B̂1 ≈ 100µT. The same ratio is expected in experiments, where Rm is the same, butEB is

two orders of magnitude higher and Re is two orders of magnitude lower. With the aspect

ratio taken in this study one obtainsΞ ≈ 0.3 for both systems, which is almost equal to

the ratio in the numerical simulationΞ ≈ 0.25.

In third order, the magnetic energy is proportional to∼ Ek−2. The condition for solv-

ability predicts a drift velocity of the dominant mode with arotational dependence of

∼ Ek−1, which was confirmed by the numerical simulations. For largeRm, however, the

drift velocity tends towards zero. The saturation level of the magnetic energy in the nu-

merical simulations shows quite a robust dependence on∼ Ek−2 up to Rm= 1, whereas

the amplitude of the rotationally dependent part tends towards zero for higher Rm. The

results of Reiners et al. (2009) found an increase of the magnetic flux proportional to the

rotational timescale for slowly rotating objects and a regime of fast rotating objects where

the magnetic flux is independent of the rotation rate.

In addition, the magnetic energy of the analytical solutionis proportional to (a/L)2. In

rotating plane layer convection, the aspect ratio is dependent on∼ Ek1/3 near the onset

of Rayleigh-Bernard convection, so that the transfer of these results to convection-driven

systems should be between∼ Ek−4/3 and∼ Ek−2. At least the latter power law would

agree with evolution in slowly rotating stars (Reiners et al. 2009). The only hint for a

possible saturation of the magnetic energy is given by the numerical results, where the

rotationally dependent part of the magnetic energy tends towards zero for high Rm.

In global simulations many forces are incorporated in orderto make the system most re-

alistic. The saturation level of the magnetic energy in global simulations of planetary
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or stellar dynamos in spherical geometry depends on many parameters, so that a clear

exponent could not yet be found (Christensen and Aubert 2006). The ratio of the ohmic

dissipation to the total dissipation is a crucial factor anddefines the state, at which the

magnetic energy at least becomes independent of the rotation rate. This state is reached

when all the energy is dissipated by ohmic loss (Schrinner 2013).

The model and its geometries are quite different and the only thing they have in common

is that their flow exhibits helicity, which plays a major rolein the dynamo process with

an dominantα-effect in the dynamo mechanism. An interesting extension of this work

would be the evolution of the magnetic energy in a rotating spherical shell with free slip

boundaries. The G.O. Roberts flow would be generated by a volume force like it was

already applied by Tilgner (1997). The only restriction would be the resolution, which

limits the aspect ratio. Thus, values of Rm which are as low asin these simulations could

not be reached. The intermediate regime could be covered with the numerical results of

periodic box simulations at lower aspect ratios.

The dynamo generation in rotating Rayleigh-Bénard convection has been investigated by

(Tilgner 2012). Rotating convection in a plane layer is moresimilar to the cartesian ge-

ometry of the periodic box, but apart from the vortices of theflow, the dynamo generation

here is more related to the Ekman layers that occur at the boundaries and which are sen-

sitive to the rotation rate as well. The magnetic energy develops in two different ways

depending on whether a geostrophic or magnetostrophic balance is predominant. In the

magnetostrophic balance, the magnetic energy is proportional to∼ Ek−1/3, whereas it is

∼ Ek−5/6 in the geostrophic balance. Since the Lorentz force near theonset is rather weak,

the conditions in the geostrophic balance would be more appropriate for a comparison to

the periodic box simulations. Reconsidering a dependence of the aspect ratio of the pe-

riodic box on Ek1/3, the exponent of the analytical result and the geostrophic balance are

approximately equal to one.

Nevertheless, the order in which Ek−2 appears in the saturated magnetic energy is Rm−
Rmc. Since the amplitude is quite small, it is obvious that some of the neglected terms

must be responsible for the rotation to appear in the first order. Therefore,v2 in the

Navier-Stokes equation in second order of Rm− Rmc, which is responsible for the satu-

rating process, is expanded in ordersa/L. This includes terms with derivatives ofv2 in

z and the Lorentz force, in which the fluctuative part of the magnetic fieldb has to be

extended up to the second order ina/L. Nevertheless, this step does not change the order,

in which the saturated magnetic energy is dependent on the rotation; therefore, the two

remaining terms which can be responsible are{∇ × (b × v)− < ∇ × (b × v) >}.
Comparing analytical and numerical expressions for the fluctuative magnetic field yield

that thez-component ofb has a phase shift inz-direction. By this phase, it is possible

to get a rotationally dependent dominant mode. This shows that b is responsible for the
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3 Magnetic field saturation in a rotating G. O. Roberts like driven flow

deviation of the analytical results from the numerical results. The according modification

of the analytical calculation, however, can not reproduce the numerical results. Thus, the

amplitude ofb has to be dependent onΩ as well. Due to the non-linear terms, a further in-

vestigation of the amplitude ofb, from whichF2 andEB,1 are deduced, becomes difficult.

A positive proof by modified numerical simulations could notbe made.
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