
Large eddy simulations of compressible
magnetohydrodynamic turbulence

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”

der Georg-August-Universität Göttingen

im Promotionsprogramm PROPHYS

der Georg-August University School of Science (GAUSS)

vorgelegt von

Philipp Grete
aus Peine

Göttingen, 2016



Betreuungsausschuss

Prof. Dr. Dominik Schleicher
Departamento de Astronomía, Universidad de Concepción, Chile

PD Dr. Wolfram Schmidt
Hamburger Sternwarte, Universität Hamburg, Germany

Prof. Dr. Laurent Gizon
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
Institut für Astrophysik, Georg-August-Universität Göttingen, Germany

Mitglieder der Prüfungskommision

Referent: PD Dr. Wolfram Schmidt
Hamburger Sternwarte, Universität Hamburg, Germany

Korreferent: Prof. Dr. Dr.h.c. Eberhard Bodenschatz
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany
Institut für Nicht-Lineare Dynamik, Georg-August-Universität Göttingen, Germany

2. Korreferent: Prof. Dr. Marcus Brüggen
Hamburger Sternwarte, Universität Hamburg, Germany

Weitere Mitglieder der Prüfungskommission:

Prof. Dr. Dominik Schleicher
Departamento de Astronomía, Universidad de Concepción, Chile

Prof. Dr. Jens Niemeyer
Institut für Astrophysik, Georg-August-Universität Göttingen, Germany

Prof. Dr. Jörg Büchner
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany

Prof. Dr. Andreas Dillmann
Institut für Aerodynamik und Strömungstechnik, DLR, Göttingen, Germany

Tag der mündlichen Prüfung: 9. September 2016

2



Contents

Contents
Abstract 5

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Incompressible hydrodynamic turbulence . . . . . . . . . . . . . 9
1.2.2 Compressibility and presence of magnetic fields . . . . . . . . . . 11
1.2.3 Turbulence in astrophysics . . . . . . . . . . . . . . . . . . . . . 13

1.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 High-resolution methods . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Large eddy simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Implicit LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.2 Explicit LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3 Explicit discrete filters . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.4 Verification and validation . . . . . . . . . . . . . . . . . . . . . 30

2 Paper I: Nonlinear closures for scale separation in supersonic MHD turbu-
lence 33

3 Paper II: A nonlinear structural subgrid-scale closure for compressible
MHD. I. Derivation and energy dissipation properties 45

4 Paper III: A nonlinear structural subgrid-scale closure for compressible
MHD. II. A priori comparison on turbulence simulation data 55

5 Paper IV: Comparative statistics of selected subgrid-scale models in large
eddy simulations of decaying, supersonic MHD turbulence 71

6 Summary and conclusions 85

Bibliography 91

A Discrete filter approximations 101

Scientific contributions 103

Acknowledgements 105

3





Abstract

Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important
role in many processes — especially in astrophysics, where detailed three-dimensional
observations are scarce. Simulations can partially fill this gap and help to understand these
processes. However, direct simulations with realistic parameters are often not feasible.
Consequently, large eddy simulations (LES) have emerged as a viable alternative. In
LES the overall complexity is reduced by simulating only large and intermediate scales
directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced
to the simulation by means of an SGS model. Thus, the overall quality of an LES with
respect to properly accounting for small-scale physics crucially depends on the quality
of the SGS model. While there has been a lot of successful research on SGS models in
the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in
particular, in the compressible regime.

In this thesis, we derive and validate a new nonlinear MHD SGS model that explic-
itly takes compressibility effects into account. A filter is used to separate the large and
intermediate scales, and it is thought to mimic finite resolution effects. In the derivation,
we use a deconvolution approach on the filter kernel. With this approach, we are able to
derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell
stresses, and the turbulent electromotive force (EMF). We validate the new closures both
a priori and a posteriori.

In the a priori tests, we use high-resolution reference data of stationary, homogeneous,
isotropic MHD turbulence to compare exact SGS quantities against predictions by the
closures. The comparison includes, for example, correlations of turbulent fluxes, the
average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to
quantify the performance of the new nonlinear closure, this comparison is conducted from
the subsonic (sonic Mach number Ms ≈ 0.2) to the highly supersonic (Ms ≈ 20) regime,
and against other SGS closures. The latter include established closures of eddy-viscosity
and scale-similarity type. In all tests and over the entire parameter space, we find that the
proposed closures are (significantly) closer to the reference data than the other closures.

In the a posteriori tests, we perform large eddy simulations of decaying, supersonic
MHD turbulence with initial Ms ≈ 3. We implemented closures of all types, i.e. of
eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their
performance in comparison to simulations without a model (and at higher resolution). We
find that the models need to be calculated on a scale larger than the grid scale, e.g. by an
explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only
the proposed nonlinear closure improves higher-order statistics.
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1 Introduction

1.1 Motivation

Turbulence accompanies everyone — for some people more unconscious, for example, if
they rely on turbulent mixing by stirring their cup of coffee with sugar and milk, than for
others, who consciously study turbulence. In general, a turbulent flow may be understood
as a qualitative description of a system that is dominated by virtually random, chaotic
motions with a huge number of excited modes and intermittent features. This behavior
makes exact predictions on the evolution of the flow extremely challenging (if not impos-
sible). The difficulty stems from the nonlinearity of the fundamental equations, e.g. the
(u · ∇)u term in the incompressible (∇ · u = 0) Navier-Stokes equations

∂u
∂t

+ (u · ∇) u = −
1
ρ
∇P + ν∇2u (1.1)

with velocity u, density ρ, pressure P and dynamic viscosity ν. While exact solutions
only exists for a few specific cases, flows can often be described statistically or in an
even more simplified qualitative manner. One important qualitative description is the
(hydrodynamic) Reynolds number

Re =
LV
ν
, (1.2)

which combines a characteristic lengthscale L and velocity V with ν to give a dimen-
sionless number, see e.g. textbooks of Frisch (1995), Pope (2000) and Davidson (2004).
This Reynolds number is often used to characterize flows given that flows with similar
Reynolds number have similar properties. Illustratively, this is the reason why e.g. the
real air flow over an airplane wing can be imitated with a model of reduced size that is
subject to a flow of higher velocity. Typically, a flow is considered turbulent at Reynolds
number ofO(103), which is already reached for the initially mentioned cup of coffee under
stirring of one revolution per second.

While an exact dynamical description of a cup of coffee is barely possible, the situ-
ation is astrophysics is even worse. Not only is the dynamical range naturally larger by
many orders of magnitudes, but also compressibility and the presence of magnetic fields
introduce further complexity. Here, the dynamics for an electrically conducting fluid can
be described by the magnetohydrodynamic (MHD) equations, which can be derived by
combining Maxwell’s equations with the Navier-Stokes equations. The basic equations
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1 Introduction

of compressible ideal MHD are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.3a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u − B ⊗ B) + ∇

(
P +

B2

2

)
= 0, (1.3b)

∂B
∂t
− ∇ × (u × B) = 0. (1.3c)

with the magnetic field B incorporating units of 1/
√

4π. Even though they look rather
simple, they provide the key to a plethora of phenomena and processes on vastly varying
scales. These include, for example, the geo-dynamo, which is responsible for maintain-
ing the Earth’s protective magnetic field, the strong collimation of astrophysical jets by
magnetic fields, and the magnetorotational instability, which regulates angular momen-
tum transport in accretion disks. A more detailed description of selected turbulent astro-
physical systems including their characteristic quantities is given in in subsection 1.2.3.
All these processes have in common large Reynolds numbers and the exact impact and
importance of turbulence is still subject to active research in most processes.

The lack of final answers to many questions is partially due to the lack of detailed ob-
servations. Naturally, most astrophysical observations provide 2-dimensional information
only and at a limited resolution. Here, numerical simulations can complement observa-
tions as they provide not only a detailed control over the environment, but also allow for
the analysis for full (instantaneous) 3-dimensional data. Unfortunately, direct numerical
simulations covering realistic regimes, i.e. the Re > O(109), are not going to be possi-
ble for quite some time. Even the largest purely hydrodynamic turbulence simulations
reaches only Re ∼ O(104) (Federrath et al. 2016). Thus, alternative approaches that re-
duce the complexity while still maintaining the fundamental physics are required. One
approach is the so-called large eddy simulation (LES). The justification and application
of this specific type of simulation to ideal, compressible MHD turbulence is the subject
of this thesis.

The thesis is structured as follows. In the remainder of the introduction, the phe-
nomenology and basic equations of turbulence are first discussed in the following sub-
section — starting with incompressible hydrodynamic turbulence and then extended to
the most important features of compressible MHD turbulence. Afterwards, turbulence
in astrophysics on different scales and in different regimes is presented in more detail.
Then, in section 1.3 the standard numerical methods for computational (magneto-) fluid
dynamics are introduced as the concept of large eddy simulation is intrinsically linked to
the numerics. LES themselves are then presented in section 1.4 including the general for-
malism, the distinction between implicit and explicit LES, (discrete) filters, and different
verification and validation methods. The first results for a simple nonlinear closure are
given in chapter 2. This closure is then extended to explicitly account for compressibility
from a theoretical point of view in chapter 3, and tested against most common alternative
closures a priori in chapter 4. Afterwards, the testing is extended to a posteriori appli-
cation in simulations of decaying MHD turbulence in chapter 5. Finally, in chapter 6 all
results are summarized and discussed in a broader context.
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1.2 Turbulence

1.2 Turbulence

1.2.1 Incompressible hydrodynamic turbulence
To date, there is no universal theory of turbulence. However, in certain areas, not only
phenomenological descriptions exists, but also analytical ones. The most famous example
is probably Kolmogorov (1941) with his theory of homogeneous, isotropic, incompress-
ible hydrodynamic turbulence.

While the phenomenology has already been described earlier, e.g. by Richardson
(1922) "Big whirls have little whirls that feed on their velocity, and little whirls have
lesser whirls and so on to viscosity." , Kolmogorov first derived an analytical description.
This energy cascade, which is mediated by interacting whirls (or eddies), is a character-
istic feature of turbulence. In addition to homogeneity and isotropy, Kolmogorov also
assumed stationarity of the flow, and that the energy dissipation is finite even in the case
of Re → ∞ (i.e. viscosity ν → 0). Even though the underlying theory is more compli-
cated, see e.g. Frisch (1995) for further details, the key results can be illustrated by simple
arguments and dimensional analysis (Choudhuri 1998).

Assuming that the largest eddies have characteristic velocity V and size L, which is
close to the scale where energy is injected into the stationary system, they are character-
ized by

Re ∼
LV
ν

. (1.4)

Eddies at these scales now break up into eddies of smaller and smaller scale until molec-
ular dissipation starts to be important at Re ≈ 1. Thus, at the smallest scales with eddies
of size ld and velocity vd

ldvd ∼ ν . (1.5)

At the intermediate scales ld < l < L energy is simply transferred down-scale at the
dissipation rate ε, which, under the assumption of being independent of ν, is given by
dimensional analysis as

ε ∼
v3

l
. (1.6)

With this equation two important relations can be derived. First, given that (1.6) holds
for both the smallest and largest eddies in stationary turbulence, it can be combined with
(1.4) and (1.5) to obtain a scaling relation that describes the scale separation for a given
large scale Reynolds number:

L
ld
∼ Re3/4 . (1.7)

Second, the energy spectrum E(k) can be assumed to depend only on the constant dissi-
pation rate and the wavenumber k. Again, dimensional analysis results in

E(k) ∼ ε2/3k−5/3 . (1.8)

This famous Kolmogorov slope of −5/3 is illustrated in figure 1.1. The range of scales
where this relation holds is usually referred to as inertial (sub)range and was observed in
nature, in experiments and in numerical simulations.
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1 Introduction

wavenumber k

E(k)

slope -5/3

1/L 1/ld

Figure 1.1: Illustration of the Kolmogorov energy spectrum.

Structure functions are an important statistical measure to describe turbulence, espe-
cially as the second order longitudinal structure function is directly related to the energy
spectrum, see e.g. Pope (2000) for comprehensive introduction, which is roughly fol-
lowed here. In general, structure functions of order p are defined as

S p
‖
(l) = 〈|(u(x + l) − u(x)) · l/l|p〉 . (1.9)

In this formulation, they are the moments of the instantaneous velocity u differences in
the direction of the spatial separation l in the homogeneous, isotropic case. The following
scaling relation

S p
‖
(l) ∝ lζp (1.10)

is obtained if the characteristic velocity v in (1.6) is interpreted as the velocity increments
at that scale. Here, ζp = p/3 is the structure function exponent.

While it has been observed that these scaling prediction are quite accurate at lower
orders (p . 3), there are significant deviations at higher orders (Anselmet et al. 1984).
The deviations stem from the oversimplified hypothesis of self-similarity over all inertial
scales in the original derivation by Kolmogorov. In fact, as later recognized by Kol-
mogorov (1962) and Obukhov (1962), the phenomenon of intermittency invalidates the
hypothesis. Not the mean dissipation over all scales should be used in (1.6), but the mean
value corresponding to the separation l. This is usually referred to as refined self-similarity
hypothesis and requires an additional parameter specifying intermittency. Nowadays, a
further refinement by She and Leveque (1994) is often used. It does not require the addi-
tional parameter and has great success in correctly predicting scaling exponents with

ζp =
p
9

+ 2
1 − (

2
3

)p/3 . (1.11)

Here, the main assumption is that dissipation does not occur isotropically, but most strongly
in intermittent structures of filamentary nature.

Extended self-similarity (ESS) was discovered almost at the same time by Benzi et al.
(1993) and also used to confirm the predicted scaling exponents (1.11). Then, as now,
not all systems (including experiments and numerical simulations) showed a clear inertial
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1.2 Turbulence

range in the energy spectrum for several reasons, such as insufficient spatial separation
between the largest and smallest scales, or too much numerical dissipation (see following
section 1.3 for a discussion). This lack of a clear inertial range is equivalent to a lack of the
corresponding scaling range in the structure functions. Nevertheless, it is observed that the
individual structure functions of different order p are self-similar in the sense of suffering
the same defects. Thus, Benzi et al. (1993) showed that, if plotted against each other,
the relative structure functions recover a power law scaling with a corresponding relative
scaling exponent Zp = ζp/ζp,ref. In addition to this, the range of scales over which this
scaling is present extends far beyond the original (potentially negligible) inertial range.
Eventually, the original scaling exponents can be recovered by this procedure if S 3

‖
(l) is

used as reference structure function. Given that ζ3 = 1, the absolute and relative exponents
are identical Zp = ζp/ζ3 = ζp. This concept also extends to MHD as later shown, for
example, in figure 5c of chapter 5.

1.2.2 Compressibility and presence of magnetic fields
The previous discussion of turbulence covered important aspects of incompressible hy-
drodynamics. Here, in a similar fashion important aspects of turbulence are presented
that include compressible, i.e. ∇ · u , 0, effects and/or magnetic fields, i.e. B , 0. For
additional information, see e.g. the textbooks of Biskamp (2003) and Choudhuri (1998)
or more recent reviews by Tobias et al. (2013) and Miesch et al. (2015), which are the
basis of this subsection.

First of all, compressible fluids support waves. Several linear waves exist which are
valid for small initial perturbations. On the one hand, there are acoustic or sound waves
in compressible hydrodynamics. Here, the pressure provides a restoring force for waves
that propagate at the speed of sound cs. One the other hand, if magnetic fields are present,
additional restoring forces allow for additional wave types. First, the Alfvén wave is a
transversal wave propagating at the Alfvén velocity va = B/

√
4πρ in the direction of B.

Magnetic tension provides the restoring force, and given that Alfvén waves are incom-
pressible waves, they also exists in incompressible MHD. Second, magnetosonic waves
are compressible waves and can be further discriminated in slow and fast modes. The
former is characterized by the thermal and magnetic pressure working against each other
as restoring forces, while in the case of the fast mode both pressures act together. The
exact behavior of these modes is more complex and depends on the angle between the
wave vector and the magnetic field, and the ratio of sound to Alfvén speed.

Besides these nondispersive linear waves, there also exist nonlinear waves, which
more strongly influence the compressible turbulence dynamics. Here, even smooth ini-
tial conditions can develop a steep profile — a thin region in which the fluid variables
change rapidly, i.e. make a jump. This is also referred to (and mathematically treated
as) a discontinuity. Using the hydrodynamic equations in conservational form, jump con-
ditions can be derived to relate the up- and downstream fluid quantities over this region.
These Rankine-Huginiot conditions can then be treated as a Riemann problem to solve the
behavior over the discontinuity. For instance, a contact discontinuity is associated with a
jump in the density but otherwise continuous transition of pressure or velocity. In contrast
to this, a shock wave, which builds if the velocity is faster than the local speed of sound,
is associated with a jump in all fluid quantities. In general, the width (or sharpness) of the
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1 Introduction

discontinuity is only limited by the dissipative properties of the system, e.g. viscosity in
HD. Similar considerations also apply to MHD. Again, the additional degrees-of-freedom
allow for additional complexity. For example, the magnetic field is bent away from the
shock-normal for a fast-mode MHD shock, while it is changed in the direction of the
shock-normal for a slow-mode MHD shock.

In general, compressibility effects are important once the root mean square sonic Mach
number reaches Ms & 0.3. In turbulence, shock waves themselves are important as dis-
sipation in a shock-dominated system predominately occurs at the spatially sparse shock
fronts. More specifically, dissipation does not occur in quasi-one-dimensional vortex fil-
aments any more, but rather in structures of higher dimension. These structures include
shock fronts and, in the case of MHD, reconnection sites. They are usually not volume
filling and occupy only a small fraction of the available volume. In the remaining volume
dissipation is usually small.

While this is mostly attributed to the compressibility and thus also applies in HD, there
are two characteristics of MHD turbulence that are fundamentally different from hydro-
dynamic turbulence: increasing anisotropy on the smallest scales and nonlocal spectral
transfer.

The former stems from the fact that a background magnetic field does not vanish at
any scale. In contrast to hydrodynamics, where, for example, large scale rotation gets
increasingly negligible at decreasing scales so that isotropy can be assumed for scales
smaller than a given scale, the influence of a background magnetic field in MHD actually
increases with decreasing scales. In addition to this, this background field does not neces-
sarily need to be some (potentially) external (mean) field. A sufficiently smooth field on
a certain scale will again look like a large scale mean field on scales sufficiently smaller.
This anisotropy is important as it provides preferred directions for physical processes such
as thermal conduction or dissipation (Braginskii 1965).

The nonlocal spectral transfer is especially relevant in the case of turbulence with fi-
nite magnetic helicity. In hydrodynamics, the two ideal invariants, energy and kinetic
helicity, have a direct cascade, i.e. their ideal spectrum (cf. the absolute equilibrium dis-
tribution) peaks at high wavenumbers k0 and any energy injected at scale larger than k re-
laxes towards k0. Moreover, this relaxation is local in the sense that energy is transferred
preferentially between wavenumber of similar magnitude, which is why the process is
typically referred to as a cascade. The ideal MHD equations have three ideal invariants:
energy, cross-helicity and magnetic helicity. Again, the ideal spectrum of the first two
quantities is peaked at high k. However, the spectrum of the magnetic helicity is peaked
at low k. For this reason, it relaxes towards the largest scales allowed in a system. In
addition, the link between the different relaxation processes allows for nonlocal transfer.

Finally, there are two interesting extreme regimes in MHD turbulence: systems with
a strong background field and quasi-isotropic turbulence.

On the one hand, situations with a strong (potentially external) mean or background
magnetic field can (at least in the incompressible limit) be described by interacting Alfvén
waves. For this reason, this regime is also referred to as Alfvénic turbulence. Here,
the anisotropy of MHD turbulence is well pronounced. The initial description by Irosh-
nikov (1964) and Kraichnan (1965) based on the assumption of weak interactions between
waves on all scales, is now superseded by Goldreich and Sridhar (1995) (GS). While the
former derived a scaling of the energy spectrum of E(k) ∝ k−3/2, the latter derived a Kol-
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1.2 Turbulence

mogorov scaling for the parallel cascade E(k) ∝ k−5/3. The major change in the GS theory
is that interactions below a certain scale are no longer weak, but actually strong.

On the other hand, quasi-isotropic turbulence with no external field (or of negligible
strength) is of particular importance for astrophysics as it, for example, allows for the
generation of magnetic fields (from weak seed fields) and maintenance against dissipative
processes (Brandenburg and Subramanian 2005). In the case of the so called small-scale
dynamo, a stretch-twist-fold mechanism (figuratively) converts kinetic energy of turbulent
small-scale motion into magnetic energy, e.g. described by the Kazantsev (1968) model.
This growth of magnetic field strength first ends once the magnetic energy reaches com-
parable levels to the kinetic energy at the driving scale, i.e. magnetic field works against
the turbulent driving. This back-reaction from magnetic fields, which are amplified on a
certain scale, onto motions at a different scale is another example of nonlocal interactions
in MHD turbulence.

In general, different regimes are typically characterized by dimensionless numbers.
Analogous to the kinetic Reynolds number, a magnetic Reynolds Rm can be defined,
which is a relative measure of magnetic field advection versus diffusion by the finite re-
sistivity

Rm =
LV
η

, (1.12)

with magnetic diffusivity η. Combining both, kinetic and magnetic Reynolds numbers
yield another dimensionless number. The magnetic Prandtl number

Pm =
Rm
Re

=
ν

η
(1.13)

provides an indication about which microscopic process dominates the MHD flow (as-
suming diffusion is relevant in the first place). Finally, the plasma beta

βp =
2P
B2 (1.14)

denotes the ratio between thermal and magnetic pressure.

1.2.3 Turbulence in astrophysics
Turbulence plays an important role in many astrophysical processes and on many different
scales. Even when microphysical proceses are excluded, phenomena on scales ranging
over several orders or magnitudes, e.g. from stellar scales to galaxy cluster scales, are
influenced or dominated by turbulent processes.

Turbulence in stars One example in relatively close proximity to Earth is the convec-
tion zone of the Sun (Canuto and Christensen-Dalsgaard 1998, Miesch 2005). All stars
with masses of ∼ 1M� are thought to consist of a core, which is surrounded by a radiative
and a convection zone. The names stem from the dominant process that transport the en-
ergy released from fusion in the core to the outside, i.e. radiative transfer in the radiation
zone and convective transport in the convection zone. The largest convection cells in the
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1 Introduction

Sun have characteristic sizes of L ∼ 200Mm with velocities V ∼ 100m/s, and the asso-
ciated viscosity is estimated to be ν ∼ 1cm2/s. Thus, the Reynolds number is Re ∼ 1014

indicating a highly turbulent flow.
Moreover, most of the material in the convection zone is a fully ionized hydrogen

plasma, which is, in turn, susceptible to magnetic fields. The magnetic Reynolds number
is also very large Rm ∼ 109 (given magnetic diffusivities of η ∼ 105cm2/s) suggesting a
tangled magnetic field driven by the turbulent velocity field.

In addition to this, the flow velocity approaches the speed of sound in the near surface
layers of the convection zone. Hence, compressibility effects are getting important. In
particular, the turbulent hydrodynamic pressure is thought to contribute a substantial frac-
tion to the total pressure. However, as recently shown by Brandenburg et al. (2011), the
presence of turbulent magnetic fields (at high Reynolds numbers) can effectively reduce
the total turbulent pressure again. This negative effective magnetic pressure instability
(NEMPI) is currently discussed as driver for active regions atop the convection zone.

One of the most pronounced features in observations of the Sun is, for instance, the
characteristic granulation pattern due to the dynamics in the turbulent convection zone.
Furthermore, the magnetic field of the Sun is thought to be generated at the bottom of
the convection zone. Thus, in order to understand the global magnetic field dynamics
of the Sun, e.g. the 22-year solar cycle, turbulence in the convection zone needs to be
understood.

Turbulence in the interstellar medium (ISM) The ISM is a very dynamic environment
due to being subject to self-gravity, compressibility, thermal processes, magnetic fields,
and turbulence (Vázquez-Semadeni 2015, Falgarone et al. 2015, Klessen and Glover
2016). Altogether the ISM combines . 1% of the total mass in the Milky Way and
consists of multiple phases. The latter are typically separated into molecular clouds (tem-
peratures of O(10K)), a cold (50-100K) and warm (6000-10000K) neutral component,
and a warm (∼ 8000K) and hot (∼ 106K) ionized component. While the characteristic
velocities in the ionized components are sub- to transonic, observations of the neutral
components and molecular clouds reveal supersonic motions.

Molecular clouds are often of special interest given that they are the regions where
star formation takes place. With velocity dispersions of σ ∼ 1km/s at length scales of
1pc and dynamic viscosities ν ∼ 1016cm2/s their kinetic Reynolds number is Re ∼ 108.
Thus, molecular clouds are highly turbulent with sonic Mach numbers & 10Ms indicating
strong compressibility. In addition, the observed magnetic fields strengths at these length
scales are ∼ 10−5G yielding super-Alfvénic velocities.

In the past, coherent magnetic fields were thought to provide sufficient support against
the collapse of the gravitationally unstable molecular clouds (Shu et al. 1987). However,
more recently, this picture changed to a more dynamic one. For instance, Federrath (2015)
shows that (close to) realistic star formation rates can be reproduced if and only if com-
pressible turbulence, magnetic fields and stellar feedback are considered simultaneously.
The rates are well below what is theoretically expected from a purely gravitational col-
lapse. Hence, a correct treatment of compressible, magnetized turbulence is important.

Turbulence in clusters of galaxies Galaxy clusters are the largest (several Mpc), most
massive gravitationally bound objects known, with typical masses of 1014 − 1015M�
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1.3 Numerical methods

(Brunetti and Jones 2015, Brüggen and Vazza 2015). According to the standard model,
the vast majority of their total mass is dark matter. The second largest contribution (and
the dominant baryonic one) with ∼ 10% of the total mass is the intracluster medium
(ICM). With temperatures of 107 − 108K and number densities of n ∼ 10−1 − 10−4cm−3,
the ICM is a weakly collisional, hot, dilute plasma with βp � 1.

Again, turbulence and magnetic fields have been observed (or suggested from obser-
vations) as in the previous two examples. However, the regime is quite different. For
instance, the low collisionality (cf. long mean free path) allows for charged particles to
be significantly affected by the presence of (even weak) magnetic fields. As a result, the
overall flow can be susceptible to plasma (i.e. non-MHD) instabilities, and the flow is
subject to anisotropic processes such as thermal conduction, which is suppressed in the
direction perpendicular to the magnetic field. Moreover, the total (kinetic and magnetic)
turbulent pressure contributes ∼ 10% to the total thermal pressure.

Nevertheless, the turbulent magnetic field in cluster cores with a characteristic length-
scale of ∼ 10kpc and strength of a few µG is dynamically unimportant on larger scales.
This field strength translates to super-Alfénic (Ma ∼ 5 − 10) motion in the core, while the
characteristic flow velocities are generally subsonic (Ms ∼ 0.25 − 0.6). Still, supersonic
shocks (Ms ∼ 2 − 3) are observed, which are thought to be driven from cluster mergers.
Thus, as an approximation the ICM has been described by hydrodynamic turbulence with
mixed solenoidal and compressive modes in the past.

More recently, Egan et al. (2016) analyzed several cosmological MHD simulations of
galaxy clusters with respect to statistical properties of turbulence and magnetic fields. On
the one hand, they find that the ICM as a whole can be characterized by isotropic, mag-
netized turbulence. On the other hand, there is no global trend with respect to anisotropy
of the magnetic field in the cluster sample. For this reason, a single global model is in-
sufficient and a more local treatment of anisotropies is required. In addition, magnetic
field amplification by the small-scale dynamo, which is physically expected (Subrama-
nian et al. 2006), and the magnetic field autocorrelation length, which is naturally linked
to the process, are limited by resolution. Thus, a correct (physical) treatment of local
and small-scale processes is important — especially as galaxy clusters are used to deter-
mine cosmological parameters, and serve as a testbed of plasma physics in an extreme
environment.

1.3 Numerical methods

1.3.1 Overview

After the presentation of the governing equations in analytical form in the previous sec-
tion 1.1, the necessary steps to solve these with the help of a computer are given here.
The field is generally referred to as computational fluid dynamics (CFD). While there is
a wealth of methods available with certain advantages and disadvantages each, here, only
a brief overview of the methods is given with more details on methods common in com-
pressible (magneto-)hydrodynamics. For more information see the general textbooks of
Ferziger and Perić (2002) or the more in-depth books on hyperbolic conservation laws by
Toro (2009) and LeVeque (2002).
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The first step in any method is the discretization of the differential equations. On the
one hand, space needs to be discretized. In general, one differentiates between structured
and unstructured grids. For structured grids the spatial topology is fixed. Each discrete
point in space has fixed neighbours in space and this structure does not evolve in time.
This eases the implementation as discrete stencils (and the underlying coordinate system)
need to be defined only once and can then be used throughout the simulations, which is
also one of the main disadvantages of this approach. Due to the fixed layout, a dynamic
in the sense of temporally evolving spatial resolution can only be achieved by introducing
additional (more complex) methods such as adaptive mesh refinement (Berger and Colella
1989).

On the other hand, the continuous differential operators need to be replaced by discrete
approximations. Again, several different approaches are common in literature.

Finite differences FD methods are traditionally used due to their simplicity, both with
respect to construction and implementation. Flow quantities are discretized on the respec-
tive grid points. The discretized differential operators can easily be derived by e.g. Taylor
expansion and ultimately only depend on a limited number of adjacent points. The main
disadvantages of this method are that it provides incorrect jump conditions for shocks and
that it is not conservative. The latter is generally unfavorable for a conservative system
such as periodic boxes governed by the (magneto-)hydrodynamic equations, which are
commonly used in astrophysics or turbulence research.

Finite volume FV methods follow a different approach to alleviate this problem. The
general idea is to recast the differential equations into conservative form and calculate
the fluxes through boundary surfaces of a control volume. Hence, the method is con-
servative by construction. However, another problem is introduced by this approach in
its basic formulation. Given that fluid quantities are not defined at individual grid points
any more, but by the average volume density within a control volume, their spatial dis-
tribution within the cells needs to reconstructed first in order to determine the interface
states. Here, spurious oscillations can be introduced to the simulation violating, for ex-
ample, monotonicity, if no special care is taken. Godunov (1959) realized this deficiency
and proved that linear, monotonicity preserving schemes can only achieve first order ac-
curacy. Based on this reasoning higher-order, nonlinear methods have been developed
afterwards, which are conservative and capable of properly handling shocks. For this rea-
son, they are commonly used for compressible turbulence simulations and more details
about these methods are given in the following subsection.

For completeness, three other approaches in CFD should be mentioned, which are
fundamentally different in certain aspects from the previously described methods. They
are much less often used in systems dominated by highly compressible dynamics for
different reasons.

Spectral methods These methods (Canuto et al. 1988) have been applied with great
success in the regime of incompressible turbulence where the solutions are smooth, e.g. a
superposition of solenoidal motion. This smoothness allows for the easy transformation
of the governing equations to spectral space (and back), where differentiation reduces to
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simple multiplication. This corresponds to the evolution of a global solution rather than
the local (in physical space) solution at discrete points (or over discrete volumes). How-
ever, this global aspect also limits this method to simple geometries (such as a periodic
equidistant grid) in addition to requiring smooth solutions.

Finite element FE methods can be seen as a link between spectral and finite volume
methods. The idea of discretizing space in volumetric flow elements is borrowed from
the latter approach. However, each element is approximated by a local polynomial and
weighted with a specific function, which can be understood as a spectral method with
local basis functions. The overall solution is then evolved by minimizing the weight of
the specific functions. While this approach is very flexible, e.g. with respect to geometry,
other aspects are less straightforward. However, the extension to compressible, discon-
tinuous flows is a rather recent area of research and their broader application to complex
flows as typically found in astrophysics is less developed.

Smoothed particle hydrodynamics Contrary to the previously described methods SPH
is completely meshfree and the equations are not solved based on their Eulerian form, but
from a Lagrangian point of view. Thus, fluid quantities such as density are not evolved
within an external frame of reference, but the fluid itself is represented by individual fluid
parcels that evolve freely with the flow. The evolution of and interaction between parti-
cles are then calculated by means of a smoothing function or kernel which spreads the
fluid quantities in space. While the basic concept and implementation is straightforward
and has the advantage of being locally adaptive with respect to the spatial resolution by
construction, its accuracy is highly dependent on the smoothing kernel. The latter is also
responsible for less frequent use of SPH in supersonic, shock-dominated turbulent flows
because (at least in the original formulation) discontinuities and small-scale dynamics are
artificially smeared out below the characteristic smoothing length of the kernel. Never-
theless, the method has successfully been applied to astrophysical problems in the past,
for example, for cosmological simulations with the well-known SPH code GADGET by
Springel (2005).

1.3.2 High-resolution methods

In the early days of CFD it was recognized that the most straightforward schemes, e.g. based
on finite central difference stencils, are unconditionally unstable. This led to the devel-
opment of so called upwind methods, which employ one-sided finite differences in the
upwind direction. While these methods are conditionally stable, they resulted in first-
order accurate schemes only. In addition to this, the local upwind direction needs to be
determined. This is straightforward in linear advection problems, but generally not pos-
sible in the nonlinear case. Moreover, several characteristics exists as solutions to the
hyperbolic system of equations (cf. method of characteristics). Along these characteris-
tics the hyperbolic system can be described by ordinary differential equations.

On this basis, Godunov (1959) introduced a nonlinear upwind finite volume method
(often simply referred to as Godunov method) that can be characterized by a three step
reconstruct-evolve-average (REA) algorithm.
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First, in the reconstruction step the spatial structure within a cell is reconstructed from
the volume averages in that specific cell and neighbouring ones by piecewise polynomials.
At first order the local average is taken constant everywhere in the cell. With increasing
order reconstruction can be done piecewise linear (PLM), piecewise parabolic (PPM), etc.
However, special care needs to be taken when performing this reconstruction so that no
new minima or maxima are introduced, which would result in nonphysical oscillations at
discontinuities. This procedure is referred to as slope limiting and many different slope
limiters with different properties exist in literature. As discussed later in the context of
implicit large eddy simulation (subsection 1.4.1) the combination of reconstruction and
slope limiting inherently controls the numerical dissipation of a scheme.

Second, the reconstructed states are evolved in time. The main idea of the Godunov
method is to evolve the solution along the individual characteristic and not as a whole.
For this reason, a Riemann problem is locally solved on all interfaces between cells in
order to determine the correct flux. While the Riemann problem can be solved exactly –
even though, through iterative methods only – most often approximate Riemann solvers
are used in this step. Different approximate Riemann solver are usually discriminated by
the amount and types of the characteristics that are followed. In hydrodynamics three
characteristics exist: a shock wave, a contact discontinuity and a rarefaction wave. One of
the most famous and widely distributed Riemann solvers is probably the Harten-Lax-van-
Leer (HLL) solver, which captures two waves. A more accurate solver is, for example
is HLLC ("C" for Contact), which captures one additional wave for a better resolution of
intermediate waves (Toro 2009) and is also also frequently used. In MHD, the additional
governing equations allow for additional characteristics corresponding to Alfvén waves,
and fast and slow magnetosonic waves. While the hydrodynamic Riemann solvers can
also be applied in MHD (missing of course depending on the problem more or less impor-
tant features), extensions specifically capturing MHD characteristics have been proposed
as well. These include, for example, HLLD ("D" for Discontinuities), which is designed
to capture fast shocks (Miyoshi and Kusano 2005).

The third and final step of the REA cycle is the spatial averaging over the intermediate
solution at the end of the timestep. However, this integration is not done explicitly, but
automatically accounted for by the total flux through all interfaces.

From these basic ingredients higher-resolution methods can be derived. Here, the
basic concept is to use a high-accuracy method (and thus a less numerically dissipative
one) in smooth regions of the flow and employ appropriate (potentially first order) upwind
methods at discontinuities. Ideally, these schemes are automatically locally adaptive and
thus referred to as shock-capturing schemes. A well-known class of these schemes are
total variation diminishing (TVD) schemes, whose main goal is that the total variation of
the numerical solution does not increase over time. A famous representative of this kind in
the Monotone Upstream–centred Scheme for Conservation Laws (MUSCL) scheme that is
implemented in many codes, e.g. Enzo (Bryan et al. 2014) and Flash (Fryxell et al. 2000).
In general, these schemes are nowadays quite mature, but cannot be extended to higher
orders as a whole in straightforward fashion. Alternative approaches, e.g. essentially non-
oscillatory (ENO) and weighted ENO (WENO) gained more and more attention recently
(Balsara et al. 2009).

Finally, in the context of MHD another constraint further complicates the develop-
ment of numerical schemes: ∇ · B = 0. In order to not have any magnetic monopoles, this
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constraint is ideally fulfilled to machine precision. Two mechanism are frequently em-
ployed. On the one hand, the constrained transport Evans and Hawley (1988) scheme is
capable of keeping ∇ · B = 0 exactly (to machine precision) by evolving not the magnetic
field, but a potential (e.g. the electric) field. This potential field is typically defined on the
edges of interfaces so that the magnetic field can be calculated readily by Stokes theorem.
On the other hand, Dedner et al. (2002) introduced a method of hyperbolic divergence
cleaning. In this scheme, the magnetic field is evolved along with the other fluid quanti-
ties potentially allowing for ∇·B , 0 at the end of a timestep. Figuratively, these ∇·B , 0
are collected and evolved by an additional equation corresponding to a divergence wave.
Eventually, this divergence wave is then advecting any ∇ · B , 0 away from its source
while simultaneously damping it down. Moreover, the hyperbolicity and conservational
properties of the system are retained. Tests by Wang and Abel (2009) have shown that the
∇ · B , 0 present throughout the simulations are dynamically not important.

1.4 Large eddy simulations

One of the main challenges in computational (magneto-)hydrodynamics is the high non-
linearity of the basic equations. Simulations with physically realistic parameters - espe-
cially in the realm of astrophysics - are rarely possible. For example, even in the simplest
case of incompressible hydrodynamics, the resources required to resolve a 3-dimensional
simulation scale with Re3 (cf. equation (1.7) for three spatial and one temporal dimension
(Davidson 2004)) Due to the many different scales involved in astrophysics, Reynolds
numbers are easily getting very large, for example reaching Re ∼ 1014 in the solar con-
vection zone as illustrated in subsection 1.2.3. Thus, direct numerical simulation (DNS)
that resolve all scales are often not possible.

While there are different approaches to solve this problem, e.g. by more or less mo-
tivated simplifications of the equations or the physical system of interest, one particular
approach has been successfully used for decades: large eddy simulations (LES). The
main idea of LES is based on the observation that in many systems most of the dynamics-
governing energy is contained on the largest scales (cf. for example the turbulence energy
spectrum Figure 1.1). These largest scales vary spatially - by construction - the least
and usually develop on the largest timescales T ∝ L. For this reason, they are also the
computationally least expensive ones in the system.

The general idea of large eddy simulation is simple: the computationally cheap large
and intermediate scales are simulated directly, whereas the smallest scales are modeled.
From a practical point of view, these small scales are associated with processes occuring
on scales that are typically below the scale of the discrete grid. Thus, the corresponding
models are referred to as subgrid-scale (SGS) models. For a general introduction in the
realm of hydrodynamics see Sagaut (2006) (incompressible), Garnier et al. (2009) (com-
pressible) or Schmidt (2015) (astrophysical). For MHD there are recent (to the author’s
knowledge, the first) reviews by Chernyshov et al. (2014) and Miesch et al. (2015).

Formally, the separation of scales is achieved by the application of a low-pass filter
to the dynamical equations, i.e. the convolution of a quantity φ with a filter kernel G:
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φ = G ∗ φ. In the case of the ideal MHD equations (1.3) the filtered equations read

∂ρ

∂t
+ ∇ ·

(
ρũ

)
= 0, (1.15a)

∂ρũ
∂t

+ ∇ ·
(
ρũ ⊗ ũ − B ⊗ B

)
+ ∇

P +
B

2

2

 = −∇ · τ, (1.15b)

∂B
∂t
− ∇ ×

(
ũ × B

)
= ∇ × E. (1.15c)

for a static, homogeneous and isotropic filter under periodic boundary conditions. A more
detailed treatment of the requirements and properties of different (discrete) filters follows
in subsection 1.4.3. Normal filtered quantities, such as the filtered density ρ, magnetic
field B and pressure P, are denoted by an overbar, 2. The tilde, 2̃, indicates mass-
weighted filtering, e.g. for the velocity field ũ = ρu/ρ. It is also referred to as Favre
(1983) filtering who first introduced it to LES for two reasons. First, in the context of
LES, filtered individual quantities are considered resolved and thus readily available in
the simulation. However, the finite volume methods usually employed in the supersonic
regime do not evolve the velocity field directly, but evolve the conserved momentum field,
which effectively corresponds to an implicit mass-weighting. Second, by this change of
variables, no additional terms, e.g. in the mass-conservation equation (1.15a), enter the
equations.

The overall form of the filtered equations (1.15) is identical to the unfiltered ones,
but for two new terms: the SGS stress τ in the momentum equation, and the turbulent
electromotive force (EMF) E in the induction equation. Analytically, they are expressed
as

τi j = τu
i j − τ

b
i j +

(
B2 − B

2
) δi j

2
and (1.16)

E = u × B − ũ × B , (1.17)

where the stress tensor is further decomposed into the turbulent (or SGS) Reynolds stress
τu

i j and the SGS Maxwell stress τb
i j with

τu
i j ≡ ρ

(
ũiu j − ũĩu j

)
and τb

i j ≡
(
BiB j − Bi B j

)
. (1.18)

However, these new terms require closure as only filtered individual quantities are thought
to be known, but not filtered mixed quantities such as ũiu j, BiB j, and u × B. Different
closure strategies are discussed in the following two subsections.

In general, these terms incorporate the dynamics across and below the filter (or grid)
scale. This is an important distinction to the Reynolds-averaged Navier-Stokes (RANS)
formalism, where interactions between resolved and unresolved scales are absent in the
the turbulent stresses. The stresses in RANS incorporate dynamics below the filter scale
only.

Finally, there is another important point in the compressible MHD LES formalism,
which clearly separates it from the incompressible HD LES formalism: the subgrid-scale
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energies. Their definitions can readily be derived from the filtered total energy

E =
1
2
ρũ2 +

1
2

B
2︸         ︷︷         ︸

(resolved)

+
1
2
ρ
(
ũ2 − ũ2

)
+

1
2

(
B2 − B

2
)

︸                             ︷︷                             ︸
=Eu

sgs+Eb
sgs≡Esgs(unresolved)

, (1.19)

which can be decomposed into its resolved and the unresolved, SGS parts, Eu
sgs and Eb

sgs.
In hydrodynamics, there is only kinetic SGS energy and it is equivalent to the turbulent
pressure. While in the incompressible regime it is usually deemed to be small and either
neglected or absorbed into a "modified" pressure, its contribution are not negligible any
more in the compressible regime Schmidt and Federrath (2011). Moreover, in the realm
of MHD there is not only kinetic SGS energy, but also magnetic SGS energy (proportional
to the turbulent magnetic pressure). Comparing equations (1.19) and (1.18) it is clearly
visibly that the SGS energies are given by the traces of the SGS stresses by virtue of the
identity

τ2
kk = 2E2

sgs (1.20)

This is later important for so-called zero-equations closures, i.e. closures that do not re-
quire additional dynamical equations, in particular, for the SGS energies. General closure
strategies are now presented in the next two subsections.

1.4.1 Implicit LES
The main idea behind implicit large eddy simulations (ILES) is that the SGS terms (τ
and E) are not explicitly closed by an (external) model, but rather by the numerical dis-
cretization itself. In other words, the grid provides the filtering operation 2. For a detailed
presentation see the collection by Grinstein et al. (2007) and in particular the chapter 5 by
Margolin and Rider (2007) therein, which is followed here.

They use the modified equation analysis (MEA), which was originally developed to
analyze the stability of numerical algorithms, to asses the nature of the truncation error in
finite-volume schemes. Based on a Taylor series expansion about the grid spacing ∆x of
the discrete terms, i.e. the governing equations already in discretized form, the modified
equation of a FV scheme can be written as

∂U
∂t

+ ∇ · F (U) = ∇ · T (U,∆x,∆t) , (1.21)

with a vector of conserved quantities U, a general flux function F and the truncation
error written in the form of the divergence of an SGS term T . When applied to high-
resolution FV method with cell-centered quantities, this term can further be separated into
a term attributed to inertial transport Thyp, and a dissipative term Tdiss, which effectively
suppresses oscillations.

If a piecewise constant reconstruction is used (cf. subsection 1.3.2), MEA shows that
the overall algorithm is only first order accurate with the dissipative error ∇ · Tdiss ∼ ∆x

dominating over the inertial error ∇ · Thyp ∼ ∆2
x. This does not yield a high-resolution

method. A high-resolution method can be constructed from higher-order reconstruction
and nonlinear slope limiting to prevent nonphysical oscillations. In general, a slope limiter
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chooses (or interpolates) between the left and right hand side differences of the (volume)
averaged quantities, i.e. it is a function of the form ϕ

(
U j − U j−1,U j+1 − U j

)
. For example,

applying MEA to a scheme consisting of piecewise linear reconstruction with a minmod
(taking smallest absolute value) slope limiter

ϕmm(a, b) =

minmod (a, b) , if ab > 0,
0, if ab ≤ 0,

(1.22)

results in the following implicit SGS contributions at leading order:

Thyp = −∆2
x

(
1

24
∂2F (∂xU)2

∂U2 +
1

12
∂F (∂xxU)

∂U

)
and Tdiss =

∆2
x

4
|∂U F (∂xU∂xxU)|

∂xU
.

(1.23)

Thus, the scheme is formally of second order. However, dissipation and inertial transport
errors are of the same order, which is unfavorable in ILES with respect to establishing a
distinct inertial range.

A simple modification can resolve this deficiency. Performing the analysis again with
a double minmod limiter

ϕdmm(a, b) =

minmod
(

a+b
2 , 2a, 2b

)
, if ab > 0,

0, if ab ≤ 0,
(1.24)

gives a similar Thyp term, but the Tdiss term is now of O
(
∆3

x

)
at leading order

Tdiss =
∆3

x

8

∣∣∣∣∣∂F (∂xxxU)
∂U

∣∣∣∣∣ . (1.25)

With this limiter it is expected that the inertial range is less affected by numerical dissipa-
tion and should thus be more pronounced (or extended).

This analysis of the implicit SGS contributions exemplifies the crucial aspect of the
numerical scheme (and the slope limiter in particular) with respect to SGS model prop-
erties and the overall quality of the solution. Moreover, the different error terms can be
related to different (explicit) SGS model, e.g. regarding their intrinsic properties, as shown
in the following subsection.

1.4.2 Explicit LES
In contrast to ILES, which can be understood as discretizing the primary equations first
and then interpreting the result as an implicit filter operation, explicit large eddy simula-
tion can be seen as applying the filter operation first and then discretizing the resulting
equations — including the new SGS terms or rather their closures.

In general, there are two different approaches to close the SGS stress tensor τ (1.16)
and electromotive force E (1.17): functional and structural modeling. In the following,
the general ideas (Sagaut 2006, Garnier et al. 2009) behind the the closures used in this
thesis are introduced and an overview of the most important features can be found in
table 1.1.
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Table 1.1: Overview of the different SGS model families used in the thesis.

Eddy-viscositya Scale-similaritya Nonlinear

Closure type Functional Structural Structural

SGS Reynolds stress −2ρνuS̃∗i j

︸︸
ρ

(︸ ︸
ũiũ j −

︸︸̃
ui

︸︸̃
u j

)
1
12∆2ρũi,kũ j,k

SGS Maxwell stress −2νbMi j

︸ ︸
BiB j −

︸︸
Bi

︸︸
B j

1
12∆2Bi,kB j,k

Electromotive force −ηtJ
︸ ︸
ũ × B−

︸︸̃
u ×

︸︸
B

1
12∆2εi jk

[̃
u j,lBk,l

− (ln ρ),l ũ j,lBk
]

Primary motivation Turbulence is of
dissipative nature

Turbulence
dynamics is
self-similar

Approximate
deconvolution of
the filter kernel

a The SGS stress closures are traceless and need to be supplemented by an additional closure for the
kinetic and magnetic SGS energies.

a The breve
︸︸2 indicates a second filter operation with a characteristic filter width that is larger the the

first one.

Functional modeling The oldest approach to modeling aims at reproducing a certain
effect on the resolved scales from the unresolved or non-represented scales. The most
famous representative of this approach is the eddy-viscosity model (also Smagorinsky
(1963) model, who introduced the concept to LES). In analogy to molecular viscosity, a
similar term with a turbulent eddy-viscosity νk proportional to the kinetic rate-of-strain
tensor Si j = (ui, j + u j,i)/2 is introduced as follows.

τu∗
i j ∝ −2ρνuS̃∗i j. (1.26)

The superscript star denotes the traceless part of a tensor, i.e. 2∗i j = 2i j − δi j2kk/3. Thus,
an additional closure for the trace (cf. the kinetic SGS energy) is required if turbulent
pressure should explicitly be accounted for. It is based on the assumption that the main
function of turbulence is energy dissipation. This is straightforwardly exemplified given
that the turbulent energy flux ΣE = τi jS̃i j, which encodes the transfer of energy between
resolved and unresolved scales, is of definite sign.

Several scalings have been proposed to determine the local strength of the turbulent
viscosity νk based on different physical considerations. For instance, Vreman et al. (1994)
use the turbulent energy as a proxy whereas Müller and Carati (2002) use the turbulent
cross-helicity. The latter is motivated by including the interaction between velocity and
magnetic field in the case of MHD turbulence. In general, the concept of functional
closures has already been transferred to MHD earlier. Yoshizawa (1990), for example,
introduces - in analogy to the eddy-viscosity for the SGS Reynolds stress - an eddy-
diffusivity νb for the SGS Maxwell stress, which is proportional to the magnetic rate-of-
strain tensorMi j = (Bi, j + B j,i)/2 as shown in table 1.1. Moreover, he proposes a closure
for the electromotive force that consists of three components to incorporate a) unresolved
helicity effects, b) turbulent resistivity and c) dynamo action due SGS cross-helicity. The
full model has been further studied in more detail by Miki and Menon (2008) and Yokoi
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(2013), whereas the turbulent resistivity ηt alone, which is proportional to the resolved
current J = ∇ × B in the EMF E ∝ ηt J is used much more frequently. Similar to the
eddy-viscosity, this resistivity (sometimes also referred to as anomalous resistivity) also
allows for energy transfer only from the resolved to the unresolved scales by costruction
(assuming that the resistivity is positive definite).

Structural modeling The main idea behind structural modeling is quite different from
functional modeling. Here, the intrinsic properties of the SGS terms are modeled based
on the assumption that the appropriate (manifold) functions follow automatically. Several
models have originally been developed in hydrodynamics and also extended to MHD such
as the scale-similarity model and deconvolution based models.

The scale-similarity model (here only the hydrodynamic closure)

τu
i j ∝

︸︸
ρ

(︸ ︸
ũiũ j −

︸︸̃
ui

︸︸̃
u j

)
, (1.27)

uses a second filter (also called test filter) with a characteristic width
︸︸
∆ larger than the

initial filter ∆. Bardina et al. (1980) observed that the scale-by-scale energy transfer is
self-similar and deduced (Liu et al. 1994) that this idea also translates to the overall struc-

ture, i.e. τ(
︸︸
∆ ,∆) ∼ τ=̂τ (∆,∆x). More precisely, the dynamics across the test filter scale︸︸

∆ down to the filter scale ∆ resemble the dynamics across the the filter scale ∆ down to
the (in this context) unknown dynamics at and below the grid-scale ∆x. Given the form
of the closure, the turbulent energy flux has no definite sign any more and energy transfer
is also possible from the unresolved to the resolved scales. This concept can straightfor-
wardly extended to the MHD case in order to close the SGS Maxwell stress and the EMF
as listed in table 1.1.

Deconvolution based models try to reconstruct the information lost in the initial filter-
ing, which is a convolution. Again, different approaches exist within this family, e.g. de-
convolution based on Taylor expansion of the transfer function. Yeo (1987) introduced
this nonlinear closure in hydrodynamics

τu
i j ∝

1
12

∆2ρũi,kũ j,k , (1.28)

which is related to the gradient-diffusion model (Leonard 1975, Clark et al. 1979) and
here extended to compressible MHD, see chapter 2 and 3 for the derivation and table 1.1
for the result. The indices 2i, j indicate the j-th partial derivative of i-th component and
summation of repeated indices applies. The major advantage of this kind of model is that
its derivation does not rely on a particular feature, e.g. dissipation or self-similarity, of
turbulence. Again, the form of the closure allows for a turbulent energy flux both forward
from resolved to unresolved scales and inverse from unresolved to resolved ones. Another
notable example in the family of deconvolution models is the approximate deconvolution
approach by Stolz and Adams (1999), in which the deconvolution operation is directly
applied to the primitive (filtered) quantities.

Finally, there exists a whole zoo of models which are constructed from the different
approaches and with different regularization procedures to control unwanted behavior of
a model. The most famous examples are mixed models and dynamic models.
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Mixed models (Zang et al. 1993) are typically constructed from a structural model
that is combined with a purely dissipative model, e.g. a scale-similarity model comple-
mented with an eddy-viscosity term. The motivation for this kind of regularization is that
structural models allow for a backscatter of energy from the unresolved scales, which (in
certain cases) results in unstable simulations (Vreman et al. 1997). This backscatter is
then effectively suppressed by the additional dissipative term of the model.

Dynamic models (Germano et al. 1991, Lilly 1992) resort to a dynamic calculation
of the model coefficient, which has not been mentioned yet. Basically all all models rely
on an additional (ideally dimensionless) model coefficient. There has been a lot of work
to determine coefficient values both theoretically and experimentally (or numerically).
However, the coefficient value is virtually never universal. It has to be tuned so that the
model is applicable in different situations. The dynamic procedure tries to circumvent this
general deficiency. A second filter is applied to the governing equations and the resulting
two new terms (in each equation) are statistically related to each other. This relation
then allows for the determination of the coefficient, which is automatically adapted to the
current state of the flow. This procedure has been proven to be quite successful in flows
with boundary conditions, e.g. wall-bounded flows, where homogeneity is not provided
any more.

1.4.3 Explicit discrete filters
In the case of explicit large eddy simulations, all SGS models are calculated based on
resolved (filtered) quantities — even if a second additional filter is used. Usually, the
computational grid is thought to be the implicit filter (even for explicit LES) and quan-
tities at the grid-scale are considered to be resolved. However, this assumption strongly
relies on the numerical method used. While this might be a good approximation within
spectral schemes due to their high accuracy, it is a questionable approach in very dissi-
pative schemes such as shock-capturing finite volume schemes (Garnier et al. 1999). In
addition to this, the effective width and nature of the grid filter is unknown, i.e. the in-
tegrated behavior of discretization and numerical solvers does not naturally correspond,
for example, to a box filter. For this reason, explicit filters can be used with filter widths
larger than the grid-spacing so that their behavior dominates over the grid filter.

In general, a one dimensional, time independent filter of a function φ is defined by

φ (x) =

∫ +∞

−∞

G (x − y) φ (y) dy (1.29)

with convolution kernel G. Similarly, a discrete filter on a uniform mesh with grid-spacing
∆x is defined by

φi = Gφi =

N∑
n=−M

anφi+n (1.30)

with filter weights an that are supported by a M + N + 1 point stencil. Without loss of
generality, the discussion is restricted to symmetric filters (i.e. M = N and a−n = an) as
astrophysical flows are typically unbounded. For a discussion on asymmetric filters in
complex geometries, see e.g. Vasilyev et al. (1998).
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Moreover, in order to construct a physically meaningful filter, preservation of con-
stants and positiveness of the filter is required. The former leads to the following expres-
sion

1 =

N∑
n=−N

an = a0 + 2
N∑

n=1

an . (1.31)

Vreman et al. (1994) showed that for a positive filter

an > 0 (1.32)

is necessary and sufficient to ensure the realizability of the SGS stress tensor and thus
non-negative SGS energies. Both properties are fulfilled by the box and Gaussian filter,
but not by the sharp cutoff filter.

Those three filters are the most commonly used filters in LES (Sagaut 2006). Their
analytical kernels and transfer functions for a filter width ∆ are in case of

• the box or top-hat filter

G (x − y) =

 1
∆
, if |x − y| ≤ ∆

2

0, otherwise
and Ĝ (k) =

sin k∆/2
k∆/2

, (1.33)

• the Gaussian filter

G (x − y) =

(
γ

π∆2

)1/2
exp

(
−γ |x − y|2

∆2

)
and Ĝ (k) = exp

(
−∆2k2

4γ

)
, (1.34)

• the spectral or sharp cutoff filter

G (x − y) =
sin (π (x − y) /∆)
π (x − y) /∆

and Ĝ (k) =

1, if |k| ≤ π
∆

0, otherwise
. (1.35)

While the spectral filter is often applied in spectral schemes (for incompressible hydro-
dynamics) or theoretical analyses, it is less useful in the compressible regime. In addition
to the already mentioned potential violation of realizability, it also allows for negative
densities. Consequently, box and Gaussian filters are typically used in finite volume sim-
ulations of compressible (M)HD.

However, these filters in their analytical form cannot be readily applied in the simula-
tion and need to be discretized first. One possibility is the approximation by polynomial
truncation. Following Sagaut (2006), the discrete filter is constructed by matching the
discrete filtering operator with the associated continuous differential operator up to arbi-
trary order. For this reason, both representations are approximated by a Taylor expansion.
The expansion of the continuous operator (1.29) results in the following differential form

φ (x) = φ (x) +

∞∑
l=1

(−1)l α(l)∆
l

l!
∂lφ (x)
∂xl with α(l) =

1

∆
l

∫ +∞

−∞

zlG(z)dz . (1.36)
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Table 1.2: The first four non-zero moments of the box and Gaussian filter with filter width
∆

α(l) l = 0 l = 2 l = 4 l = 6

box 1 1/12 1/80 1/448
Gaussian 1 1/12 1/48 1/576

α(l) is the moment of order l of the convolution kernel and ∆ the characteristic filter width.
The first four non-zero moments of the box and Gaussian filter are given in table 1.2.

Substituting φi+n in the discrete filter (1.30) by the the Taylor expansion of φ around
point i leads to the following expression:

φi =

1 +

∞∑
l=1

a∗l ∆
l
x

l!
∂l

∂xl

 φi with a∗l =

N∑
n=−N

annl . (1.37)

The discrete filter can now be constructed by matching the coefficients of (1.36) and
(1.37) up to desirable order l resulting in an unclosed system of equations

ε2l′α(2l′) = 2
N∑

n=1

ann2l′ for each l′ = 1, 2, . . . , l/2 . (1.38)

Odd moments do not enter the system for symmetric filters. The system is under-determined,
in particular, by the ratio of filter width to grid spacing ε = ∆/∆x.

Together with the preservation of constants property (1.31), the resulting system can
be solved for the coefficients by symbolic computation, e.g. as shown in listing A.1 in the
appendix. The coefficients for the discrete box filter of 2nd, 4th, and 6th order, which are
later used in chapter 5, are

l = 2: a0 = −
1

12
ε2 + 1, a1 =

1
24
ε2 , (1.39)

l = 4: a0 =
1

320
ε4 −

5
48
ε2 + 1, a1 = −

1
480

ε4 +
1

18
ε2, a2 =

1
1920

ε4 −
1

288
ε2 , (1.40)

l = 6: a0 = −
1

16128
ε6 +

7
1440

ε4 −
49

432
ε2 + 1, a1 =

1
21504

ε6 −
13

3840
ε4 +

1
16
ε2,

a2 = −
1

53760
ε6 +

1
960

ε4 −
1

160
ε2, a3 =

1
322560

ε6 −
1

11520
ε4 +

1
2160

ε2 .

(1.41)

Choosing some value for ε readily closes the system and uniquely determines all co-
efficients. However, the choice is not entirely free. Some values of ε result in coefficients
violating the positiveness condition (1.32). Moreover, the filter width width should not be
chosen larger than the available stencil or smaller than ∆x. One alternative approach to
choose some ε is to make use of this degree of freedom to add additional desirable prop-
erties to the filter. Several approaches exists in literature usually referred to as additional
filter constraints.
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Case Ia: Ĝ (π/∆x) = 0, i.e. the transfer function of the filter is null at the grid cutoff, has
been suggested by Vasilyev et al. (1998). The discrete filter kernel (1.30) can be expressed
by a sum of Dirac δ-functions. Thus, the transfer function is given by

Ĝ (k) =

N∑
n=−M

ane jkn∆x , with j2 = −1 . (1.42)

For a symmetric filter the complex transfer function reduces to the following real transfer
function

Ĝ (k) = a0 + 2
N∑

n=1

an cos kn∆x , (1.43)

This leads to a modification of amplitudes only and no phase shifts are introduced. Even-
tually, the additional equation for the coefficient values is

Ĝ (π/∆x) = a0 + 2
N∑

n=1

(−1)n an = 0 . (1.44)

The coefficient values of the box filter of order 2, 4 and 6 are listed in table A.1 where
combinations resulting in a non-positive filter have been neglected.

Case Ib: Ĝdis (π/∆x) = Ĝana (π/∆x), i.e. matching transfer function values of the discrete
and the analytic filter at grid cutoff as suggested by Schmidt (2004). For the box filter, the
additional constraint is

2 sin (επ/2)
επ

= a0 + 2
N∑

n=1

(−1)nan . (1.45)

Again, several solutions are possible as shown in table A.1.

Case Ic: Ĝ
(
π/∆

)
= 1/2, i.e. the “filter width is taken to be proportional to the inverse

wavenumber where the filter transfer function falls to 0.5” Lund (1997). This has also
been used by Vasilyev et al. (1998) to constrain their filters by enforcing

1
2

= a0 + 2
N∑

n=1

an cos
(
πn
ε

)
. (1.46)

However, for the box filter, no solutions exists for 3-, 5- and 7-point stencils.
In contrast to matching coefficients up to arbitrary order for one additional constraint

at a specific scale, another approach yielding so called optimal filters has been proposed
by Sagaut and Grohens (1999), Vasilyev et al. (1998). Here, the overall residual between
analytic and discrete filter given by∫ π/2

0

(
Ĝ (k) − Ĝd (k)

)2
dk (1.47)

is minimized. Again, different realizations are possible depending on the range of inte-
gration.
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1.4 Large eddy simulations

Case IIa: Integration over [0, π/∆x] has been suggested by Vasilyev et al. (1998). For
a discrete box filter the functional to minimize is∫ π

0

sin (k′ε/2)
k′ε/2

− 2
N∑

n=1

(
an

(
cos

(
k′n

)
− 1

))
− 1

2

dk′ , (1.48)

where the constraint of preservation of constants (1.31) is already included. A sample
code for a 3-point stencil is given in listing A.2. In general, there exists multiple local
minima for a given number of supporting nodes. All solutions are shown in table A.1 and
the solution with the lowest residual is marked by a ’*’.

Case IIb: Integration over
[
0, π/∆̂

]
is used by Sagaut and Grohens (1999), i.e. they

integrate only wavenumbers below the filter width. Here, the functional is∫ π

0

sin (k′/2)
k′/2

− 2
N∑

n=1

(
an

(
cos

(
k′n/ε

)
− 1

))
− 1

2

dk′ . (1.49)

Again, the coefficients are given in table A.1.
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Figure 1.2: Comparison of discrete filter approximations to the analytical box filter for
different constraints and stencil sizes.

The resulting filters for all discretization approaches using 3-, 5- and 7-point stencils
are illustrated in figure 1.2. In general, the approaches that use the grid cutoff as addi-
tional constraint, i.e. case Ib in the polynomial truncation approach and case IIa for the
optimal filter approach, provide better approximations to the continuous filter than using
a filter width based constraint. Moreover, the differences between Ib and IIa are almost
negligible for the two smallest stencils. First for larger stencils (and larger filter widths)
the superiority of the optimal filter is distinguishable as shown in figure 1.2.

The final step towards an implementable discrete filter for LES is the extension to mul-
tiple dimensions. Generally, two straightforward approaches based on the construction by
one-dimensional filters are possible (Sagaut and Grohens 1999): either simultaneous ap-
plication in all dimensions or sequential application.

In the simultaneous case, the three-dimensional filter is constructed as

φi, j,k =

N∑
l=−N

al

(
φi+l, j,k + φi, j+l,k + φi, j,k+l

)
(1.50)
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for a (symmetric) 2N +1-point one-dimensional filter. Thus, the resulting filter has 6N +1
supporting points. The sequential application of this filter corresponds to the following
operation

φi, j,k =

N∑
l=−N

N∑
m=−N

N∑
n=−N

alamanφi+l, j+m,k+n . (1.51)

Here, the number of supporting points for the multi-dimensional stencil is greatly in-
creased to (2N + 1)3.

Sagaut and Grohens (1999) evaluated the differences between these two approaches
in combination with polynomial truncation based box filters and optimized box filters by
applying them to a von Karmann spectrum. They find that the error between the filtered
discrete spectrum and the analytic spectrum is greatly reduced when a) an optimized filter
is used and b) the multi-dimensional filter is constructed based on sequential application.
For this reason, these kind of filters are later used in the LES presented in chapter 5.

1.4.4 Verification and validation
One important aspect of large eddy simulations is the verification and validation of the
framework, no matter if it is the implicit scheme or an explicit subgrid-scale model. On
the one hand, verification refers to testing whether assumptions in the derivation are met
or, for example, how well an SGS model approximates the analytical solution in a given
situation. Given that the SGS models take no active part in these tests, they are considered
as an a priori analysis. On the other hand, validation refers to testing how the entire
framework performs in practice and is vernacularly identified with the term a posteriori.
Here, the integrated nature of e.g. numerical scheme and explicit SGS model is tested.
Both steps are necessary for successful LES.

In this thesis, both kind of tests are performed. Chapters 2 and 4 present a priori tests
of several SGS models, and chapter 5 demonstrates a posteriori validation of selected
models for decaying, supersonic MHD turbulence.

All tests have a comparison to some reference data or simulation in common. This
comparison is straightforward in a priori tests, where reference data, e.g. from experi-
ments or from high resolution (direct) numerical simulations, can easily be filtered. This
filtering results in no reduction of resolution, but in a separation of scales while simulta-
neously retaining information from the large and small scales. Having quantities on all
scales available allows for both the exact (analytical) calculation of subgrid-scale quanti-
ties and predicted values by models based on the large-scale quantities only. A compari-
son between exact and predicted value, for example, by means of a correlation coefficient,
can then be used to quantify and rate the performance of different SGS models.

The a posteriori evaluation works similar. However, there are some subtle differences
given that actual simulations with and without SGS models at different resolutions are
usually compared. The most common technique, see e.g. Müller and Carati (2002), is
to use a high-resolution reference simulation without an SGS model and apply a coarse-
graining procedure to the data. Coarse-graining corresponds to an effective reduction in
resolution, for example, when using volume averages over 23 cells, i.e. a non-moving box
filter with ∆ = 2∆x, in order to reduce the resolution by a factor of 2 in each direction.
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1.4 Large eddy simulations

Data at lower resolution can then directly be compared to results from explicit LES that
were run at a lower resolution from the beginning. This procedure has the advantages that
quantities, which have a strong resolution dependence such as derivatives, are calculated
on equal grounds.
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5123  at t=0T
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Figure 1.3: Initial compensated kinetic energy spectra of a turbulence-in-a-box simulation
for different resolutions. All spectra are analyzed at a resolution of 1283, i.e. coarse-
graining has been applied to the higher-resolution data. The spectra at t = 0T are identical
and derived from a reference simulation at 10243. The excess energy on the smallest
scales due to increased numerical dissipation at lower resolution after 0.2T of free decay
is indicated by the shaded ares.

Finally, going one step back, coarse-graining of high-resolution data is also used to
generate initial conditions for lower resolution simulations as e.g. in chapter 5 or in Krit-
suk et al. (2011). Here, special care needs to be taken as the procedure (especially in
shock-capturing finite volume schemes) leaves excess energy on the small scales. Fig-
ure 1.3 illustrates this excess energy due to increased numerical dissipation at lower res-
olutions. If the initial (t = 0) energy spectra would be used as initial conditions for lower
resolution LES with explicit SGS model, results would be difficult to interpret because
the interaction between model and nonphysical (for a given resolution) energy can hardly
be quantified. For this reason, the initial conditions are first evolved without model for
transient phase of t = 0.2T turnover times where the excess energy is allowed to relax to
a stationary state. Eventually, this enables a direct comparison of different SGS models
to a reference run all with (almost) identical initial conditions. The alternative approach
used e.g. by Vreman et al. (1992) is to generate an artificial energy spectrum that is fully
resolved at the lowest resolution as initial condition in all resolutions.
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2 Paper I: Nonlinear closures for scale
separation in supersonic
magnetohydrodynamic turbulence

The paper originally appeared as Philipp Grete, Dimitar G Vlaykov, Wolfram Schmidt,
Dominik R G Schleicher, and Christoph Federrath. Nonlinear closures for scale sepa-
ration in supersonic magnetohydrodynamic turbulence. New Journal of Physics, 17(2):
023070, 2015. doi:10.1088/1367-2630/17/2/023070.

The research was jointly designed and planned by all authors. PG originally proposed
the new closures. The text and the analysis framework was jointly written and developed
by DGV and PG in constant exchange with the coauthors. PG adapted the original imple-
mention of the forcing mechanism by Schmidt et al. (2009) to the latest Enzo version and
took care of the upstream integration. CF contributed the Flash simulations and the Enzo
simulations were run by PG.
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Abstract
Turbulence in compressible plasma plays a key role inmany areas of astrophysics and engineering.
The extreme plasma parameters in these environments, e.g. highReynolds numbers, supersonic and
super-Alfvenic flows, however,make direct numerical simulations computationally intractable even
for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problemone can use
subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved
ones. In this workwe propose and validate a set of constant coefficient closures for the resolved, com-
pressible, idealMHDequations. The SGS energies aremodeled by Smagorinsky-like equilibrium clo-
sures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are
nonlinear in terms of large scale velocity andmagnetic field gradients. To verify the closures we con-
duct a priori tests over 137 simulation snapshots from twodifferent codes with varying ratios of ther-
mal tomagnetic pressure (β = 0.25, 1, 2.5, 5, 25p ) and sonicMach numbers ( =M 2, 2.5, 4s ).

Furthermore, wemake a comparison to traditional, phenomenological eddy-viscosity andα β γ− −
closures.We find onlymediocre performance of the kinetic eddy-viscosity andα β γ− − closures,
and that themagnetic eddy-viscosity closure is poorly correlatedwith the simulation data.Moreover,
three offive coefficients of the traditional closures exhibit a significant spread in values. In contrast,
our new closures demonstrate consistently high correlations and constant coefficient values over time
and over thewide range of parameters tested. Important aspects in compressibleMHD turbulence
such as the bi-directional energy cascade, turbulentmagnetic pressure and proper alignment of the
EMF arewell described by our new closures.

1. Introduction

Turbulence is ubiquitous in astrophysical plasmas, ranging from coronalmass ejections and stellar winds [1],
through star formation inmolecular clouds [2], to the gas in the interstellar [3] and intraclustermedium.While
experimental setups [4] become increasinglymore realistic, they are still far away from the regime acting in such
extreme conditions. For numerical simulations it is computationally too expensive (if even possible) to capture
the entire range of physical processes fromplasma kinetics to the integral scales of turbulence. In an
astrophysical context, one has to further contendwith the additional complications brought about by high
compressibility and the accompanying supersonic and super-Alfvenicmotion.

Possible ways to circumvent the infeasibility of direct numerical simulations are the use of calculations based
onmean-field theories or large-eddy simulations [5]. These simulations only resolve the energy containing large
scale dynamics and require a subgrid-scale (SGS)model to account for unresolved effects.While a lot of research
has been successfully carried out in the realmof hydrodynamics [6], compressiblemagnetohydrodynamic SGS
closures are essentially unexplored. Previous research ismainly based on the concept of turbulent dissipation in
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incompressible flows [7–10]. They expand the idea of a turbulent eddy-viscosity to an additional eddy-resistivity
in the induction equation and propose different phenomenologicalmodels. Even though thesemodels are then
evaluated a posteriori, a general verification and justification a priori has so far only been considered for a single
incompressible dataset [11]. Thus, our objective is to establish the validity of closures for the filtered,
compressiblemagnetohydrodynamics (MHD) equations by coarse-grainingmultiple datasets fromhigh-
resolution simulations of statistically homogeneous, forcedMHD turbulence.

In general, the effect offinite resolution in numerical simulations can bemimicked by applying a low-pass
filter to the standard, idealMHDequations. This is achieved by convolving the equationswith a suitablefilter
kernelG. See e.g. Garnier et al [6] for details on the properties of low-pass filtering and the conditions thatG
needs to satisfy. For a homogeneous, isotropic, stationary kernel, under periodic boundary conditions [12] the
equations take the following form



  

 

ρ

ρ τ

+ =

+ ⊗ − ⊗ + + = −

− × × = ×

∼

∼ ∼

∼

ρ

ρ

∂
∂
∂
∂

∂
∂

∼



( )

( )

( )

u

u u B B

u B

P
B

· 0,

·
2

· ,

.

u

B

t

t

t

2⎛
⎝⎜

⎞
⎠⎟

The units of themagnetic fieldB incorporate π1 4 . An overbar □ denotes4filtered and a tilde □͠mass-
weighted filtered quantities [12]. For instance, the filtered density field is given by ρ ρ= ∗G , while themass-
weighed filtered velocity field is ρ ρ=∼u u . In this formalism, allfiltered primary quantities, density ρ , velocity∼u ,magnetic fieldB ,and thermal pressureP are presumed to be known and directly accessible. Due to the
introduction ofmass-weighted filtering the only remaining terms that require closure are the SGS stress τ and
the electromotive force (EMF),.They are analytically expressed [10] as

= × − ×∼ u B u B and (1)

τ τ τ
δ= − + −( )B B
2

, withij ij ij
iju b 2 2

τ ρ τ≡ − ≡ −∼ ∼( ) ( )u u u u B B B Band . (2)ij i j i j ij i j i j
u b

The SGS stress tensor can be decomposed into thewell-known turbulent Reynolds stress τu, a turbulentMaxwell
stress τb and amagnetic pressure term.

Furthermore, the definitions of the SGS energies are obtained fromapplying the filter to the totalfiltered
energy densityE , which can be decomposed into the contribution due to resolved fields only and a remainder,
designated as SGS energy

ρ ρ= + + − + −∼ ∼͠

= + ≡
     

( ) ( )E u B u u B B
1

2

1

2

1

2

1

2
.

E E E

2 2

(resolved)

2 2 2 2

(unresolved)sgs
u

sgs
b

sgs

It is important to point out that in general the filtering operator is not a Reynolds operator, in particular
□ ≠ □. It follows that SGS terms, likeESGS, carry information not only about the interactions between
unresolved fields but also about cross-scale interactions between unresolved and resolved fields. In addition to
this, the turbulentmagnetic pressure is identical to themagnetic SGS energyEsgs

b and both kinetic andmagnetic

SGS energies are directly given by τ= ( )E2 Trsgs
u u and τ= ( )E2 Trsgs

b b , i.e. they constitute the isotropic parts of

the respective SGS tensors. Following the general tensor decomposition, the deviatoric, traceless parts are then
given by τ τ δ τ= −□ □ □

ij ij ij kk
* 1

3
.

2. Traditional closures

In hydrodynamics, the traceless part of the SGS stress tensor is commonly closed bymeans of the eddy-viscosity

hypothesis  τ ν ρ= − * 2ij ij
u u * in analogy to themolecular viscosity term in themomentum equation, where

 ≡ +∼ ∼ ( )u uij i j j i
1

2 , , is thefiltered kinetic rate-of-strain tensor. This introduces a turbulent kinetic eddy-

viscosityν Δ ρ= ν ( )C Eu u
sgs
u 1 2

which is proportional to a characteristic velocity, commonly given by the kinetic

SGS energy, and a characteristic length scaleΔ. This closure has already been applied directly toMHD [7, 13] by

4
Throughout the paper the symbol □ is used as a generic placeholder for variables.□ designates closure expressions. Furthermore, we

employ Einstein summation convention and □i k, is identifiedwith the kth partial derivative of the ith component of □.
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neglecting themagnetic contribution τb in themomentum equation. A turbulentmagnetic viscosity

ν Δ= ν ( )C Eb b
sgs
b 1 2

was used in [10] with the closure

τ ν= − 2 ,ij ij
b* b

where ≡ + ( )B Bij i j j i
1

2 , , is thefilteredmagnetic rate-of-strain tensor.

The SGS energies can either be determined by individual evolution equations, where several terms again
require closure, or by an instantaneous closure. Smagorinsky [14] introduced such an instantaneous closure in
pure incompressible hydrodynamics ( =B 0) by assuming the SGS energy flux to be in equilibriumwith the rate
of dissipation

 Δ ρ= ∼E C * . (3)sgs
u

E
u 2

2

Here, ∣ ∣ ≡∼  * 2 ij ij
* * denotes the rate-of-strainmagnitude.

Finally, the EMF is commonlymodeled (e.g. [7, 8, 10, 13]) by variations of [15]

 Ωα β γ= − + ͠ B J ,

with resolved current = ×J B and vorticity Ω = × ∼͠ u . The coefficients α, β, and γ are typically related to
theα-effect, turbulent resistivity and turbulent cross helicity, respectively. The commonly used closures for these
coefficients

α β ρ γ= = =α β γ
  C t H C t E C t W, , ,turb turb sgs turb

are based on dimensional arguments, with turbulent cross helicity = − ∼u B u BW · · , residual helicity

Ω Ωρ∼ − − − ∼͠( ) ( )J B J B u uH · · · · , and timescale Δ ρ= −( )t Eturb sgs
1 2
.

3.Nonlinear closures

In our new approachwe adopt the compressible hydrodynamic nonlinear closure for the kinematic deviatoric
stress tensor τ *u from [16], similar to the incompressible one from [17].We propose the straightforward
extension toMHDwith

τ δ= −
∼ ∼
∼ ∼C E

u u

u u
2

1

3
, (4)ij

i k j k

l s l s
ij

u*
nl
u

sgs
u , ,

, ,

⎛
⎝⎜

⎞
⎠⎟

τ δ= −C E
B B

B B
2

1

3
. (5)ij

i k j k

l s l s
ij

b*
nl
b

sgs
b , ,

, ,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The tensorial structure, e.g. ∼ ∼u ui k j k, , , can be obtained by a Taylor expansion discarding termswith2nd and
higher order gradients of the resolved fields. The overall normalizationwith the SGS energies comes from the
constraint that the SGS stresses vanish in laminarflows.

Applying the nonlinearity idea to the EMF generalizes the closure proposed by [11] to the compressible
regime

 ε Δ= ∼ C u B . (6)i ijk j s k snl
2

, ,

The closure explicitly preserves the anti-symmetry between velocity andmagnetic field in,which in turn helps
in capturing their relative geometry.

Finally, to complete the set of nonlinear closure equations, we use the Smagorinsky expression for the
turbulent kinetic energy (3) and propose an analogous extension to themagnetic part

 Δ= E C . (7)sgs
b

E
b 2 2

Here, the turbulentmagnetic energy is proportional to themagnetic rate-of-strainmagnitude

∣ ∣ ≡  2 ij ij . There are two advantages of closingEsgs
u andEsgs

b separately and not jointly via the total

SGS energy. First, there is no additional need to close the often neglected turbulentmagnetic pressure, as it is
given byEsgs

b . Second, the individual energies provide closures to the isotropic parts of the turbulent stress tensors

τu and τb.
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4. Validationmethod

In order to evaluate the proposed closures, we perform an a priori comparison using simulation data obtained
from two, grid-basedMHDcodes (ENZO[18] and FLASHV4[19]). This way the results are less likely to hinge on
the particulars of the numerical implementation. In both cases we follow the evolution of a compressible,
isothermal fluid in a cubic boxwith resolution of 5123 grid cells and periodic boundary conditions, starting from
uniform initial conditions. In ENZOwe use an ideal equation of state with adiabatic exponent κ = 1.001 in order
to approximate isothermal gas. ENZO is afinite-volume code, i.e. the evolution equations are evaluated in integral
formby solving a Riemann problem for themass,momentum and energy flux through cell walls. This allows for
the conservation ofMHD invariants (e.g. energy) tomachine precision.We use aMUSCL-Hancock scheme
[20] (a second-order accurate Godunov extension)with second-order Runge–Kutta time integration and
Harten–Lax–van Leer (HLL) Riemann solver (a two-wave, three-state solver) to solve the idealMHDequations.
The FLASHV4 code is similar to ENZO (second-order accurate in space and time), but uses the positive-definite
HLL3RRiemann solver [20]. Another difference is that FLASHV4 uses a polytropic equation of state to keep the
gas exactly isothermal.Moreover, explicit kinematic viscosity andmagnetic resistivity terms are included in the
momentum, energy, and induction equations.We set the kinematic andmagnetic Reynolds numbers to

= =Re Rm 3780. Consequently, themagnetic Prandtl number =Pm Rm Re is unity. For details on the
numericalmethods used in FLASHV4, including viscous and resistive dissipation, see [21] and [22]. Both codes
employ divergence cleaning [23] tomaintain =B· 0. A state of homogeneous and isotropic turbulence is
reached by supersonic stochastic driving in themomentum equation (given by anOrnstein–Uhlenbeck process)
at small wave-numbers, similar to [24, 25]. Thus, the forcing field is evolving in time and space. The associated
large auto-correlation time-scaleT of the forcing translates to the eddy turnover time of the largest, energy-
containing eddies. It is therefore the chosen unit of time in the following.

We explore a range of parameters. The initial strength of themagnetic field is set by the plasma βp—the ratio

of thermal tomagnetic pressure. Thefinal sonicMach numberMs is determined by the forcing amplitude. For
the ENZO simulationswe have initial β = 0.25, 2.5, 25p , with ≈M 2.5s after ≈t T2 turnover times. The

FLASHV4 simulations reach ≈M 4, 2s for initial β = 1, 5p , keeping instead constant AlfvenicMach number

≈M 3a .We discard all initial data affected by transients (before a simulation time of =t T2 ) and analyze
consequent snapshots taken approximately in intervals of T0.15 and T0.1 for the ENZO and FLASHV4 datasets,
respectively.

The analysis begins with the application of a low-pass Gaussian (test) filter to the equations ofmotion. In the
context of the closures we investigate, filtered quantities (i.e. density, velocity, andmagnetic field) are
interpreted as resolved, while the remainders represent the unresolved small scales.We can then compute τ and
 both directly from (1) and (2), and from their respective traditional and nonlinear closures.

The determination of the length-scale of the filter bears some consideration. It needs to fall within an
intermediate range of length scales, away from the particular effects of both the large-scale forcing and the small-
scale dissipation. The largest scale of the system is the full box size L and corresponds to thewavenumber n=1,
while the smallest scale is given by theNyquist wavenumber = =n N 2 256Nyq for the linear numerical
resolutionN=512 grid cells. The turbulence injectionwavenumber is =n 2inj (corresponding to half the box
sizeL 2) in both codes, which is why the energy spectra, as illustrated infigure 1, peak there. Thefigure shows
themean kinetic and total (kinetic plusmagnetic) energy spectra as a function of wavenumber. Since the
stochastic forcing is implemented only in themomentum equation both for ENZO and FLASHV4, the kinetic
energy spectrum exhibits themost direct imprint of the forcing itself. Conversely, the total energy spectrum
carries the overall effect of the small-scale dissipation through both kinetic andmagnetic channels. Figure 1
demonstrates that our simulations produce approximate power-law scaling within a narrow range of
wavenumbers, which is indicative of self-similar turbulent fluctuations [26]. This can be interpreted as inertial
range dynamics, although the nature of the inertial range in compressibleMHD turbulence is still not fully
understood [27–30]. Furthermore, this range separates the forcing scale and the dissipation scales and is not
affected by numerical diffusion in the absence of a bottleneck effect as demonstrated by [31]. The vertical dotted
line infigure 1 indicates our chosen filter length scale, corresponding to Δ = 16 grid cells or wavenumbernfilter

= Δ =N (2 ) 16. This filter scale falls within the range of the self-similar power-law range for both the kinetic and
total energy spectra. This is whywe use this ideal scale for ourfilter in the following analysis.

Additionally, this provides themotivation to treat data fromboth simulations on equal footing, even though
FLASHV4 has explicit viscosity and diffusivity while ENZO solves the idealMHDequation, subject to numerical
dissipation only.

In order to incorporate coordinate independence, a scalar field is chosen for comparison, the SGS energy
fluxΣ, i.e. the term responsible for the transfer of SGS energy between resolved and unresolved scales. Its
components associatedwith the Reynolds andMaxwell stresses and the EMF areΣ τ= ∼

Su
ij
u

ij,Σ τ= ∼
Sb

ij
b

ij and

4
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Σ =  J· , respectively (see appendix of [10] for the detailed SGS energy equation).Here, we substitute (1) and

(2) to obtain exactfluxesΣ□ andmatch these tomodel fluxes Σ □
that employ the corresponding closures. For

example, in the case of the eddy-viscosity closure for the deviatoric turbulent Reynolds stress tensor we compare
the exactflux

  Σ τ ρ δ= = − − −∼ ∼ ∼ ∼ ( ) ( )u u u u u u u u*
1

3
(8)ij ij i j i j ij k k k k ij

u u* ⎜ ⎟⎛
⎝

⎞
⎠

with themodelflux

   Σ τ ν ρ Δ ρ= = − = − ν  ( )C E* * * . (9)ij ij
u u* u

2
u

sgs
u 1 2

2

On the one hand, the comparison involves the determination of the constant (in space and time), dimensionless
closure coefficients □□C . They are computed individually for each snapshot byminimizing the error betweenΣ□

and Σ □
in the least-square sense. This allows to further test the constancy of the coefficients with respect to time

and plasma parameters. On the other hand, the general performance of the closure is gauged by computing the

Pearson correlation coefficient ofΣ□ and Σ □
, where the obtained closure coefficients are substituted in.

Several assumptions should be pointed out concerning this validation technique. Firstly, the simulation data
we have available for comparison fall short of realistic astrophysical parameters, e.g. with regards to Reynolds
numbers and resolution. In that sense, it would be interesting to use higher resolution direct numerical
simulation data or three-dimensional observations or experimental results. The problem is that experimental
data for supersonic compressible turbulent plasmas are not available and obtaining realistic Reynolds numbers
is computationally challenging for astrophysical parameters. However, as seen from figure 1, the data we have
are sufficiently well resolved for our analysis. Secondly, in choosing the SGS energyfluxΣ, as a diagnostic
variable, we implicitly assume that in the context of homogeneous and isotropic turbulence the turbulent

transport (encoded by terms of the form τ∼( )u· · and × ( )B· ) averages out to zero on subgrid scales.

This assumption can nevertheless be easily relaxed by incorporating further diagnostic variables. Finally, we
have focused on the SGS energy since it increasesmonotonically with the strength of turbulence regardless of the
type of turbulence (e.g. compressive or solenoidal, weak or strong, etc). As an extension, the other two quadratic
MHD invariants—themagnetic helicity and cross-helicity,may further highlight distinct turbulence properties
present in particular flow configurations. These should be kept inmind as further avenues of investigation, once
a preferred closure has been identified by the described validation technique.

Figure 1.Kinetic (a) and total (b) energy spectrum for each dataset, averaged over the time between T2 and T5 . The kinetic energy is
calculated from the Fourier transformof ρ u.
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5. Results

Thefitting results for the SGS stress tensors’ energyflux are given infigure 2 for the isotropic components and
figure 3 for the deviatoric components.

The isotropic parts of τu and τb are given by the SGS energies τ =□ □Eii
2

3 sgs from (3) and (7). Both the

coefficient values of kinetic part (figure 2(a) top panel) and themagnetic part (figure 2(b) top panel), have a
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Figure 2.Model coefficient values (top panels) and correlations (bottompanels with—median) fromfittingmodel energy flux Σ □
E

 τ= □ ij ij to exactflux for the isotropic parts of the SGS stress tensors. These are given by the respective energymodel in the trace
elements τ =□ □( )Eii

2

3 sgs . Each panel contains the joint data of all simulations and each snapshot is represented by amarker. Values are

given in table 1.

Figure 3.Model coefficient values (top panels) and correlations (bottompanels with—median) fromfittingmodel energy flux Σ □
 τ= □ ij ij to exactflux for the nonlinear closure (left panels) and eddy-viscosity closure (right panels). Each panel contains the joint

data of all simulations and each snapshot is represented by amarker. Values are given in table 1.
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small spreadwithin a factor of two across time and all simulations. Furthermore, closure and data are highly
correlated (bottompanels) with amedian correlation coefficient of 0.90 and 0.91, respectively.More detailed
numerical values of these and all following coefficients and correlations are listed in table 1.

The differences in the deviatoric parts τ *u infigure 3(a) and τ *b infigure 3(b) between the nonlinear and the
eddy-viscosity closures are apparent.While our nonlinear closure exhibits approximately constant coefficient
values and correlations over time in all simulations, the kinetic eddy-viscosity closure shows a correlation
weaker by≈0.2 and bigger spread in coefficient values.Moreover, themagnetic eddy-viscosity closure is
effectively uncorrelatedwith the simulation data and the coefficients can even switch sign at different times. The
performance of the different closures can be understood from figure 4, wherewe plot the energy flux
distributionsΣ *u andΣ *b for a single snapshot. A negative fluxΣ <* 0u corresponds to a forward energy
cascade—the transfer of energy from resolved to subgrid scales, becauseΣ *u appears as a sink term in the SGS
kinetic andmagnetic energy evolution equations and as a source term in the respective resolved energy
equations. Conversely, a positive flux corresponds to an inverse energy cascade, i.e. transport of energy from
subgrid to resolved spatial scales.The general distribution of the actual fluxes in figure 4 is representative for all
snapshots. The kinetic SGS energy fluxes are globally almost 1:1 in both directions of the turbulent cascadewith
a slight tendency towards the forward cascade. However, the forward cascade is about 3–10 times stronger
depending on the parameters as indicated by the position of the peaks in the distribution. For this reason, the
kinetic eddy-viscosity closure shows amoderate correlation even though it captures only the forward energy
cascade—from large to small scales. In fact, since under the eddy-viscosity hypothesis the kinetic SGS energy

flux has the form Σ ν ρ= − ∣ ∣∼
S* *u u 2, see (9), anymodel in which the eddy-viscosity νu has a definite signature

with respect to space cannot reproduce a bi-directional energy cascade that is well represented by the nonlinear
closure. In contrast to the kinetic SGS energyflux, the globalmagnetic flux clearly has a preferred direction.
Depending on the parameters, between 60 and 80%of cells have a positive SGSmagneticflux indicating energy

Table 1.Model coefficient overview—coefficient value and energyflux
correlation:median and bounds of the central 90% interval across all
datasets.

Model Coefficient Value Corr Σ Σ□ □
,

⎡⎣ ⎤⎦
Smagorinsky CE

u −+0.056 0.015
0.016 −+0.90 0.04

0.024

CE
b −+0.075 0.007

0.034 −+0.91 0.04
0.021

eddy-viscosity νC u −+0.061 0.019
0.045 −+0.70 0.11

0.13

νC b − −+0.002 0.03
0.029 −+0.06 0.06

0.14

nonlinear Cnl
u −+0.68 0.09

0.09 −+0.94 0.04
0.04

Cnl
b −+0.77 0.12

0.08 −+0.90 0.07
0.04

Cnl −+0.12 0.024
0.013 −+0.79 0.17

0.07

α β γ− − α
C −+0.0007 0.0016

0.0010

−+0.58 0.16
0.06

⎫
⎬⎪

⎭⎪
β
C −+0.020 0.005

0.009

γ
C − −+0.005 0.045

0.067

Figure 4.Representative snapshot (ENZO sim.with β = 2.5p at =t T4.44 ) of the energy fluxΣ τ=□ □ij ij distributionwithin the

simulation box.
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transfer from large to small scales. Nevertheless, the difference in strength is less pronounced as the overall
forwardflux is about two times stronger than the backward one. Again, these properties arewell captured by the
proposed nonlinear closurewhereas themagnetic eddy-viscosity closure is poorly correlated in both strength
andmagnitude.Finally, it should be noted, that the nonlinear closures alsowork verywell with the Smagorinsky

energy closure. Exchanging the exact expressions □Esgs in (4) and (5)with 
□

Esgs only slightly reduces the
correlations (max 5%) and the coefficients remain constant up to the second significantfigure (not
plotted here).

Moving on to the EMF, the nonlinear closure outperforms the traditionalα β γ− − closure in almost all
datasets,maintaining a constant coefficient with amedian correlation of 0.79 (figure 5). The traditional closure
exhibits consistently weaker correlations, despite the increasedflexibility of three free coefficients. Only β

C ,

related to the turbulent resistivity term in the EMF, is approximately constant, whereas α
C and γ

C fail to
maintain steady values or consistent signature. The reason for the consistently better correlations of the
nonlinear closure is hinted at infigure 6. This probability density plot of the local alignment between and
demonstrates that the traditional closure is almost randomly aligned (flat distribution)whereas the nonlinear
closure approaches the desired δ-distribution at 0°.

6. Conclusions and outlook

In summary, we have proposed a set of constant coefficient closures for the SGS stress and EMF in the filtered
MHDequations and conducted a priori tests. The tests we performed do show that the newnonlinear closures
perform significantly better than traditional, phenomenological closures with respect to both structural and
functional diagnostics. The tests consist offiltering ENZO and FLASHV4 simulations of homogeneous, isotropic
turbulence and comparing the resulting SGS terms to their respective closures (dependent only on the filtered
fields). All quantities are compared via their contributions to the SGS energy fluxΣ□, where the closure
coefficients are computed by individual least-square fitting. In addition, the alignment for the EMF vector is
investigated. All new coefficients correlate well with the data. They are constant over time and as a direct
consequence the proposed closuresmay be implemented in large-eddy simulationswithout the need for a
computationally expensive dynamical procedure which computes the coefficient values at run time. In addition,
the coefficients remain constant across simulation runs from two different codes and awide range of plasma
parameters, suggesting that the proposed closures capture an underlying physicalmechanism atwork in highly

Figure 5.Model coefficient values (top panels) normalized to the samplemedian (—) and the corresponding Pearson correlation
coefficients (bottompanels) with 90% central interval (- -) for the nonlinear closure (left panels) and the reference closure (right
panels) from energy fluxfitting for . Each panel contains the joint data of all simulations and each snapshot is represented by a
marker. Values are listed in table 1.
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compressible turbulent plasma flows.Moreover, the new closures successfully represent the turbulentmagnetic
pressure, reproduce the bi-directional energy cascade and arewell alignedwith the EMF.We recognize the
slightly lower correlation of the nonlinear closure in the EMF than in the SGS stress counterpart, suggesting
small room for improvement.

Nevertheless, the performance improvement over the traditional closures already supports the
implementation and validation of the new closures in an SGSmodel for large-eddy simulations of compressible
turbulent plasmaflows. These simulationswould then allowus to infer the effect of the proposedmodel on the
large scale flow in practice. Potential applications include accretion disks [32], star-formingmagnetized clouds
[33, 34] and plasmas on cosmological scales [35–40].
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(6):062316, 2016. doi:10.1063/1.4954303.

The research was jointly designed and planned by all authors. PG was actively in-
volved in the discussions leading to the derivation of the new closures. PG supported the
writing of the final paper by DGV with comments and suggestions at the time of preparing
a draft and during the revision. PG checked the calculations and derivations.

45

doi:10.1063/1.4954303


A nonlinear structural subgrid-scale closure for compressible MHD.
I. Derivation and energy dissipation properties

Dimitar G. Vlaykov,1,2,a) Philipp Grete,1,3 Wolfram Schmidt,4 and Dominik R. G. Schleicher5

1Institut f€ur Astrophysik, Universit€at G€ottingen, Friedrich-Hund-Platz 1, D-37077 G€ottingen, Germany
2Max-Planck-Institut f€ur Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 G€ottingen, Germany
3Max-Planck-Institut f€ur Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 G€ottingen, Germany
4Hamburger Sternwarte, Universit€at Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany
5Departamento de Astronom�ıa, Facultad Ciencias F�ısicas y Matem�aticas, Universidad de Concepci�on,
Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C, Chile

(Received 5 February 2016; accepted 12 May 2016; published online 28 June 2016)

Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena

ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are

nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical

ranges of these phenomena are much larger than what is computationally accessible. In large eddy

simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing

to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics.

This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal

MHD LES equations with particular emphasis on the effects of compressibility. The closures are

based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and

require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their

applicability ranges from the sub- to the hyper-sonic and -Alfv�enic regimes. The closures support

spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and

magnetic resolved and unresolved energy budgets. They implicitly take into account the local ge-

ometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in

Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in

the literature with respect to a wide range of simulation data of homogeneous and isotropic turbu-

lence. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954303]

I. INTRODUCTION

There is a great need for increased accuracy in numerical

simulations involving turbulent flows of magnetized fluids in

fields varying from engineering to astrophysics. In astrophy-

sics, in particular, compressible magnetohydrodynamic

(MHD) turbulence is an important ingredient in the solution

of outstanding problems on many scales such as the genera-

tion and sustainment of galactic and super-galactic scale mag-

netic fields;3–5 the detailed process of star formation,

including self-regulation and fragmentation;6–8 stellar convec-

tion in the interior and stellar atmospheres;9 accretion and pro-

toplanetary discs, stellar ejecta, e.g., jets, winds,

and outflows;10,11 and the dynamics of the solar tachocline,

the solar wind, and the solar corona.12–16 The dynamical range

of these phenomena is usually much larger than what is com-

putationally tractable. Numerically, this translates to unphysi-

cal dissipation and turbulence dynamics due to the limited

resolution. For example, in finite-volume numerical schemes,

it leads to enhanced dissipation. In large eddy simulations

(LESs),17–20 this problem is tackled by directly solving only

the evolution equations for the resolved fields. The contribu-

tion of the small under and unresolved scales (i.e., the scales

which are badly contaminated by numerical noise or simply

unrepresented) on them has to be incorporated via explicit

modeling. Formally, these scales are identified by the intro-

duction of a finite resolution operator, in effect a low-pass fil-

ter. Large eddy simulations are typically used with grid-based

numerical schemes, e.g., based on finite-differences or finite-

volumes. As such the grid-scale can be taken to be the filter

scale and hence the terms responsible for the small-scale

effects are known as subgrid-scale (SGS) terms.

The magnetohydrodynamic LES equations are obtained

by applying a finite resolution operator to the MHD equa-

tions. It can be shown that this operator can be expressed as a

convolution with a low-pass filter kernel. There are several

comprehensive reviews of the formalism and its application

to hydrodynamics17,18,20 and MHD.21 Applying the formal-

ism with a static, homogeneous and isotropic kernel G with a

constant grid-scale (which can be used to represent the com-

monly used grid-based numerical schemes in physical or

spectral space) under periodic boundary conditions to the

ideal MHD equations results in the following equations for

the large-scale fields:

@q
@t
þr � qeuð Þ ¼ 0; (1a)

@qeu
@t
þr � qeu � eu � B � B

� �
þr P þ B

2

2

 !
¼ �r � s;

(1b)a)Electronic mail: Dimitar.Vlaykov@ds.mpg.de
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@B

@t
�r� eu � Bð Þ ¼ r � E: (1c)

Here, a large scale, filtered field is denoted by an overbar.

For instance, the large scale component of the pressure P
is given by a convolution with the filter kernel G, i.e., P
¼ G � P and similarly for the filtered density q and the mag-

netic field B, which incorporates
ffiffiffiffiffiffi
4p
p

in the chosen notation.

The treatment of the pressure term is beyond the scope of

this work due to the wide array of possible equations of state

used to close the MHD system. Nevertheless, briefly, if the

equation of state is linear in the primary fields (e.g., in iso-

thermal conditions), the pressure does not lead to any SGS

contributions.

The tilde denotes a mass-weighted (also known as

Favre) filtered field,22 e.g., the Favre-filtered velocity field

~u ¼ qu=q. Using ~u as a primary quantity precludes the intro-

duction of SGS terms in the mass conservation equation.

Additionally, it fits well with physical-space-based com-

pressible schemes, where often the momentum qu is evolved

as the primary quantity instead of the velocity u. The mo-

mentum and induction equations contain two new, SGS

terms, r � s and r� E, which will occupy the focus of this

article. They are simply the commutators between the finite

resolution operator and the nonlinearities of the respective

MHD equations. Thus they carry information about the inter-

actions across the filter scale. Analytically, they are given by

E ¼ u� B � ~u � B;

and

sij ¼ su
ij � sb

ij þ
1

2
sb

kkdij;

with

su
ij ¼ qðguiuj � ~ui~ujÞ; sb

ij ¼ ðBiBj � Bi BjÞ; (2)

where the Einstein summation convention is assumed. The

tensor s is known as the SGS stress and can be decomposed

into kinetic and magnetic components, SGS Reynolds stress

su and SGS Maxwell stress sb, respectively. The (pseudo-)

vector E is known as the electromotive force (EMF). They

carry information about the subgrid-scales via the terms

u� B; guiuj , and BiBj and thus cannot be explicitly expressed

only in terms of large scale fields. This renders the system of

equations (1) unclosed. The evolution equations of the SGS

terms17 involve new, higher order unknown terms. This con-

tinues to build an infinite hierarchy. This is the LES aspect

of the well-known turbulence closure problem.

The resolved, i.e., large scale, energies and cross-

helicity are defined as

Eu
res ¼

1

2
qeu2; Eb

res ¼
1

2
B

2
; Eres ¼ Eu

res þ Eb
res; (3)

and

Wres ¼ ~u � B:

Their evolution equations are obtained in the classical man-

ner from the corresponding primary LES equations.23 For

ideal MHD they can be written as

@

@t
Eu

res þr � euEu
res

� �
þ eu � B � J þ eu � rP

¼ �eu � r � sð Þ; (4)

@

@t
Eb

res � B � r � eu � Bð Þ ¼ B � r � E; (5)

@Eres

@t
þr � euEu

res þ 2euEb
res � BWres

� �
þ eu � rP

¼ B � r � E � eu � r � sð Þ; (6)

@

@t
Wres þr � euWres �

B

q
Eu

res

 !
þ B

q
� rP

¼ eu � r � E � B

q
� r � sð Þ; (7)

where J ¼ r� B is the resolved current density. Although

the total energy and cross-helicity are ideal MHD invariants,

their resolved counterparts, as defined above, are not, due to

the SGS terms on the right hand side of Eqs. (6) and (7).

The equations show that the SGS stress and EMF encode the

entire transfer of energy and cross-helicity across the filter

scale and truncating the SGS hierarchy at the level of s and

E closes these equations as well.

Various approaches have been developed to address the

closure problem for hydrodynamics,17,18 in and astrophysical

settings.20 Several models have also been extended to the case

of magnetized fluids,24–26 some of them taking into account

compressibility as well.21,27 They can be separated heuristi-

cally into structural and functional ones. Functional closures

focus on the effect of the SGS terms on the resolved scales

and are thus largely phenomenological. For instance, the

eddy-viscosity (EV) models21 address the anomalous energy

dissipation due to turbulence, while dynamo models28,29

address the generation and amplification of magnetic fields.

Structural models try to mimic some aspect of the structure of

the SGS terms, expecting that the desired effects on the large

scale will follow automatically. Thus, they largely rely on the

robustness of these aspects. In the self-similarity closures,21,30

for example, the main assumption is the self-similarity of tur-

bulence in the inertial range. In that context, functional models

are useful in situations in which the effect of the unresolved

scales is well understood and quantified. Since in practice this

is rarely the case for compressible MHD, and in the absence

of extensive experimental data for calibration and validation,

we proceed with the derivation of a nonlinear structural clo-

sure, which is based on the properties of the finite resolution

operator, rather than turbulence itself. Thus, the MHD turbu-

lence dynamics is not required to obey any strong assump-

tions, like scale-similarity, existence of an inertial range,

energy cascade, etc. The resulting closure is closely related to

a previously a priori validated one27 but includes additional

compressibility effects. The present paper focuses on the deri-

vation of the new compressible MHD closure, the analytic

description of its scope of applicability, and energy dissipation

properties. A numerical validation of the closure is performed

in Paper II2 by a priori comparison to well-resolved numerical

data, where it is found to outperform all closures with which it

has been compared.
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II. APPROXIMATE DECONVOLUTION

As usual in the LES theory, the presented closure has its

origins in incompressible hydrodynamics. In particular, it is

a self-consistent extension of the Yeo-Bedford (YB) expan-

sions1,31 as applied to compressible MHD. Closures of this

family have been recently applied to incompressible32–34 and

compressible (supersonic) MHD23,27 turbulence with encour-

aging results. The same method has also been used to model

the transport of a passive scalar.34 Here, we focus on the clo-

sure derivation and extend it to include so far unaccounted

for compressibility effects.

For clarity, this section summarizes the original deriva-

tion31 as applied to a Gaussian filter kernel and the incom-

pressible MHD SGS terms. The Gaussian kernel can be

represented by its Fourier transform, i.e., transfer function Ĝ
given by

ĜðkÞ ¼ exp ð�D2k2=ð4cÞÞ; (8)

with wavenumber k and filter scale D. It is infinitely differen-

tiable, which renders it particularly suitable for analytical

manipulation. It is also positive and therefore signature

preserving. Thus under its action, the SGS counterparts of

positive definite quantities like energy are also positive defi-

nite.17 Furthermore, by setting the width parameter c¼ 6, its

first and second order moments match those of a box filter

with the same filter scale D.

The main idea of the YB expansion is to compute an

approximation of the inverse filtering operator based on gradi-

ent expansion of the filter kernel G. This amounts to comput-

ing an approximation of the inverse Fourier transform of 1=Ĝ.

The first step is to perform a Taylor expansion of the transfer

function and its inverse in terms of the filter scale D, i.e.,

Ĝ kð Þ ¼
X1
n¼0

�1ð Þn

n!

D2

4c
k2

 !n

; (9)

1

Ĝ kð Þ
¼
X1
n¼0

1

n!

D2

4c
k2

 !n

: (10)

Applying the expansions to the test fields f̂ and f̂ , respec-

tively, followed by an inverse Fourier transformation yields

infinite series representations of the filter operator and its

inverse in terms of gradient operators acting on the test fields

f ¼ G � f ¼
X1
n¼0

1

n!

D2

4c
r2

 !n

f ; (11)

f ¼ G�1 � f ¼
X1
n¼0

�1ð Þn

n!

D2

4c
r2

 !n

f : (12)

They are absolutely convergent and formally accurate at all

orders, since the Gaussian kernel is infinitely differentiable

and with unbounded support. In fact, it has been found35 that

the series given in Eq. (11) converges for all canonical filters,

and more generally, symmetry of the filtering kernel and non-

negativity of its transfer function are sufficient conditions for

its convergence for a periodic band-limited field f. (The last

condition is trivially satisfied in any numerical simulation.) It

has also been suggested35 that qualitatively the convergence

rate tends to decrease as the dissipative strength of the filter

increases. In the case of the Gaussian filter, the same results

hold for the forward expansion Eq. (12), as it differs from Eq.

(11) only by an alternating sign.

To proceed note that the unknown components of the

SGS stresses and the EMF are of the form f g. Applying Eq.

(11) to such an expression results in a series in terms of (fg).

As it is absolutely convergent, Eq. (12) can be applied sepa-

rately to each f and g term of the series. The result can be

simplified to

f g ¼ f g þ 2af ;kg;k þ
1

2!
2að Þ2f ;klg;kl

þ 1

3!
2að Þ3f ;klmg;klm þ O a4r8ð Þ; (13)

as given in Eq. (5.21) of Yeo.31 Here, a comma is used to

represent differentiation with respect to a co-ordinate and

a ¼ D2=ð4cÞ. The coefficients in the expansions are given in

terms of moments of the transfer function and its inverse.

This relationship comes from the orthogonality of the terms

in the Fourier expansion and thus holds for any filter kernel

for which the expansion exists. There is a closed form

expression36 for the coefficients in Eq. (13) for a symmetric

filter kernel G with infinitely differentiable transfer func-

tion—they are given by the Taylor coefficients of the func-

tion Fðf ; gÞ ¼ Gð�iðf þ gÞÞ=ðGð�if ÞGð�igÞÞ. Moreover,

since any symmetric filter has a real transfer function, only

the even order coefficients are non-zero. This symmetry has

a fundamental impact on the form of the terms in the expan-

sion as well, namely, each field is differentiated at most once

with respect to a co-ordinate.

Recall that for c¼ 6 the Gaussian and box filter kernels

have identical first and second moments. Therefore, with this

parameter choice Eq. (13) is also valid for a box filter up to

second order. Furthermore, since all moments of a Gaussian

function can be expressed in terms of its second order

moment, here ð2aÞ, it is the only parameter which can appear

in Eq. (13).

Applying Eq. (13) to the SGS terms in the incompressi-

ble MHD equations is sufficient to completely close them

uiuj � uiuj ¼ 2aui;kuj;k;

BiBj � BiBj ¼ 2aBi;kBj;k;

ðu� B � u � BÞi ¼ 2a�ijkuj;lBk;l: (14)

It should be noted that the resulting closures have been

reached by alternative routes in hydrodynamic LES. The

tensor-diffusivity models,37–39 for instance, use Taylor

expansions of the SGS terms with respect to the turbulent

fluctuations (e.g., u0 ¼ u� ~u) or the entire (unfiltered) fields

(e.g., u). These derivations however are questionable as they

require smoothness of the small scales.40 Another alterna-

tive, originally designed for image processing,41 is given by

approximate deconvolution closures.18,42–47 They are again

based on the truncation of an infinite series to reconstruct the

inverse of the filtering operator. However, in this approach,
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the series is not necessarily convergent and truncating at the

optimal order is critical. The results of both approaches for a

Gaussian filter agree with Eq. (13) up to second order.18 The

different motivations and derivation are revealed only at

higher orders.

III. COMPRESSIBLE EXTENSIONS

To apply the presented derivation self-consistently to

the compressible Reynolds SGS stress and EMF, as defined

in Eq. (2), the compressibility effects onto the mass-

weighted large scale velocity have to be taken further into

account. The issue can be addressed from several view-

points. On the one hand, one can dispense with the mass-

weighted filtering operator altogether, and re-substitute
~f q ¼ fq in the relevant SGS terms. This requires that an

additional SGS term qui � q ui is introduced in the continu-

ity equation, and that the EMF and the Reynolds SGS stress

are re-defined. The complexity of the Reynolds SGS stress

su is formally increased, as it now contains an unclosed prod-

uct of three fields, i.e., quiuj . Nevertheless, the derivation

outlined above still holds. Applying Eqs. (11) and (12) to a

general term of third order leads to (as given in Eq. (5.23) of

Yeo31)

f gh ¼ f gh þ 2a f ;kg;kh þ f ;kgh;k þ f g;kh;k

� �
þ 1

2!
2að Þ2

�
f ;klg;klh þ f ;klgh;kl þ f g;klh;kl

þ2f ;kg;klh;l þ 2f ;kg;lh;kl þ 2f ;klg;kh;l
�

þO a3r6ð Þ: (15)

To first order in a, this technique leads to the following

results for the primary SGS terms:

qui � q ui ¼ 2aq;kui;k

quiuj � q uiuj ¼ 2aq ui;kuj;k þ 2aq;kðui;kuj þ uiuj;kÞ;
BiBj � BiBj ¼ 2aBi;kBj;k;

ðu� B � u � BÞi ¼ 2a�ijkuj;lBk;l:

(16)

This constitutes a complete closure of the compressible

MHD equations (barring pressure considerations). This

approach is applicable for numerical schemes which evolve

the velocity field, because only directly filtered fields are

present. Even though such schemes are not frequently used

to address highly compressible problems, such a model has

been implemented in compressible hydrodynamics.48

On the other hand, for applications to compressible

codes which treat the momentum as a primary quantity, e.g.,

using finite volume schemes, one needs to take into account

the mass-weighted filtering operator. For a field f, it is given

by ~f ¼ ðG � ðqf ÞÞ=ðG � qÞ. In the process of directly apply-

ing the outlined procedure to this operator, several funda-

mental challenges are encountered. The main obstacle is that

since its filter kernel contains strongly fluctuating contribu-

tions (e.g., from the G � q component), the Taylor expansion

of its transfer function is not well-defined. Additionally, the

existence of the inverse transfer function is not assured over

an extended interval in spectral space.

A. Simple compressible extension

The simplest hypothesis which circumvents the compli-

cations outlined above would be to assume that even if the

derivation is not valid for compressible MHD, its result still

holds, i.e., to apply the map

u ! ~u; (17)

to the incompressible closures Eq. (14). This would imply

that the compressibility effects are implicitly taken into

account by the change of operator. Qualitatively, this

approach could be motivated by invoking the reduction of

compressibility effects at smaller scales,49 but ultimately it is

the simplest compressibility extension of Eq. (14). In fact, a

previous a priori comparison27 with data from supersonic

numerical simulations showed that this extension yields con-

sistently higher correlation with the data than the other tested

classical closures. However, while the results for the SGS

stress were consistently high, the EMF closure exhibited a

comparatively larger scatter. This difference can be

explained by the self-consistent derivation of compressibility

effects which follows.

B. Primary compressible extension

The goal is to obtain an expression of a simply filtered

field in terms of the corresponding mass-weighted filtered

field. Since mass-weighting applies to velocity-related fields,

consider in particular, ~u ¼ uq=q. Applying Eq. (13) to the

right-hand side leads to

~ui ¼ ui þ 2ay;kui;k þ 2a2ðy;kl þ y;ky;lÞui;kl þ Oða3Þ; (18)

where we denote for brevity the natural logarithm of the

resolved density as y ¼ ln q. As Eq. (18) represents an abso-

lutely convergent series, under the same conditions as the

original expansion Eq. (11), it can be rearranged to give

ui ¼ ~ui � 2ay;kui;k � 2a2ðy;kl þ y;ky;lÞui;kl � Oða3Þ: (19)

To this we can apply a recurrence technique. To second

order in a it gives

ui ¼ ~ui � 2ay;k ~ui;k � 2a2ððy;kl � y;ky;lÞ~ui;kl � 2y;ky;kl ~ui;lÞ
� Oða3Þ: (20)

This expression, along with Eqs. (13) and (15), can be

applied to the definition of the SGS terms, Eq. (2), to obtain

su
ij ¼ 2aq~ui;k ~uj;k þ 2a2qð~ui;kl~uj;kl � 2y;kl ~ui;k ~uj;lÞ þ Oða3Þ;

(21)

Ei ¼ 2a�ijkð~uj;lBk;l � y;l~uj;lBkÞ
þ2a2�ijkð~uj;lmBk;lm � 2ðy;lm~uj;l þ y;l~uj;lmÞBk;l

þð2y;ly;lm ~uj;m þ ðy;py;l � y;plÞ~uj;plÞBkÞ þ Oða3Þ: (22)
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As the Maxwell SGS stress is not directly affected by

density variations, its closure is identical to the one from Eq.

(14). Remarkably, to first order the compressibility effects on

the Reynolds SGS stress are implicitly accounted for by the

mass-weighted filtering itself. This is a consequence of the

symmetry of the Reynolds SGS stress tensor (su
ij ¼ su

ji).

Explicit density variations appear here only at second order

and as second order logarithmic derivatives. Therefore, only

very strong compressibility cannot be accounted for by the

simple compressibility extension implied in Eq. (17). In con-

trast, in the EMF closure density variations appear already at

first order, and at second order they are much more extensive

than for su. This explains the different levels of success of the

simple compressibility extension27 — terms which account

for compressibility effects are missing in the EMF closure

but not in the Reynolds SGS stress one.

We note that combining the recurrence relation Eq. (20)

with expansions of the type of Eqs. (13) and (15) allows the

construction of self-consistent closures for an SGS term of

any type to any order. The SGS kinetic and magnetic energies

for instance are given trivially as half the traces of the

Reynolds or Maxwell SGS stress tensors, respectively. If we

were to construct the SGS cross-helicity Wsgs ¼ u � B � ~u � B,

e.g., to gauge the correlation between kinetic and magnetic

SGS effects, its closure to first order would be given by

Wsgs ¼ 2að~ui;jBi;j � ~ui;jy;jBiÞ þ Oða2Þ: (23)

Retaining terms to first order in a is expected to provide

sufficient SGS information, as suggested by the previously

reported results.27,32–34 Furthermore, the computational over-

head of including such closures in an LES is minimal, as

they can contain at most first order derivatives in large scale

primary fields.

C. Extension for the SGS derivatives

Direct comparison of the outlined closures with the cor-

responding SGS terms based on numerical data reveals

directly the probity of the method.2 However, for a posteriori
application of the closures in LES simulations, a further

compressible effect needs to be considered.

The simple filtering operator is a convolution and as

such commutes with differentiation, however, the mass-

weighted filtering operator does not. This is critical since the

SGS stress and EMF enter the evolution equations under a

gradient. For the purposes of this section, let f̂ denote

the closure of an SGS term f incorporating mass-weighted

filtering. Then propagating the commutator between mass-

weighted filtering and differentiation through the closure

calculations above yields the following additional contribu-

tions to the momentum and induction equations:

d@isu
ij � @i

bsu
ij ¼ 2aqð~ui~uj;l þ ~uj~ui;lÞy;il;dr� E �r� Ê� �

i ¼ 2a�ijk�klm ~ul;pBmy;jp: (24)

These expressions show the difference between applying

the closure procedure to the derivatives of the SGS terms

and taking derivatives of the respective closures. The

additional corrections are expected to be important primarily

for very strong density variations, as they contain second

derivatives in the logarithmic density. This can be also seen

by comparing the expressions above with the ones obtained

by differentiating Eq. (16). Furthermore, they are of leading

order (in a) for the derivatives of both SGS terms and these

are precisely the quantities which enter the LES evolution

equations and affect the large scale dynamics.

Combining the two compressibility effects leads to sig-

nificant cancellation of the first order terms in the EMF clo-

sure with a final result given by

dr� E� �
i ¼ 2a�ijk�klmðð~ulBmÞ;j � ð~ul;pBmÞ;jy;pÞ: (25)

For the Reynolds SGS stress, the final closure can be given

as

d@isu
ij ¼ 2aðq~ui;k ~uj;kÞ;i þ 2aqð~ui~uj;l þ ~uj~ui;lÞy;il: (26)

Once again, the SGS Maxwell stress closure is trivially

derived from Eq. (14), as it does not contain any mass-

weighted large scale fields.

The effects of the two types of compressibility correc-

tions can be identified by different types of a priori testing.

In fact, the validity of the compressible closures was tested a
priori against a range of data from sub- to hypersonic turbu-

lence simulations and benchmarked against a wide range of

alternative closures2 with very positive results. In particular,

we investigate their performance with respect to the resolved

energy and cross-helicity dynamics (cf. Eqs. (6) and (7)).

The primary compressible closures Eqs. (21) and (22) are

validated by considering their effect on the spatially local (in

the Eulerian sense) dynamics, i.e., in terms of the form ðsu �
rÞ � ~u and E � r � B. These terms are usually identified

with contributions to the resolved energy or cross-helicity

cascades. The impact of these closures on the overall

resolved energy or cross-helicity dynamics, e.g., ~u � ðr � suÞ
and B � r � E, is also tested. While the impact of the differ-

entiation commutators Eq. (24) is best tested directly in a
posteriori application, by comparing the results of the local

and non-local a priori tests, we give an indication of the pa-

rameter regime where these extensions can be important.

IV. SCOPE OF APPLICABILITY

The closure described above has been derived without

any strong assumptions about the flow or the magnetic field.

Thus, their application is not limited to turbulence simula-

tions but can be applied in principle to any MHD simulation

in which the small scales are not sufficiently well-resolved.

Nevertheless, several limitations need to be kept in mind.

First, we have implicitly assumed that the filter kernel

is homogeneous and isotropic and has a constant filter scale.

This translates to numerical schemes with a regular grid.

Furthermore, no boundary terms have been taken into account,

which is consistent with periodic domains. Extensions of SGS

closures to non-regular grids and non-periodic conditions have

been studied in incompressible hydrodynamics.17 However,
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their application to the current closure is beyond the scope of

this article.

Second, the described closures are derived from the ana-

lytical form of a filter kernel. As the effective kernel of an

LES for a particular numerical scheme is a combination of

various discretizations, e.g., grid spacing, time-stepping, dif-

ferential approximations, quadrature, flux limiting, diver-

gence cleaning (for the magnetic field), shock capturing,

etc., its exact analytical form is rarely available. Additional

errors stem from the truncation of the infinite series Eqs.

(13) and (18), i.e., higher order closures are in principle

more accurate. Depending on the convergence rate of the

expansions for a particular filter, this error may also need to

be considered. Conversely, due to the nonlinear combination

of gradient fields, higher order closures are more prone to

numerical instabilities.39,50

Finally, in LES applications, the SGS terms are based

upon information contained in resolved fields, which resides

above the Nyquist scale, i.e., the grid resolution. This can be

represented by decomposing the effective filter kernel into a

spectral kernel at the Nyquist scale and a remainder. The

spectral kernel renders the inverse transfer function of the

effective filter ill-defined. In order to circumvent this, a two-

step procedure can be applied. First, the derivation above

should be applied to the component of the effective filtering

operator with a formally well-defined inverse. The spectral

filter can then be applied to the resulting equations.

To allow for the mentioned inaccuracies and numerical

instabilities, additional renormalization may be applied to the

final closures. Parametric renormalization may also be

applied to the results of a closure for a well-behaved filter, as

outlined above, in order to boost its dissipative effect or

render it suitable for a selection of numerical schemes. The

renormalization can come in the form of constant coefficients

or variable fields. Both practices are common in LES. Most

canonical SGS closures include a constant coefficient whose

value is calibrated dynamically or against experimental data.

Allowing for distinct coefficients for the different additive

terms in the proposed closures and calibrating them against a

particular dataset may be used as a guide for the relative im-

portance of the different terms in the respective flow. With

respect to spatially varying modulation, the SGS energy, for

instance, can be used to renormalize the strength of the SGS

effects in a hydrodynamic LES with a related closure.51,52

This technique naturally requires an additional closure for

the SGS energy — a common situation in hydrodynam-

ics,18,30,36,51,53–55 where different closures are frequently

combined in order to alleviate their respective shortcomings.

Both types of renormalization outlined above are applied and

a priori tested2 for the proposed closures, however, it is found

that neither is particularly necessary nor beneficial.

V. ENERGY AND CROSS-HELICITY DISSIPATION
PROPERTIES

One of the main functions of SGS closures is to correct

for the transfer of energy across the resolution scale.

Therefore, we proceed with an analysis of the dissipation

properties of the proposed closures. In particular, we consider

the local dissipation of the resolved kinetic energy, magnetic

energy and cross-helicity given, respectively, by

Ru ¼ �sij
~S ij; Rb ¼ �E � J ; (27)

and

RW ¼ �
sij

q
Mij � Bjy;i
� �

� E � ~X; (28)

with the usual definitions of the resolved rate-of-strain
~S ij ¼ 1=2ð~ui;j þ ~uj;iÞ, vorticity ð ~XÞk ¼ ðr � ~uÞk, current

ðJÞk ¼ ðr � BÞk, and magnetic rate-of-strain Mij ¼ 1=2

ðBi;j þ Bj;iÞ. The signs of the R fields are chosen such that

positive values correspond to a down-scale transfer, i.e.,

dissipation.

We consider each dissipation term in turn. The kinetic

energy dissipation can be further decomposed according to

Eq. (2) into Ru ¼ Ru
su þ Ru

sb þ Ru
sb

kk
. The contribution from

the Reynolds SGS stress is given by Ru
su ¼ �su

ij
~S ij. The

results here will be the same as in the hydrodynamic limit.

As a basis for comparison, consider the classical incompres-

sible eddy-viscosity (EV) family of closures,56 which take

the form su ¼ ��turb
~S with Trð~SÞ � 0 for some (usually

non-negative) turbulent viscosity �turb. For it Ru
su takes the

form

Ru
EV ¼ �turbTr ~S2

� �
; (29)

where ~Sn
represents a tensor product, e.g., ð~S2Þij ¼ ~S ik

~Skj.

As Trð~S2Þ is always non-negative, this closure can transfer

energy across the resolution scale only in one direction,

depending on the sign of �turb, e.g., from resolved to subgrid

scales for �turb > 0. This model can provide energy backscat-

ter only in the compressible regime via an additional (not

self-consistent) closure for the SGS kinetic energy and even

then only from regions where Trð~SÞ > 0. This can be seen to

be problematic since the presence of strong energy cascades

in both directions is a key characteristic of MHD turbu-

lence,57,58 which differentiates it from the hydrodynamic

case.

In contrast, the proposed closure for the Reynolds SGS

stress su can be written as

su
ij ¼ 2aq ~S ik

~S jk þ ~Xik
~Xjk þ ~S ik

~Xjk þ ~Xik
~S jk

� �
; (30)

with vorticity tensor ~Xij ¼ �1=2�ijkð ~XÞk. Substituting this in

Ru
su leads to

Ru
su ¼ �2aq Tr eS3

� �
þ 1

4
eX2

Tr eS� �� 1

4
eXT � eS � eX� �

:

(31)

The first term is reminiscent of the eddy-viscosity expres-

sion, as it depends only on the strain tensor. However, there

are two qualitative differences stemming from the fact that

this term is cubic in ~S . First, the larger power leads to stron-

ger sensitivity to the resolved rate-of-strain. Second, and per-

haps more importantly, this term has indefinite signature,
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which allows for bi-directional energy cascade. Because of it

totally compressive rate-of-strain leads to dissipation while

expansion leads to back-scatter of kinetic energy.

The proposed model includes a further effect, associated

with the last two terms in Eq. (31), namely, vortex stretching.

This is the compressible analogue of the incompressible vor-

tex stretching effect encoded in the last term. Geometrically,

the combination of the two terms represents the interaction

of the vorticity vector with the strain lying in a plane orthog-

onal to it. As intuition suggests, if a simple vortex tube is

compressed perpendicular to its axis, its radius decreases and

bigger proportion of its kinetic energy is associated with

smaller scales, i.e., this leads to dissipation. Conversely,

stretching a vortex shifts its associated energy to larger

scales and the result is back-scatter.

Next, consider the contribution of the Maxwell SGS

stress to the kinetic energy flux given by Ru
sb ¼ sb

ij
~S ij. The

proposed closure can be written as

sb
ij ¼ 2aðMikMjk þ JikJ jk þMikJ jk þ JikMjkÞ; (32)

with current tensor Jij ¼ �1=2�ijkðJÞk. Its contribution to the

kinetic energy dissipation is given by

Ru
sb ¼ 2a

�
Tr MeSM� �

þ 2Tr MeSJ
� �

þ 1

4
J

2
Tr eS� �

� 1

4
J

T � eS � J�: (33)

This expression is similar to the contribution of the Reynolds

SGS stress. Note, however, that the entire Maxwell SGS

stress works in the opposite direction to the Reynolds SGS

stress (because of the different overall sign). The first term

represents the interaction between the magnetic and kinetic

rates-of-strain. Here, compression (i.e., negative eigenvalues

of ~S) leads to back-scatter, while stretching leads to dissipa-

tion. Furthermore, alignment of the eigenvectors of ~S and

M maximizes the effect of this term. The second term is

associated with the amplification of magnitudes of the rates-

of-strain, i.e., Trð~S2Þ and TrðM2Þ. It implies that the proc-

esses which enhance kinetic and magnetic shearing simulta-

neously dissipate kinetic energy. The last two terms are the

counterpart of the vorticity terms Eq. (31) — they are associ-

ated with current deformation analogous to the vortex

stretching effect. They imply that currents perpendicular to

compressive flows lead to backscatter and ones perpendicu-

lar to expanding flows — to dissipation. Currents flowing

along the compressive or stretching directions have no effect

on the SGS energy.

The final component of the kinetic energy flux comes

from the SGS magnetic pressure

Ru
sb

kk
¼ � 1

2
sb

kkTr eS� � ¼ �2aTr eS� � Tr M2
� �

2
þ 1

4
J

2

 !
:

(34)

It reduces the Maxwell SGS stress effects associated with the

overall dilatation rate. It introduces purely compressible

effects, as in the incompressible limit Trð~SÞ ¼ 0. The

isotropic current component (/ Trð~SÞJ2
) cancels exactly the

contribution from Ru
sb . This re-introduces the possibility of

dissipation due to compression along the current direction

and emphasizes the importance of providing a closure for the

total SGS pressure. Moreover, it enhances the closure’s over-

all sensitivity to the relative orientation of the current and

the kinetic rate of strain. The magnetic shear term is associ-

ated with the growth of TrðM2Þ due to overall compression.

Finally, consider the transfer of magnetic energy across

the filter scale. The analytic form of Rb shows that there is

backscatter or dynamo-like effect, when the electromotive

force is aligned with the large-scale currents and dissipation

into unresolved energy in case of anti-alignment. Decomposing

the proposed closure into symmetric and anti-symmetric gra-

dients of the resolved fields and substituting into the expression

for Rb, leads to the following expression:

Rb ¼ 2a

�
2Tr MeSJ
� �

þ 1

2
J

T � eS � J � 1

2
J

2
Tr eS� �

� 1

2
eXT � M � J þ B � Jð ÞT � eS � ry

þ 1

2
eX � Bð Þ J � ry

� �
� 1

2
eX � J� �

B � ry
� ��

: (35)

Due to the nonlinear coupling between kinetic and magnetic

structures in this closure, these terms involve a large plethora

of effects.

Here, like in the kinetic energy case, the relative align-

ment of the resolved gradients, i.e., the local inhomogeneity

and anisotropy, plays a vital role in determining the magnetic

energy flux. The first four terms are associated with evolu-

tion of the total current J
2
. The first, shearing term is already

familiar from Eq. (33) and has the same effect on the mag-

netic energy as on the kinetic one. The next two terms can be

identified as anomalous (anisotropic) resistivity. They are

also found in Eq. (33), but with opposite signs and half the

amplitude. This identifies an SGS channel for transfer

between resolved kinetic and magnetic energy, i.e., half of

the dissipated resolved magnetic energy is backscattered into

resolved kinetic energy and vice versa, kinetic energy dissi-

pation leads to enhanced turbulence, which in turn causes a

dynamo-like increase of resolved magnetic energy. The

fourth term is specific to the magnetic energy budget. It is

also associated with the enstrophy evolution due to the

Lorentz force and connects the relative orientation of vortic-

ity and current with the principal axes of M. For instance,

along a magnetically compressive direction, it leads to dissi-

pation, if the vorticity and the current are parallel, and back-

scatter, if they are anti-parallel.

All considerations made so far apply equally to the sim-

ple and primary compressible extensions, as well as in the

incompressible limit (allowing for Trð~SÞ ¼ 0). The final

three terms of the magnetic energy dissipation Eq. (35) con-

tain the explicit effect of the primary compressible exten-

sion. They have a strong impact primarily in regions of very

strong density gradients, e.g., the neighborhood of shocks,

due to the logarithmic density derivative. Formally, they are

also strongly anisotropic and can be seen to be related to
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dynamo-like effects. For instance, B � J is the complement

of the current helicity B � J, which can be associated with

the a-dynamo, while ~X � J is related to the cross-helicity

dynamo.29

The effect of the primary compressible extension

becomes more evident when considering the SGS effects on

the cross-helicity evolution. For completeness, we give the

exact expressions for the local contributions of the total SGS

Maxwell stress RW
sb

tot
¼ RW

sb þ RW
sb

kk
, the SGS Reynolds stress

RW
su , and the EMF RW

E , defined analogously to their energy

counterparts, to the resolved cross-helicity

RW
sb

tot
¼ � 2a

q

�
B

T � M2 � ry

� �
� Tr M3

� �
� 1

2
Tr M2
� �

B � ry
� �

þ J
T � M � J

� B
T � M

� �
� J �ry
� �

� J � Bð ÞT � M � ry
� �

� J � Bð ÞJ � ry

�
; (36)

RW
su ¼ 2a

�
�2Tr eSM ~X

� �
� 1

4
eX � Bð Þ eX � ry

� �
þ 1

4
eXT � M � eX þ 1

4
eX2

B � ry
� �

þ 1

2
B � eXð ÞT � eS � ry

� �
� Tr eSMeS� �

� 1

2
B

T � eS� �
� eX �ry
� �

þ B
T � eS2 � ry

�
; (37)

RW
E ¼ 2a

�
2Tr eSM ~X
� �

þ 1

2
eX � Bð Þ eX � ry

� �
� 1

2
eXT � M � eX � 1

2
eX2

B � ry
� �

� B � eXð ÞT � eS � ry
� �

þ 1

2
eXT � eS � J

� 1

2
J � eX� �

Tr eS� ��: (38)

While these expressions contain a large variety of terms, the

key point is that there is a strong interplay between Reynolds

SGS stress and the EMF contributions, i.e., the terms in RW
su

and RW
E . For instance, the cancellation of the Trð~SM ~XÞ

term points to an interaction between the resolved and turbu-

lent fields which preserves the large scale topology charac-

terized by W.

Another example is given by the ry-terms in RW
su and

RW
E . In RW

su they come from the intrinsic compressibility

effect described by su
ijBjy;i=q, i.e., the interaction between

velocity fluctuations, density gradients, and a large scale

magnetic field. The corresponding ry-terms in RW
E are spe-

cific to the primary compressible extension. The analogous

form of the two sets of terms shows that the primary exten-

sion naturally restores the symmetry between kinetic and

magnetic turbulent contributions to the effects of compressi-

bility on Wres. As the resolved cross-helicity plays a role in

the non-local transfer between kinetic and magnetic energies

and affects the rate of energy decay, it is clearly important to

treat it with as much care as the resolved energy itself.

VI. CONCLUSION

The high computational cost of 3-dimensional direct nu-

merical MHD simulations poses severe limitations to our

understanding of astrophysical and terrestrial phenomena

involving strongly turbulent magnetized fluids. Large-eddy

simulations can alleviate this issue by explicitly considering

the effects of limited resolution. In this work, we presented

the derivation and properties of a nonlinear structural closure

of the compressible MHD LES equations. It is based on a se-

ries expansion31 of the finite resolution operator, a convolu-

tion with a low-pass filter kernel, and careful consideration of

the impact of the operator on the compressible dynamics. As

the derivation needs no assumptions on the nature of the flow,

the closures can be applied to a wide variety of MHD prob-

lems, as long as they can be described on a regular grid under

periodic boundary conditions. In particular, no assumptions

were invoked on the level of compressibility, on the structure,

dynamics, or even the presence of turbulence and magnetic

fields. Thus, the closures are suitable for both statistically sta-

tionary and developing disordered velocity and magnetic field

configurations, from the sub- to the hyper-sonic and -Alfvenic

regime. Only an isothermal equation of state was considered.

However, the formalism can be extended to incorporate ther-

mal variations, as well as additional evolution equations, e.g.,

for the SGS energy or for passive scalar transport.

Although the closures for the MHD SGS terms are

derived self-consistently, the information gap below the

Nyquist frequency as well as the complicated nature of real-

istic LES filters leaves room for additional re-normalization

or re-calibration of the proposed closures and for combina-

tions with additional closures. In fact a simple renormalized

version of the closure has already been validated27 in a priori
comparison. Here, through a self-consistent derivation of the

compressibility effects due to a mass-weighted filter, some

of the results of this comparison are clarified. An analysis of

the energy dissipation properties of the simple compressible

closure demonstrates that it can already accommodate so-

phisticated energy transfers between resolved and unresolved

kinetic and magnetic energy budgets. It emphasizes the de-

pendence of the transfer on local geometry, e.g., anisotropy,

and topology, e.g., the interplay between vortical and shear-

ing magnetic and kinetic structures of different types.

Furthermore, it allows for imperfect transfer between the

resolved kinetic and magnetic energy mediated by the sub-

grid scales. The additional effects of the self-consistent, pri-

mary closure are revealed through the resolved magnetic

energy dissipation, where it plays a role in regions of strong

compressibility. Moreover, it restores the symmetry between

kinetic and magnetic contributions to the cross-helicity dissi-

pation and thus plays a vital role in the evolution of the

large-scale fields’ topology. Thus presented, the closure is

ready to be bench-marked against currently used compressi-

ble MHD closures and to have its properties validated

against numerical and experimental turbulence data. The

results of such a comparison with a wide selection of avail-

able SGS closures against a suite of simulation data of homo-

geneous and isotropic turbulence ranging from the sub- to

the hyper-sonic regime are presented in Paper II.2
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Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its

effect is often not well understood. Furthermore, direct numerical simulations are typically not able

to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES),

which only simulate large and intermediate scales directly, are employed. The smallest, unresolved

scales and the interactions between small and large scales are introduced by means of a subgrid-

scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future applica-

tion as an SGS model in LES of compressible magnetohydrodynamics. We use 15 simulations

(without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic

Mach number Ms ¼ 0:2–20 as reference data for the most extensive a priori tests performed so far

in literature. In these tests, we explicitly filter the reference data and compare the performance of

the new closures against the most widely tested closures. These include eddy-viscosity and scale-

similarity type closures with different normalizations. Performance indicators are correlations with

the turbulent energy and cross-helicity flux, the average SGS dissipation, the topological structure

and the ability to reproduce the correct magnitude and the direction of the SGS vectors. We find

that only the new nonlinear closures exhibit consistently high correlations (median value> 0.8)

with the data over the entire parameter space and outperform the other closures in all tests.

Moreover, we show that these results are independent of resolution and chosen filter scale.

Additionally, the new closures are effectively coefficient-free with a deviation of less than 20%.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954304]

I. INTRODUCTION

Turbulence and in particular, plasma turbulence is still

one of the least understood phenomena in classical physics

today. Even though there are advances in theory, many proc-

esses cannot be fully explained yet due to their strong nonli-

nearity. These cover many different scales and include

experiments on Earth1 as well as a wide variety of processes

(e.g., magnetic reconnection2 and turbulent dynamos3) and

astrophysical phenomena such as stellar winds4 and magne-

tized accretion disks.5 Compressibility also plays an impor-

tant role in astrophysical plasmas and increases the

complexity even further.

In addition to theory, experiments, and observations, nu-

merical simulations are a useful tool to understand turbu-

lence. However, the level of detail is restricted by the

available computing power, and realistic (physical) dynami-

cal ranges are usually not covered. Fortunately, this problem

can be improved with the help of large eddy simulations

(LES).6,7 This approach simulates only the largest and inter-

mediate scales directly. The smallest scales, which are below

the resolution limit, i.e., below the grid scale, are introduced

by means of a subgrid-scale (SGS) model. Formally, the

procedure involves the convolution of the primary equations

with a filter kernel G. For a static, homogeneous, and iso-

tropic filter, the compressible magnetohydrodynamics

(MHD) equations under boundary conditions read8,9

@q
@t
þr � qeuð Þ ¼ 0; (1)

@qeu
@t
þr � qeu � eu � B � B

� �
þr P þ B

2

2

 !

¼ r � 2�qeS�� �
�r � s; (2)

@B

@t
�r� eu � Bð Þ þ gr2B ¼ r� E: (3)

Filtering is denoted by �, and mass-weighted filtering10 is

denoted by e� ¼ q�=�. Thus, q; eu; B (incorporating

1=
ffiffiffiffiffiffi
4p
p

), and P are the filtered density, velocity, magnetic

field, and thermal pressure, respectively. In the context of LES,

filtered quantities are considered resolved and therefore acces-

sible in the simulation. Non-ideal effects are included via resis-

tivity g and kinematic viscosity � with traceless kinetic rate-of-

strain tensor eS�ij ¼ 1=2ðeui;j þ euj;iÞ � 1=3dijeuk;k. Here, �i;j des-

ignates the jth partial derivative of component i, a star ��ij indi-

cates the traceless, deviatoric part of a tensor, and Einstein

summation convention applies with the Kronecker delta dij.
a)Electronic mail: grete@mps.mpg.de
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Two new terms enter Equations (2) and (3). The first term,

modified from its hydrodynamical form, is the turbulent stress

tensor

sij ¼ su
ij � sb

ij þ B2 � B
2

� � dij

2
with (4)

su
ij � qðguiuj � euieujÞ and sb

ij � ðBiBj � Bi BjÞ; (5)

which consists of the turbulent (or SGS) magnetic pressure

(last term in (4)), the SGS Reynolds stress su
ij, and the SGS

Maxwell stress sb
ij. The second term is the turbulent electro-

motive force (EMF)

E ¼ u� B � eu � B (6)

in the induction equation. Both terms are a priori unknown

as only filtered primary quantities are accessible in LES

(e.g., eu) but no mixed terms (e.g., gui uj). Moreover, the total

filtered energy density

E ¼ 1

2
qeu2 þ 1

2
B

2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
resolvedð Þ

þ 1

2
q eu2 � eu2
� �

þ 1

2
B2 � B

2
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Eu

sgsþEb
sgs�Esgs unresolvedð Þ

(7)

contains unclosed terms as well, namely, the kinetic SGS

energy Eu
sgs and magnetic SGS energy Eb

sgs. These terms are

given by the isotropic parts of the turbulent stress tensors

1

2
s�

kk ¼ E�
sgs: (8)

Similarly, the filtering procedure applies to other quantities

such as the cross-helicity W — a measure of the alignment

between velocity and magnetic field. The resulting SGS

cross-helicity Wsgs is given by

Wsgs ¼ u � B � eu � B: (9)

It encodes not only the alignment between unresolved fields

but also between resolved and unresolved ones.

On the one hand, there has been a lot of research in the

realm of (incompressible) hydrodynamics11 with successful

applications to atmospheric boundary layers12 and turbulent

mixing,13,14 as well as astrophysical application6 in different

subjects such as isolated disc galaxies15 or the formation of

supermassive black holes.16 On the other hand, results for

MHD are still scarce and limited to a posteriori application

of (decaying) turbulent boxes17 in either 2D,18 or in the

incompressible case,19,20 or by neglecting terms such as tur-

bulent magnetic pressure.8 However, the a priori validation

of these closures is still outstanding, apart from a single

incompressible dataset for the EMF.21 For this reason, we

here expand our first investigation of nonlinear closures22

with additional closures from the literature, and over a more

extended set of parameters and test cases. We have identified

several closure strategies developed in the literature and

evaluate the three major ones: eddy-viscosity, which is typi-

cally purely dissipative, scale-similarity, which is based on

the self-similar properties of turbulence, and deconvolution

closures, which are fundamentally nonlinear based on

approximate inverses of the filtering operator. All closures,

including the new nonlinear closures, are briefly presented in

Sec. II. A detailed derivation and formal analysis of the new

closures are described in Paper I.23 In Section III, we

describe our test setup and the process of a priori testing for

several reference quantities. The results are then illustrated

in Section IV and include a wide variety of functional and

structural tests. Finally, in Section V, we conclude with an

overall comparison of the presented closures.

II. CLOSURES

The following independent terms require closures: the

SGS Reynolds stress su, the SGS Maxwell stress sb, and the

electromotive force E. In the following, we briefly present

three general closure strategies (eddy-viscosity, scale-

similarity, and nonlinear) and possible variations with respect

to normalization. Each closure strategy is based on a certain

idea that naturally transfers to closures of all unknown terms.

We identify closures by two uppercase roman letters (with

normalizations in superscript), and closure expressions in for-

mulas are denoted by a hat �̂.

A. Eddy-dissipation closures

The eddy-dissipation family is the most well-established

type of closure originating from the Smagorinsky eddy-vis-

cosity24 going back several decades. In general, the modeled

effects are purely dissipative in nature and resemble existing

terms, e.g., the Reynolds stress (10) has the same functional

form as the microscopic dissipation in the momentum equa-

tion, cf. the right hand side of (2). The same is true for the

EMF (12) and Ohmic dissipation in the induction equation.

An eddy-diffusivity based closure for the Maxwell stress has

been proposed17 analogous to eddy-viscosity. The resulting

closures are

EV : ŝu�
ij ¼ �2q�ueS�ij; (10)

ED : ŝb�
ij ¼ �2�bMij; (11)

ER : Ê ¼ �gtJ; (12)

with eddy-viscosity (EV) �u, diffusivity (ED) �b, resistivity

(ER) gt, and resolved current J ¼ r� B. The kinetic rate-

of-strain tensor eS�ij and magnetic rate-of-strain tensorMij ¼
1=2ðBi;j þ Bj;iÞ are by construction deviatoric and so are the

closures (10) and (11). The remaining isotropic parts are

closed by means of SGS energy closures

Ê
b;M
sgs ¼ C1D

2jMj2 and Ê
u;S�
sgs ¼ C2D

2qjeS�j2; (13)

which can be derived from (10) and (11) building upon the

realizability of ŝu
ij and ŝb

ij for a positive filter kernel.22,25 The

free coefficients C� appear independently in every closure

(including all following ones) and are typically dimension-

less. One goal of a priori testing is the determination of the

coefficient values as described in Subsection III B.

In addition to the realizability ansatz, the isotropic parts

can be closed under the assumption of local equilibrium

062317-2 Grete et al. Phys. Plasmas 23, 062317 (2016)
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between production and dissipation in the SGS energy evolu-

tion equations9 resulting in

Ê
b;J

sgs ¼ C3D
2jJj2 and Ê

u;S
sgs ¼ C4D

2qjeSj2: (14)

Furthermore, several normalizations (or scalings) have

been developed to control the strength of the deviatoric clo-

sures based on different arguments. In this paper, we test the

most often used ones, i.e., constant scaling, scaling by SGS

energy, and scaling by the interaction between the velocity

and the magnetic field. Constant scaling is given by

EVconst : �u ¼ C5D
4=3; (15)

EDconst : �b ¼ C6D
4=3; (16)

ERconst : gt ¼ C7D
4=3; (17)

motivated by dimensional analysis under Kolmogorov scal-

ing.26 These closures neglect any local variability of the

eddy-viscosity, diffusivity, and resistivity. In contrast to this,

SGS energies, as a local measure of unresolved turbulence,

can be used as a proxy to obtain spatially varying closures

EVE : �u ¼ C13D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eu

sgs=q
q

; (18)

EDE : �b ¼ C14D
ffiffiffiffiffiffiffiffi
Eb

sgs

q
; (19)

ERE : gt ¼ C15D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEu

sgs þ Eb
sgsÞ=q

q
: (20)

However, the exact values for the energies Eu
sgs and Eb

sgs (7)

are unknown. Thus, the energy closure expressions (13) can

be used to formulate complete closures18 based only on

known fields

EVS
�

: �u ¼ C16D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê

u;S�
sgs =q

q
; (21)

EDM : �b ¼ C17D
ffiffiffiffiffiffiffiffiffiffiffi
Ê

b;M
sgs

q
; (22)

ERSþM : gt ¼ C18D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðÊu;S�

sgs þ Ê
b;M
sgs Þ=q

q
: (23)

Another possibility to include local variability is via the

interactions between velocity and magnetic field. Here, the

SGS cross-helicity (9) serves as a proxy in the closures

EVW : �u ¼ C10Dq�1=4
ffiffiffiffiffiffiffiffiffiffiffiffi
jWsgsj

q
; (24)

EDW : �b ¼ C11ttWsgs; (25)

ERW : gt ¼ C12tt
ffiffiffi
q

p
Wsgs; (26)

with a turbulent time scale tt ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Esgs

p
. Again, an alter-

native formulation has been proposed19

EVSM : �u ¼ C8D
2q�1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2fSijMij j

q
; (27)

ERSM : gt ¼ C9D
2sgnðJ � eXÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jJ � eXj=q1=2

q
; (28)

since (9) is unclosed. eX ¼ r� eu is the resolved vorticity.

The closures are motivated by assuming that the modeled

cross-helicity dissipation rate is a robust proxy of transfer

between the kinetic and the magnetic energy.

In addition, we include the a-b-c-closure20 for the elec-

tromotive force

a-b-c : gt ¼ aB � bJ þ ceX (29)

in our comparison which was recently applied in LES of cur-

rent sheets.27 Here, b is closed identically to ERE, c ¼
C19ttWsgs is linked to the SGS cross-helicity, and a ¼ C20ttH
is connected to the residual helicity H ¼ u �X � eu � eX
�ðB � J � B � JÞ=q.

B. Scale-similarity closure

Scale-similarity (SS) closures are characterized by the

assumption that the tensorial structure at the smallest

resolved scales is similar to the one at the largest unresolved

scales.28 This motivates the introduction of a second filter (a

test filter) with a filter width equal to or larger than the origi-

nal filter width. The result of the second filter operation is

analogous to the result of the first filter operation, and this

allows the recovery of the subgrid-scales. We use a filter

with twice the original filter width, as proposed based on ex-

perimental data,29 and denote this operation by □. It is under-

stood that mass-weighted filtering is applied to all quantities

involving eu. The resulting closures are

(30)

(31)

(32)

It should be noted that these coefficients are introduced in

order to allow for deviation from model assumptions.

Nevertheless, they are expected to be approximately 1 due to

the self-similarity assumption. In addition to this, closures

for the SGS energies can be extracted from these terms

directly by means of definition (8), i.e.,

(33)

(34)

C. Nonlinear closures

Nonlinear (NL) closures are structural in nature. While

they are related to other gradient (also known as tensor-

diffusivity) closures,30 they are not based on the expansion

of the primary quantities, but can be derived through gradi-

ent expansion of the filter kernel.31 In contrast to the other

two families, the assumptions here are rooted in the proper-

ties of the filtering operator and not of turbulence as such.

062317-3 Grete et al. Phys. Plasmas 23, 062317 (2016)
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Truncating the expansion at first order to the following

expressions:23

NLu : ŝu
ij ¼

1

12
C24D

2qeui;keuj;k; (35)

NLb : ŝb
ij ¼

1

12
C25D

2Bi;kBj;k; (36)

NLE;q : bE ¼ 1

12
C26D

2eijk euj;lBk;l � ln qð Þ;leuj;lBk

� �
: (37)

The electromotive force closure is proposed in Paper I for

the first time. It goes beyond the previously proposed

expression21,22

NLE : bE ¼ 1

12
C27D

2eijkeuj;lBk;l (38)

by explicitly capturing compressible effects in the second

term. As for the scale-similarity closures, the coefficients are

external to the closures and meant to capture errors not in-

line with the closure assumptions. Thus, values around 1 are

expected. Again, closures for the SGS energies can readily

be written down by definition (8) as

Ê
u;NL

sgs ¼
1

12
C24D

2qeuk;leuk;l; (39)

Ê
b;NL

sgs ¼
1

12
C25D

2Bk;lBk;l: (40)

A normalized version of the nonlinear SGS stress tensors has

been proposed in the HD32,33 case and in our previous

work22 for MHD

NLu;E : ŝu�
ij ¼ 2C28Eu

sgs

eui;keuj;keul;seul;s
� 1

3
dij

� 	
; (41)

NLb;E : ŝb�
ij ¼ 2C29Eb

sgs

Bi;kBj;k

Bl;sBl;s

� 1

3
dij

 !
: (42)

Effectively, the strength is locally determined by the SGS

energy, and the structural information is extracted from the

unnormalized closures NLu and NLb. Like the energy-scaled

closures within the eddy-dissipation family, (41) and (42)

are not closed. For this reason, the Eu
sgs and Eb

sgs can be

replaced by the energy closure (13) resulting in

NLu;S� : ŝu�
ij ¼ 2C30Ê

u;S�
sgs

eui;keuj;keul;seul;s
� 1

3
dij

� 	
; (43)

NLb;M : ŝb�
ij ¼ 2C31Ê

b;M
sgs

Bi;kBj;k

Bl;sBl;s

� 1

3
dij

 !
: (44)

III. VERIFICATION METHOD

In a first investigation,22 we analyzed the supersonic re-

gime in simulations at a resolution of 5123 grid points. Here,

we extend the parameter space to include the subsonic and

hypersonic regimes, as well as two additional reference runs

at a resolution of 10243 grid points. Furthermore, the

functional analysis now goes beyond the turbulent energy

cascade—we also include the cross-helicity cascade and the

total SGS flux of both resolved energy and cross-helicity.

Finally, the structural analysis now covers alignment and

magnitude of the SGS vectors, and topological properties of

the SGS stresses.

A. Simulations

In total, 15 homogeneous, isotropic turbulence simula-

tions in a periodic box with varying sonic Mach number Ms,

Alfv�enic Mach number Ma, and numerical scheme were con-

ducted. All simulations start with uniform initial conditions,

i.e., q0 ¼ 1, u0 ¼ 0 (these and all following variables are in

dimensionless code units) within a box of length L¼ 1 at re-

solution of 5123 or 10243 grid points. The initial background

magnetic field is uniform in the z-direction and its magnitude

specified by the ratio of thermal to magnetic pressure

bp ¼ 2p=B2. The MHD equations for a compressible fluid

are then evolved in time using either ENZO
34 or FLASHv4.35

Statistically stationary turbulence is driven by a stochastic

forcing field generated by an Ornstein-Uhlenbeck process.36

The strength is defined by a characteristic Mach number V.

We choose a parabolic forcing profile peaking at wavenum-

ber k¼ 2 and a ratio of compressive to solenoidal compo-

nents f ¼ jr � uj=kruk for which we explore values of 0.5

and 0.9. Details on the forcing can be found in Refs. 37 and

38, and details about individual simulation parameters are

listed in Table I. In ENZO, an open-source fluid code, the ideal

(� ¼ g ¼ 0) MHD equations are solved with a MUSCL-

Hancock39 framework, employing the second order Runge-

Kutta integration in time, PLM reconstruction, and HLL or

HLLD Riemann solvers.40 The thermal pressure p is speci-

fied by an ideal equation of state with adiabatic exponent

j ¼ 1:001 to resemble an isothermal fluid. In the simulations

conducted with the publicly available FLASHv4 code, the

MHD equations are evolved with explicit41,42 viscosity �
and resistivity g specified via the kinetic Reynolds number

Re ¼ L0V0

� ¼ 3780 and the magnetic Reynolds number

Rm ¼ L0V0

g ¼ 3780. In all simulations, the characteristic

length L0 ¼ 0:5L is half the box size due to the forcing pro-

file and the characteristic velocity V0 ¼ Vcs;0 corresponds to

the forcing Mach number V relative to the initial speed-of-

sound cs;0 ¼ 1. In contrast to ENZO, the gas is kept exactly

isothermal by a polytropic equation of state. The chosen nu-

merical scheme consists of second-order integration in time

and space with the HLL3R Riemann solver.43 For both ENZO

and FLASHv4, the divergence constraint r � B ¼ 0 is

handled by a divergence cleaning scheme.44

All simulations initially undergo a transient phase in

which the uniform initial conditions evolve into stationary

turbulence. This phase lasts for t < 2T dynamical times with

T ¼ 0:5L=V. Afterwards, the gas is evolved for three addi-

tional dynamical times, and ten snapshots per dynamical

time are captured for the analysis. The resulting parameter

space of the simulations in terms of the temporal mean

(h�it) sonic hhM2
s i

1=2it and Alfv�enic hhM2
ai

1=2it spatial root

mean square (h�i) Mach numbers within 2T < t < 5T is

illustrated in Figure 1. Simulations 1, 2a, 4, 6, 7a, 11, 12, 13
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within the gray area have hhM2
ai

1=2it � 3 and are therefore

used for a Ms-dependency analysis of the different closures.

B. Reference quantities

In order to assess the quality and performance of the dif-

ferent closures, we conduct functional and structural a priori
tests. In a priori testing, a test filter is applied to high resolu-

tion data to mimic the effect of limited resolution. The scales

below the test filter are treated as unresolved scales. Owing

to the explicit filtering, we not only obtain filtered quantities

intended to resemble the resolved scales but also retain the

sub-filter quantities intended to resemble the unresolved

scales. This allows the exact calculation of SGS quantities.

In the context of LES, three different filter kernels are typi-

cally used:11 the box, the Gaussian, and the sharp spectral fil-

ter. For the majority of our analysis, we use a Gaussian filter

with a characteristic filter scale at a wavenumber k¼ 16 for

several reasons. First, k¼ 16 is within a power-law regime of

the energy spectra (cf. Figure 2), which satisfies the assump-

tion of the eddy-viscosity and scale-similarity type closures.

Second, it is sufficiently far away from the forcing scale

FIG. 1. Parameter space covered by the 15 simulations. Each marker (circles

for a resolution of 5123 grid-points and crosses for 10243, respectively) cor-

responds to the respective mean value over the stationary phase 2T < t <
5T of the spatial root mean square Mach numbers. Only simulations within

the gray area are used in the detailed sonic Mach number dependency study.

Simulation details are given in Table I.

FIG. 2. Mean (2T < t < 5T) power spectra of the simulations. Kinetic

energy is based on the Fourier transform of
ffiffiffi
q
p

u. The dashed vertical lines

indicate the filter widths (k ¼ 4; 8; 16; 32; and 64) we are using during the

analysis. The insets highlight the extended power-law regime of the 10243

runs (2b and 7b, dashed lines) over the corresponding 5123 runs (2a and 7a,

solid lines). Simulation details are listed in Table I.

TABLE I. Overview of analyzed simulations. The sonic Ms and Alfv�enic Ma Mach numbers are the temporal means of the spatial RMS numbers over the sta-

tionary phase between 2T < t < 5T dynamical times. In all ENZO simulations, the ideal MHD equations were solved with an ideal equation of state. For

FLASHv4 a polytropic equation of state and explicit viscosity and resistivity (so that Re ¼ Rm ¼ 3780, see Subsection III A) was used.

Name Resolution Forcing Mach V Init. bp hhM2
s i

1=2i hhM2
ai

1=2i Code Riemann solver f

1 5123 0.2 450 0.22 1.95 ENZO HLLD 0.5

2a 5123 0.5 72 0.56 1.85 ENZO HLLD 0.5

2b 10243 0.5 72 0.57 1.81 ENZO HLLD 0.5

3 5123 0.5 8 0.61 1.26 ENZO HLLD 0.5

4 5123 1.0 18 1.17 1.90 ENZO HLLD 0.5

5 5123 1.0 2 1.25 1.27 ENZO HLLD 0.5

6 5123 2.0 5 1.97 2.64 FLASHv4 HLL3R 0.5

7a 5123 2.0 5 2.46 2.14 ENZO HLL 0.5

7b 10243 2.0 5 2.55 2.13 ENZO HLL 0.5

8 5123 2.9 0.25 2.54 0.78 ENZO HLL 0.9

9 5123 2.9 2.5 2.64 3.11 ENZO HLL 0.9

10 5123 2.9 25 2.68 8.24 ENZO HLL 0.9

11 5123 4.0 1 4.14 2.88 FLASHv4 HLL3R 0.5

12 5123 10.0 0.2 10.04 2.25 FLASHv4 HLL3R 0.5

13 5123 20.0 0.05 20.12 2.08 FLASHv4 HLL3R 0.5
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k¼ 2 where the dynamics of the forcing are expected to be

dominant. Third, it also does not fall above the high-k drop-

off in the spectrum, caused by viscous and numeric dissipa-

tion, which contaminates turbulent dynamics.45 The mean

spectra within the stationary regime (2T < t < 5T) of the

simulations are illustrated in Figure 2, where we also high-

light the filter positions. In addition to filtering at k¼ 16, we

also probe the closures with filter scales at k ¼ 4; 8; 32; 64 to

investigate the dependence of the result on the chosen scale.

Moreover, we verify the results based on Gaussian filtering

against a box filter. Given that we analyze compressible

data, we do not employ a sharp spectral filter, which can pro-

duce negative resolved densities, and SGS stresses that vio-

late realizability.25

The first category of tests, functional tests, probe the abil-

ity of closures to reproduce a particular (physical) property. In

addition to this, they eliminate co-ordinate frame dependence

by reduction to scalar diagnostics, e.g., of six SGS stress ten-

sor or three EMF vector components. Historically, the most

frequently used reference quantity is the turbulent energy flux,

i.e., the cascade term

RE ¼ sij
eS ij þ E � J: (45)

It encodes the local exchange between resolved and unre-

solved energy and is connected to the turbulent energy cas-

cade. However, as it was recently shown,9 the total energy

flux term

FE ¼ �eu � ðr � sÞ þ B � r � E (46)

is more strongly influenced by the transport terms r � ðeu � s
þB � EÞ rather than the cascade term RE in our simulations.

Furthermore, in MHD there are additional conserved quanti-

ties such as cross-helicity, W ¼ u � B, which are, in the con-

text of LES, also governed by resolved and subgrid-scale

evolution equations.9 The exchange of cross-helicity across

the filter scale is analogous to the energy one, with cross-

helicity flux

RW ¼ sijðBi=qÞ;j þ E � eX: (47)

Again, the total cross-helicity term

FW ¼ �B=q � ðr � sÞ þ eu � r � E (48)

is dominated by the transport and not the cascade contribu-

tion.9 In the following, we are going to analyze all four

(pseudo-)scalars as each of them may play a crucial role in

different dynamical regimes, and systematic differences

between results from total and cascade fluxes may indicate

the importance of the differentiation commutator.23

Specifically, we conduct nonlinear least-square minimiza-

tion46 between data and closure. This automatically produces

the best coefficient C� for each snapshot and closure individ-

ually. Eventually, we calculate the Pearson correlation coef-

ficient as an overall measure of accuracy. While these

correlations probe the spatially local performance of the clo-

sures, we also analyze a global indicator. In particular, we

look at the average SGS dissipation, i.e., the total RE for

each snapshot, and examine the contributions of the individ-

ual components.

The performed structural tests start with a topological

analysis. We use the geometric invariants of second-rank ten-

sors to compare the topology of the deviatoric SGS Reynolds

su� and Maxwell sb� stress tensors for data and closure. The

characteristic polynomial of a second-rank tensor T is47 k3
i

þPk2
i þ Qki þ R ¼ 0 with eigenvalues ki and invariants

P ¼ �trðT Þ ¼ �ðk1 þ k2 þ k3Þ; (49)

Q ¼ 1

2
P2 � tr T 2ð Þð Þ ¼ k1k2 þ k2k3 þ k3k1; (50)

R ¼ �detðT Þ ¼ �k1k2k3: (51)

Both tensors, su� and sb�, are traceless, so P¼ 0. Furthermore,

they are symmetric. Thus, Q is negative definite and the three

eigenvalues k1 	 k2 	 k3 are real. Therefore, only two eigen-

value combinations are possible. On the one hand, sheet-like

structures with R> 0 are produced by expansion in two

dimensions (k1; k2 > 0), and contraction in the third dimen-

sion (k3 < 0). On the other hand, tube-like structures with

R< 0 are produced by expansion in one dimension (k1 > 0)

and contraction in two dimensions (k2; k3 < 0).

Given that all closures enter the primary equations ulti-

mately in vectorial form, we also asses their geometrical

performance. For this reason, we compare the alignment of

the data vector, e.g., r � su�, with the corresponding closure

vector, i.e., r � ŝu�
ij . Moreover, we compare their respective

magnitudes. Ideally, the modeled SGS vector will point in

the identical direction as the data vector (cos ðr � ŝu�
ij ;

r � su�Þ ¼ 1) and will be with identical magnitude

(jr � ŝu�
ij j=jr � su�j ¼ 1).

IV. RESULTS

A. Functional analysis: Overview and Ms dependency

We start our functional analysis by evaluating the per-

formance of the different closures for the isotropic parts of

the SGS stresses, i.e. by definition (8), the SGS energies

s�
ij ¼ 2=3dijE

�
sgs. Figure 3 illustrates the creation of the Mach

FIG. 3. Illustration of using correlations from individual simulation snap-

shots (left) to create a bar plot (right). Each marker on the left side corre-

sponds to the correlation coefficient from one snapshot of the color-coded

simulations from the subsonic (dark) to the hypersonic (bright) regime. The

correlation coefficient is always calculated for only one reference quantity

(here, the cross-helicity cascade flux RW) with one closure (here, the kinetic

SGS energy of the scale-similarity family Ê
u;SS

sgs ). Each colored bar on the

right side spans the range of variation from the minimum to the maximum

correlation value over all snapshots of one simulation.
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number dependent bar plots we use in this section for one

sample quantity. We use the kinetic SGS energy closure of

the scale-similarity family Ê
u;SS

sgs (33) and compute the corre-

lation Corr½RW ; cRW 
 of the contribution to cross-helicity cas-

cade term RW based on closure and exact SGS energy

expression Eu
sgs (7), i.e.,

Corr
2

3
dijE

u
sgs Biq
� �

;j;
2

3
dijÊ

u;SS

sgs Biq
� �

;j


 �
: (52)

This is done for each snapshot of all simulations. Then, we

take the minimum and maximum value of each simulation

separately to determine the vertical extent of the color-coded

bars in the right panel of the figure. In this example, it is clear

that the cross-helicity cascade is well modeled in the subsonic

regime (with correlations above 0.8) and tends to perform

worse in the hypersonic regime (going down to almost 0.4).

The results for all energy closures and all reference

quantities are shown in Figure 4(a). In general, all closures

perform very well with respect to the cascade fluxes. A nota-

ble exception is the already mentioned cross-helicity cascade

correlation of the kinetic scale-similarity model Ê
u;SS

sgs , which

has a strong Ms dependency. In addition to this, it can be

seen that the total flux terms are generally less well repre-

sented than the cascade terms. Furthermore, there is practi-

cally no difference between modeling the eddy-viscosity/

diffusivity energies based on realizability conditions (Ê
u;S�
sgs

and Ê
b;M
sgs ) and the equilibrium approach (Ê

u;S
sgs and Ê

b;J

sgs).

Overall, with a slight advantage over the eddy-viscosity clo-

sures, the nonlinear closures perform best with generally

high correlations (>0.7 across the entire parameter space)

and very limited Ms dependency. The median across all sim-

ulations of the free coefficient value of each closure is listed

in Table II including bounds given by the interquartile range

(IQR). For reference, we also provide more detailed data

tables as the supplementary material.48 All SGS energy clo-

sures exhibit only a very limited spread over the tested pa-

rameter space with IQRs within a factor of 2 around the

median. These results also hold (not shown) for direct fits,

i.e., Corr½E�
sgs; Ê

�

sgs
, of the kinetic Eu
sgs, magnetic Eb

sgs, and

total Esgs energies.

FIG. 4. Correlations between closure

and data for all reference fluxes. For

each closure, the four colored bars

(from left to right: energy RE and

cross-helicity RW cascade, and total

energy FE and cross-helicity FW flux)

illustrate the maximum range of corre-

lation split by simulation. A detailed

explanation of the colored bars is given

in Figure 3. Subsonic runs are towards

the dark end and supersonic at the

bright end of the palette (cf. Figure 2).

All simulations have been filtered at

k¼ 16. The x-axis labels denote the

different closure identifiers as intro-

duced in Section II.
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The correlations of all four functional reference quanti-

ties for the traceless SGS Reynolds stress ŝu�
ij are depicted in

Figure 4(b). All eddy-viscosity type closures EV� are very

similar and insensitive to the scaling chosen. Even though

the correlations for all snapshots within a single simulation

do not vary much, there is a substantial difference between

the simulations. Correlations are typically below 0.2 in the

subsonic regime whereas they can reach> 0.8 in the highly

supersonic regime. This ordering is present in all reference

quantities for the EV closures. The scale-similarity SSu clo-

sure also exhibits this behavior for the turbulent energy cas-

cade RE even though the lower bound in the subsonic regime

is much better, �0:5. However, the correlations of the other

fluxes, RW ; FE, and FW , have the opposite ordering. The

most extreme case of FW spreads from �0:5 in the subsonic

regime to correlations as low as 0.1 for the Ms � 20 simula-

tion. The nonlinear family NL is closest to the data in gen-

eral. Again, we observe an ordering with Ms but the spread

is much more constrained and for NLu the correlations are

consistently above 0.7. Here, the scaling only further sepa-

rates individual simulations with supersonic simulations

slightly improving and subsonic simulations becoming worse

on average.

Generally, the results for the traceless SGS Maxwell

stress ŝb�
ij , as shown in Figure 4(c), are very similar to those

for ŝu�
ij . Again, the nonlinear family has the best performance

and different normalizations for NL cause a wider spread.

The scale-similarity closure SSb is slightly worse with best

correlations up to 0.8 for RE and worst (0.4) for FW . Most

striking is the poor performance of all eddy-diffusivity (ED)

closures. Independent of normalization and simulation, the

correlations barely reach 0.4 with the majority of snapshots

(93%) being below 0.2 for all reference quantities.

Finally, the findings for the electromotive force E are

much more diverse. First, within the eddy-resistivity (ER)

family, scaling by cross-helicity leads to poor correlations

(99% snapshots below 0.2). However, ERconst and energy

scalings (ERSM and ERE) provide reasonable correlations

(from 0.5 for low Ms to 0.7 for high Ms) for the turbulent

energy cascade RE but are less effective (<0.5) for RW ; FE,

and FW . In addition, there is practically no difference

between these scalings and the addition of the two extra

terms in the a-b-c closure. Second, the scale-similarity clo-

sure SSE performs similar to the reasonable ER closures with

respect to the total terms FE and FW . However, it performs

much better for the cascade terms with correlations for RW

of �0:65 and for RE of �0:75 without significant Ms de-

pendence. Third, the effect of the compressible extension of

the nonlinear closure NLE;q becomes apparent when compar-

ing the results for different simulations. While there is practi-

cally no difference between NLE and NLE;q in the subsonic

regime (correlations >0.9 for all quantities), the shortcom-

ings of NLE in the highly supersonic regime are apparent.

Correlations of �0:4 for RW ; FE, and FW in the Ms � 20

simulation can be improved by the additional term in NLE;q

to �0:6 for FE and FW , and even up to �0:8 for RW . The

improvements for NLE;q are more pronounced in the cascade

terms (with a spread of 0.8–0.9) than in the total flux terms

(with a spread of 0.6–0.9). Here, the additional differentia-

tion commutator23 might further increase the correlations in

the high-Ms regime. The overall trend that the nonlinear clo-

sures are better correlated with the data than the scale-

similarity or eddy-resistivity closures continues for the elec-

tromotive force as well.

Furthermore, as listed in Table II, closures that exhibit a

generally high correlation show the least spread in their free

coefficient values C� and vice versa. For example, NLu,

TABLE II. Median correlation and coefficient values over all 5123 simula-

tions filtered at k¼ 16 with lower and upper bound given by interquartile

range of all data. Please note that for the nested closures, e.g., EVS
�
, the

listed coefficient contains both coefficients. Detailed data tables including

results split by reference quantity and min-/maximum values can be found

in the supplementary material.48

ID Corr½�; �̂
 Coefficient

Ê
u;S
sgs 0:83þ0:082

�0:094 C4 ¼ 0:036þ0:014
�0:0074

Ê
u;S�
sgs 0:84þ0:068

�0:098 C2 ¼ 0:038þ0:022
�0:005

Ê
u;SS

sgs 0:59þ0:3
�0:11 C21 ¼ 1þ0:19

�0:35

Ê
u;NL

sgs 0:85þ0:077
�0:058 C24 ¼ 1:2þ0:53

�0:19

Ê
b;J

sgs 0:83þ0:057
�0:084 C3 ¼ 0:043þ0:021

�0:0065

Ê
b;M
sgs 0:87þ0:054

�0:13 C1 ¼ 0:045þ0:028
�0:0058

Ê
b;SS

sgs 0:79þ0:093
�0:23 C22 ¼ 1:1þ0:26

�0:36

Ê
b;NL

sgs 0:93þ0:018
�0:073 C25 ¼ 1:3þ0:43

�0:1

EVconst 0:4þ0:079
�0:12 C5 ¼ 0:096þ0:13

�0:074

EVSM 0:35þ0:081
�0:1 C8 ¼ 0:011þ0:0061

�0:0057

EVW 0:39þ0:092
�0:12 C10 ¼ 0:024þ0:008

�0:008

EVS
�

0:43þ0:091
�0:13 C16 ¼ 0:0085þ0:0031

�0:0031

EVE 0:44þ0:089
�0:15 C13 ¼ 0:041þ0:017

�0:021

EDconst 0:02þ0:016
�0:012 C6 ¼ 0:00071þ�0:006

�0:006

EDW 0:089þ0:1
�0:042 C11 ¼ �0:0066þ0:0025

�0:0067

EDM 0:026þ0:021
�0:012 C17 ¼ 0:00014þ0:00014

�0:00038

EDE 0:027þ0:02
�0:014 C14 ¼ 0:00055þ0:00093

�0:002

ERconst 0:35þ0:092
�0:053 C7 ¼ 0:14þ0:054

�0:11

ERSM 0:032þ0:024
�0:017 C9 ¼ �0:00055þ0:0011

�0:0015

ERW 0:042þ0:035
�0:024 C12 ¼ �0:0014þ0:0021

�0:0039

ERSþM 0:36þ0:11
�0:057 C18 ¼ 0:0096þ0:0068

�0:0035

ERE 0:36þ0:1
�0:056 C15 ¼ 0:035þ0:025

�0:013

a-b-c 0:37þ0:11
�0:049

C20 ¼ �0:0026þ0:0018
�0:0043

C15 ¼ 0:033þ0:028
�0:0087

C19 ¼ �0:00017þ0:0058
�0:0079

8><>:
SSu 0:49þ0:11

�0:072 C21 ¼ 0:67þ0:16
�0:23

SSb 0:58þ0:081
�0:084 C22 ¼ 0:9þ0:25

�0:43

SSE 0:55þ0:13
�0:084 C23 ¼ 0:89þ0:098

�0:18

NLu 0:82þ0:038
�0:029 C24 ¼ 0:98þ0:081

�0:19

NLu;S� 0:77þ0:069
�0:038 C30 ¼ 0:032þ0:0026

�0:0052

NLu;E 0:81þ0:078
�0:13 C28 ¼ 0:52þ0:09

�0:12

NLb 0:85þ0:029
�0:038 C25 ¼ 1:1þ0:19

�0:063

NLb;M 0:77þ0:065
�0:074 C31 ¼ 0:039þ0:0093

�0:0052

NLb;E 0:76þ0:11
�0:14 C29 ¼ 0:52þ0:21

�0:21

NLE 0:7þ0:13
�0:13 C27 ¼ 1:2þ0:14

�0:11

NLE;q 0:84þ0:04
�0:072 C26 ¼ 1þ0:11

�0:3
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with a median correlation of 0.82, has a spread in the coeffi-

cient value of <20%. In contrast to this, EDE, with a median

correlation of 0.027, has median coefficient of effectively 0

because it takes both negative and positive values. It should

be noted that all scale-similarity closures and the unnormal-

ized nonlinear closures have coefficients of C� � 1, as

expected analytically. Finally, the common coefficient C15,

which the a-b-c and ERE closures share, is essentially identi-

cal, while the two additional terms in the a-b-c closure are

effectively canceled by their free coefficients C19;C20 � 0.

This also explains their identical behavior in correlations.

B. Functional analysis: Filter widths and kernel
shapes

In subsection IV A, we saw that the differences in corre-

lations for functional tests are most pronounced between clo-

sure families and that normalization within a family itself is

subdominant. For this reason, we continue our analysis with

the best performing closure of each family. In this section,

we verify that the results shown in subsection IV A from

simulations at a resolution of 5123 filtered at k¼ 16 do not

substantially change with resolution and we investigate how

the different closures react to the chosen filter scale.

Figure 5 illustrates the comparison of correlation and

coefficient values among four simulations (2a,b and 7a,b)

that differ in driving (subsonic and supersonic) and resolu-

tion (5123 and 10243). Furthermore, we apply the filter at dif-

ferent scales k ¼ 4; 8; 16; 32; and 64. The extreme cases,

k¼ 4 and k¼ 64, are very close to the forcing regime or al-

ready in the dissipation regime,45 respectively. Generally,

we confirm the observed ordering in correlations among clo-

sure families described in subsection IV A. Independent of

resolution and filter width, the nonlinear closures outperform

the scale-similarity and eddy-viscosity type closures. On av-

erage the difference in both correlations and coefficient val-

ues between the 5123 and 10243 simulations are below 7% at

k¼ 16. Furthermore, all closures typically achieve higher

FIG. 5. Comparison of the median cor-

relation (top row in each plot) and

coefficient (bottom row) value at dif-

ferent filter wavenumbers k ¼
4; 8; 16; 32; and 64 and simulation res-

olutions 5123 (transparent) and 10243

(opaque) for subsonic simulation 2a,b

and supersonic simulation 7a,b. The

error bars illustrate the respective min-

imum and maximum values. Each col-

umn corresponds to results of fitting

one reference quantity RE; RW , FE, or

FW , and each marker represents the

median value over snapshots at t ¼
f2; 2:5; 3; 3:5; 4; 4:5; 5gT of the partic-

ular simulation. The coefficient values

are normalized to the respective me-

dian value over the snapshots of both

simulations and at all filter widths at a

given resolution.
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correlations (�25% while filtering at k¼ 64 compared to

k¼ 16) towards the high-k end and the correlations from

5123 simulations at k> 16 tend to be higher than from simu-

lations at 10243. This is not surprising. On the one hand, the

amount of subgrid-scale dynamics that needs to be modeled

is reduced with increasing filter wavenumber. One the other

hand, there is less physical information at high k for lower

resolutions. Nevertheless, for some cases, there are more

subtle differences with respect to filter scale, which we

describe in the following.

In Figure 5(a), the best closures within each family for

the SGS Reynolds stress are shown, i.e., EVE; SSu, and NLu.

The overall correlation, depending on filter scale k, for each

model and reference quantity has a very shallow U-shape.

Compared to k¼ 16, the correlations are �6% higher at k¼ 4

and �30% higher at k¼ 64, respectively. The slight increase

at k¼ 4 might be attributed to the proximity to the forcing

scale k � 2, which is completely resolved. Thus, the largest

unresolved scales of su might see an imprint of the (resolved)

forcing and lack SGS turbulent dynamics, which, in turn, ren-

ders specific SGS modeling unnecessary and increases the

correlation. The observed systematic differences in correla-

tions with varying k are generally not present in the coefficient

values. However, the values vary to different extents within

each family and reference quantity. While the mean deviation

from the median coefficient over all reference quantities, filter

widths, and snapshots is only 10% for the nonlinear closure

NLu, it varies by 47% for the eddy-viscosity reference closure

EVE. Compared to the results of sb� in the next paragraph,

this is still acceptable, even though we find systematically

lower coefficient at Ms � 0:6 compared to Ms � 2:5.

The SGS Maxwell stress results depicted in Figure 5(b)

show a strong filter scale dependency of the closure coeffi-

cient for the scale-similarity SSb and eddy-diffusivity EDW

closure. The coefficients are larger for small k and decrease

with increasing k spanning almost two orders-of-magnitude.

Only the nonlinear closure NLb keeps a rather constant value

with deviations of 17% on average. The correlations, on the

other hand, show a systematic increase with k for NLb in all

reference quantities. This might be ascribed to the absence

of a direct forcing term acting on the magnetic field. Similar

behavior is also present in SSb with the slight difference of a

plateau for k � 16 in the total flux quantities FE and FW .

Finally, the eddy-diffusivity closure never reaches a correla-

tion higher than 0.36 over the entire parameter space.

The different closures for the electromotive force E are

closer to each other as illustrated in Figure 5(c). Here, both

NLE;q and SSE exhibit strictly increasing correlation values

with k for the cascade terms RE and RW and a plateau for

k � 16 for the total flux terms FE and FW . The coefficient

values for all E closure are less widely spread. The a-b-c clo-

sure has a variation of 37% around the median over all data

whereby we only take the dominant b term into account. The

SSE closure has a variation of 47%, and the nonlinear closure

is effectively constant with a spread of only 16%.

Finally, the differences between using a Gaussian and a

box kernel for the analysis are illustrated in Figure 6. Two

trends can be observed for the kinetic energy cascade and

total flux. The correlations of RE for the box filter are (within

the error bars) slightly lower (�10%) for all models and fil-

ter widths. In addition, the correlations exhibit a more pro-

nounced deviation for the total energy flux FE especially at

smaller filter wavenumbers k and thus larger filter widths.

We attribute this to the non-smooth nature of the box kernel

versus the Gaussian kernel resulting in numerical biases in

the computation of gradient-based quantities. This could

explain why the deviations are more pronounced in the total

flux which has an additional divergence operator acting on

the SGS terms in comparison to the cascade flux. Likewise,

the effect would be more pronounced in the nonlinear clo-

sures as they are built from nonlinear combinations of gra-

dients. The observed convergence between box and

Gaussian filtering with increasing k is also expected, because

the differences between the kernels become less distinct for

small widths. Overall, the observed behavior based on

Gaussian filtering, i.e., better performance of the nonlinear

closures over the scale-similarity and the eddy-dissipation

family ones, also holds for filtering with a box kernel. These

trends similarly apply to the cross-helicity fluxes and other

SGS terms, too.

C. Functional analysis: Average SGS dissipation

We close the functional analysis with a comparison of

the contributions by individual components to the average

SGS dissipation RE. Figure 7 illustrates the share of devia-

toric kinetic SGS stress, su�
ij
eS ij, and deviatoric magnetic SGS

stress, sb�
ij
eS ij, kinetic SGS pressure, 1=3su

kk
eSkk, and magnetic

SGS pressure, 1=6sb
kk
eSkk, and EMF, E � J to RE for different

filter widths. In general, both SGS pressures (and thus ener-

gies) are almost negligible (<10%) in the reference data

even though the data cover the slightly supersonic regime

(simulation 7b). Similarly, the deviatoric kinetic SGS stress

is subdominant (10%–20%) while the deviatoric magnetic

SGS stress and the EMF jointly contribute �80% to the total

SGS dissipation independent of the chosen filter scale. While

the magnetic stress dominates at the largest scales (up to

50% at k¼ 4), its contribution constantly decreases, and at

the smallest scale the EMF is strongest reaching a contribu-

tion of �50%. This can be understood by analyzing the ratio

FIG. 6. Correlations of the energy cascade, RE, and total energy, FE, flux of

different deviatoric kinetic SGS stress closures for different filter widths and

kernels (box - - and Gaussian —) in subsonic simulation 2b. Markers indi-

cate the median, and the error bars show the minimum and maximum value

over time.
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of forward to inverse energy transfer (not shown). While the

forward transfer mediated by sb�
ij
eS ij is �30 times stronger

than the inverse transfer at k¼ 4, it is only �6 times stronger

at k¼ 64. At the same time, the EMF ratio remains constant

at a factor �8. Two scenarios (or more likely an unbalanced

combination thereof) could potentially explain this situation:

either the existence of an inverse cascade coupled to direct

forward transfer or direct inverse transfer coupled with a for-

ward cascade. On the one hand, a cascade typically transfers

energy from one scale to the next smaller (or larger) scale

resulting in a constant flux with varying filter width. On the

other hand, direct transfer allows exchange of energy between

scales with arbitrary separation and thus the flux may vary

with varying filter width. Although a more detailed study,

e.g., by a shell-to-shell energy transfer analysis, would allow a

better interpretation, it is not required for the following clo-

sure discussion and we leave it as subject to future work.

Before analyzing the predicted contributions by the dif-

ferent closure families, it should be noted that the coefficients

from the fits have been used to calculate the resulting dissipa-

tion values. Allowing all coefficients to vary freely and opti-

mizing for average SGS dissipation would allow each closure

to exactly match the reference data and, in turn, render this

analysis meaningless. In general, all closure families behave

similar with respect to the total dissipation. At large scales,

they underestimate the reference data by�50% (eddy-dissipa-

tion and scale-similarity) and �40% (nonlinear), while

improving towards the smallest scales reaching �75% (ED),

�90% (SS), and �95% (NL) agreement. This is seen to be

due to the successful capture of the EMF related contribution

and failing to represent the deviatoric magnetic stress dynam-

ics at varying filter scale. In other words, all closures predict

too much net inverse energy transfer to the largest scales.

Another important observation concerns the overall inverse

energy transfer by the magnetic SGS pressure of the eddy-

diffusivity closure. Given that the eddy-viscosity and eddy-

resistivity closures cannot provide inverse energy transfer by

construction, and that the eddy-diffusivity closure itself exhi-

bits the overall poorest correlation as shown in subsections

IV A and IV B, the SGS pressures are the only channels left

for inverse transfer in this closure set. Thus, in the process of

matching the inverse transfer that is present in the reference

data, an over-compensation in the SGS energies takes place.

D. Structural analysis: Topology

We begin our structural analysis with the comparison of

the deviatoric stress tensor topology. Figure 8 illustrates the

amount of tube-like structures in our simulations. The only

other possibility for su�; sb�, and s� are sheet-like structures.

Analyzing the kinetic su� and magnetic sb� tensors individu-

ally we have �88% tube-like structures and �12% sheet-

like structures in the data independent of tensor and sonic

Mach number Ms. Furthermore, there are almost no temporal

variations within each simulation—the error bars indicating

the minimum and maximum are within the markers. The

scale-similarity closures SSu and SSb match these topologies

very closely with differences of only �1%. The nonlinear

closures NLu and NLb are closely following the data topo-

logy as well, even though they slightly overestimate the

FIG. 7. Contributions of individual components (deviatoric kinetic SGS stress, su�
ij
eS ij, and deviatoric magnetic SGS stress, sb�

ij
eS ij, kinetic SGS pressure,

1=3su
kk
eS kk , and magnetic SGS pressure, 1=6sb

kk
eS kk , and EMF, E � J) normalized to the average SGS dissipation, RE, of supersonic simulation 7b for different filter

widths. The markers illustrate the median and the error bars show the minimum and maximum values over time. Each closure family is represented by the locally

best performing closures, i.e., eddy-dissipation of EVE-Ê
u;S
sgs -EDW-Ê

b;J

sgs-a-b-c, scale-similarity of SSu-SSb-SSE , and the nonlinear family of NLu-NLb-NLE;q.

FIG. 8. Topology of deviatoric stress

tensors by mean percentage of tube-

like structures over all snapshots of

each simulation (1, 2a, 4, 6, 7a, 11, 12,

and 13, see Table I). The remaining

structures are sheet-like. The error bars

indicate the minimum and maximum

value over time for each simulation.
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amount of tube-like structure by �3% in general. Eddy-

viscosity EVE and eddy-diffusivity EDW closures on the

other hand are not able to match the flow topology. While

EVE is able to reproduce at least the correct tendency with

dominating tube structures (65%), EDW produces an equal

share of tube and sheet structures.

Interestingly, the topological configuration changes dra-

matically when analyzing the deviatoric tensor s� ¼
su� � sb� as a whole. The dominant, Ms-independent tube-

like topology vanishes, and sheet configurations become

dominant in the subsonic regime. In the supersonic regime,

tube- and sheet-like configurations are equally present with

some (<10%) temporal variation. Again, scale-similarity

and nonlinear closures are able to follow the trend more

closely than eddy-dissipation type closures. EVE–EDW

exhibits the same behavior as EVE alone and provides

mainly tube-like topology. The scale-similarity closure cor-

rectly captures the topology in the subsonic regime with neg-

ligible temporal variations. However, in the supersonic

regime, the amount of sheet-like structures is overestimated

by 15% on average and there are temporal variations of up to

14%. In contrast to this, the nonlinear closure shows less var-

iations (<4%). However, it also overestimates sheet-like

structure in the supersonic regime, but by only 10%. Overall

these results are in line with the original closure

approaches—functional versus structural. The functional

eddy-dissipation closures do not perform well in this struc-

tural test, whereas both structural closure families are capa-

ble of capturing the data topology.

E. Structural analysis: Alignment and magnitude

In order to asses how the different closures perform as

vectors in the equations, i.e., r � ŝ and r� Ê , we compare

their magnitude and alignment with the reference data.

Figure 9 is an explanatory sketch of the 2D-histograms we

use for the analysis. The relative vector magnitude, e.g.,

jr � ŝu�
ij j=jr � su�j, is plotted against the angle between

closure and exact solution, e.g., cos ðr � ŝu�
ij ;r � su�Þ.

Furthermore, we use the sign of the product of closure fluxcFE and reference flux FE to split the histogram in two

halves. A positive sign corresponds to the correct direction

of the cascade, while a negative one indicates opposite direc-

tion. We choose this kind of presentation as it illustrates sev-

eral independent measures for single-coefficient closures.

First, the magnitude is a direct result of the free coefficient

value that is determined by the fitting process. Second, the

sign of the fluxes is determined in conjunction with a

resolved flow quantity, e.g., eu for FE ¼ eu � ðr � sÞ, see (46),

and is independent of the coefficient magnitude. Third, the

angle is given by the SGS terms alone and is also independ-

ent of the coefficient magnitude. We define a region of opti-

mal performance in order to make quantitative statements.

Within this region, the relative magnitude does not deviate

by more than a factor of 4, the angle between closure and

data is <30�, and both fluxes (cFE and FE) have identical

sign. We use the results of the energy flux fits FE in this sub-

section. Nevertheless, we also verified that the conclusions

similarly apply to the other flux fits RE; RW , and FW .

Figure 10 illustrates the resulting 2D-histograms for the

best performing closures in a snapshot of the supersonic simu-

lation 7a at t ¼ 4T, which has randomly been chosen for illus-

tration purposes. The deviatoric SGS Reynolds stress ŝu�
ij

closures EVE; SSu, and NLu are shown in Figure 10(a). In

general, the magnitude predicted by EVE and SSu is too small.

Furthermore, the angle between closure and data is almost

randomly distributed with a slight tendency of alignment,

which is more pronounced for SSu. In contrast to this, NLu

exhibits a clear peak at exact alignment and equal magnitude.

Over all simulations 49þ10
�4 % (median and bounds giving

the maximum and minimum) of the cells within the simula-

tion cube are within the region of optimal performance for

NLu and 81þ3
�2% have the correct sign of FE. SSu has still

66þ2
�2% cells with the correct sign and 14þ4

�3% in the optimal

region, whereas EVE performs worst with 5þ4
�4% in the opti-

mal region and only 58þ2
�2% with equal sign.

Figure 10(b) illustrates the deviatoric SGS Maxwell clo-

sures NLb; SSb, and EDW for the same snapshot. Overall, the

nonlinear and scale-similarity closure behave very similar to

their kinetic counterparts with 61þ13
�12% optimal region and

84þ5
�5% correct sign for NLb, and 27þ5

�8% optimal region and

71þ3
�2% correct sign for SSb, respectively. The weak perform-

ance of eddy-diffusivity closures described in subsections

IV A–IV D is also apparent here. The magnitude of EDW is

typically too small by more than a factor of 10. This comes as

no surprise as it is determined by the free coefficient. Given

that FE and cFE have matching signs only in 52þ1
�1% of the

cells, which corresponds to random behavior, the fitting pro-

cess favors a closure coefficient close to 0. In addition to this,

the distribution of the angle between closure and data, which

is independent of the fitting procedure, is completely random

and <1& are in the optimal region.

Finally, the EMF closures a-b-c; SSE , and NLE;q are

depicted in Figure 10(c) for the same snapshot. Here, the

FIG. 9. Illustration of magnitude-alignment 2D-histograms (see Figure 10).

The x-axis shows the alignment between closure vector and reference vector.

Relative closure magnitudes are given on the y-axis with the dashed (- -) lines

indicating identical closure and reference magnitude. The upper half (green “/”

hatching) indicates equal direction in energy cascade, i.e., same sign of FE andcFE , whereas the lower half (red “\” hatching) corresponds to opposed direc-

tions. The white box illustrates the area of optimal performance: alignment is

within 30�, relative magnitude within a factor of 4, and identical flux sign.
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performance of the eddy-dissipation family closure a-b-c is

best compared to the other terms. Overall, 13þ4
�4% cells are

within the optimal region and 61þ5
�4% have the correct

sign. SSE performs slightly better with 19þ4
�7% and 66þ2

�5%,

respectively. In both cases, the closure vector is more likely

to be aligned with the data vector even though it is not as

pronounced as for the NLE;q closure. For the nonlinear clo-

sure 53þ6
�29% are within the optimal region whereby the lower

FIG. 10. Two dimensional histograms showing the distribution of relative closure vector magnitude, i.e., sgnðFEF̂ EÞjr � ŝu�j=jr � su�j, versus alignment, i.e.,

cos ðr � ŝu�;r � su�Þ, between closure and data vector. The additional signum, sgn, function on the y-axis is used to indicate flux alignment, i.e., whether data

flux FE and the flux predicted by the closure cFE have identical sign. Dashed lines in each plot illustrate identical closure and data vector magnitudes. The data

are taken from a single snapshot at t ¼ 4T of supersonic simulation 7a filtered at k¼ 16.
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limit stems from the highly supersonic simulations 12 and

13. Nevertheless, NLE;q produces the correct flux sign in the

majority of cells (80þ3
�8%) and the variation is less extensive.

The general trend that nonlinear closures are performing

best, followed by scale-similarity closures and eventually

eddy-dissipation closures is again visible for all terms,

su�; sb�, and E.

V. CONCLUSIONS AND OUTLOOK

In this paper, we systematically conducted a priori tests

of different subgrid-scale closures in the realm of compress-

ible magnetohydrodynamics. Over a large parameter space

of 15 simulations of forced, homogeneous, isotropic turbu-

lence with sonic Mach numbers ranging from Ms ¼ 0:2 to

20 we were able to show that closures of the proposed non-

linear type outperform traditional closures of eddy-

dissipation and scale-similarity type in every single test.

The main feature of the nonlinear closures is that they

require no assumptions about the nature of the flow or tur-

bulence, and, therefore, are able to capture anisotropic

effects and support up- and down-scale energy transfer. In

contrast, the scale-similarity and eddy-dissipation type clo-

sures assume some universal behavior of turbulence. The a
priori tests included the correlation between closure and ex-

plicitly filtered reference data for quantities such as the tur-

bulent energy RE and cross-helicity RW cascades, and total

turbulent energy FE and cross-helicity FW fluxes. The tur-

bulent energy cascade flux has also been used to analyze

the average SGS dissipation. Additionally, we also eval-

uated the distribution of topological structures for the SGS

Reynolds and Maxwell stress tensors and their alignment

with respect to the reference data in physical space.

Moreover, we verified that our conclusions are not sensitive

to resolution, filter width, or filter kernel by comparing

results between 5123 and 10243 resolution simulations at fil-

ter widths of k ¼ 4; 8; 16; 32; and 64 with box kernel and a

Gaussian kernel. Finally, we were able to verify that the

free coefficients of the basic nonlinear closures are very

close to unity as expected from the analytic derivation.

Overall, we conclude that the eddy-dissipation family

including the popular Smagorinsky closure has only a lim-

ited range of applicability, e.g., in situations with dominantly

supersonic turbulence and in situations where local flow fea-

tures are less important. Closures of the scale-similarity fam-

ily or the nonlinear family can be applied in much more

diverse situations, e.g., where anisotropic features or up-

scale energy transfer are required. However, there is still

room for improvement as the net up-scale transfer via the

SGS Maxwell stress is overestimated. Furthermore, the

scale-similarity closures should be handled with care as their

performance varies strongly with reference quantity and

sonic Mach number. The basic nonlinear closures, NLu; NLb

and NLE;q, on the other hand perform well across the entire

tested parameter space and are able to reproduce local flow

features.

This encourages the application of the basic nonlinear

closures as a zero-coefficient SGS model in large-eddy simu-

lations of compressible MHD. These simulations would

benefit from the additional physics provided by the SGS

model. Promising processes for such LES are turbulent mag-

netic reconnection2 or the turbulent dynamo,3 for example,

in star-forming magnetized clouds49 or even in galaxies50

and clusters.
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Large eddy simulations (LES) are a powerful tool in understanding processes that are inaccessible
by direct simulations due to their complexity, for example, in the highly turbulent regime. However,
their accuracy and success depends on a proper subgrid-scale (SGS) model that accounts for the
unresolved scales in the simulation. We evaluate the applicability of two traditional SGS models,
namely the eddy-viscosity (EV) and the scale-similarity (SS) model, and one recently proposed
nonlinear (NL) SGS model in the realm of compressible MHD turbulence. Using 209 simulations of
decaying, supersonic (initial sonic Mach number Ms ≈ 3) MHD turbulence with a shock-capturing
scheme and varying resolution, SGS model and filter, we analyze the ensemble statistics of kinetic and
magnetic energy spectra and structure functions. Furthermore, we compare the temporal evolution
of lower and higher order statistical moments of the spatial distributions of kinetic and magnetic
energy, vorticity, current density, and dilatation magnitudes. We find no statistical influence on the
evolution of the flow by any model if grid-scale quantities are used to calculate SGS contributions. In
addition, the SS models, which employ an explicit filter, have no impact in general. On the contrary,
both EV and NL models change the statistics if an explicit filter is used. For example, they slightly
increase the dissipation on the smallest scales. We demonstrate that the nonlinear model improves
higher order statistics already with a small explicit filter, i.e. a three-point stencil. The results of e.g.
the structure functions or the skewness and kurtosis of the current density distribution are closer to
the ones obtained from simulations at higher resolution. In addition, no additional regularization
to stabilize the model is required. We conclude that the nonlinear model with a small explicit filter
is suitable for application in more complex scenarios when higher order statistics are important.

I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is observed
in many different processes and on many different scales,
for example, in astrophysics, in magnetized accretion
disks [1], stellar winds [2], galaxies and galaxy mergers
[3], or more generally in processes like magnetic recon-
nection [4] and the turbulent amplification of magnetic
fields [5]. Moreover, experiments on Earth also aim at a
better understanding of e.g. flow-driven MHD instabil-
ities [6]. However, the full multi-dimensional dynamics
are only rarely accessible in these observations and ex-
periments. For this reason, simulations are frequently
used as a third, complementary approach or to support
the design of experiments [7].

Unfortunately, direct simulations with realistic param-
eters are often still not possible despite the ever increas-

∗ grete@mps.mpg.de

ing availability and performance of large computing clus-
ters, and the advances in numerical methods. In these
cases, large eddy simulations (LES) have been employed
successfully in the past, however, mostly in the realm of
(incompressible) hydrodynamics, see e.g. [8] for a general
introduction and [9] for an astrophysics related review. In
LES only the largest eddies, which correspond to motions
on large and intermediate scales, are simulated directly.
The smallest scales, which are either not represented or
unresolved in these simulations, are reintroduced by the
means of a subgrid-scale (SGS) model. Formally, this is
equivalent to applying a low-pass filter to the ideal com-
pressible MHD equations resulting in expressions of the
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form [10]

∂ρ

∂t
+∇ · (ρũ) = 0, (1)

∂ρũ

∂t
+∇ ·

(
ρũ⊗ ũ−B ⊗B

)
+∇

(
P +

B
2

2

)

= −∇ · τ,
(2)

∂B

∂t
−∇×

(
ũ×B

)
= ∇× E, (3)

for a static, homogeneous and isotropic filter under pe-
riodic boundary conditions. The filtered primary quan-
tities, i.e. the density ρ, velocity ũ, magnetic field B
(incorporating 1/

√
4π) and pressure P are considered re-

solved in LES. Normal filtering is denoted by an overbar
2 whereas mass-weighted, Favre [11] filtering is denoted
by a tilde 2̃ = ρ2/2.

Assuming an isothermal equation of state (P ∝ ρ), all
interactions between resolved and unresolved scales and
among unresolved scales themselves are captured by the
two new terms in the equations. The turbulent stress
tensor is given by

τij = τuij − τbij +
(
B2 −B2

) δij
2
, (4)

and can be decomposed into the turbulent (or SGS) mag-
netic pressure (last term), SGS Reynolds stress τuij and

SGS Maxwell stress τbij with

τuij ≡ ρ (ũiuj − ũiũj) and τbij ≡
(
BiBj −Bi Bj

)
.(5)

The second new term is the turbulent electromotive force
(EMF):

E = u×B − ũ×B . (6)

Moreover, the total filtered energy is given by

E =
1

2
ρũ2 +

1

2
B

2

︸ ︷︷ ︸
(resolved)

+
1

2
ρ
(
ũ2 − ũ2

)
+

1

2

(
B2 −B2

)

︸ ︷︷ ︸
=Eu

sgs+E
b
sgs≡Esgs(unresolved)

(7)

where, by virtue of the identity τ2
ii ≡ 2E2

sgs (with Einstein
summation), the SGS energies are given by the traces of
the corresponding stress tensor.

All these SGS terms are unclosed because the mixed
terms, i.e. ũiuj , BiBj and u×B, are not explicitly ac-
cessible in an LES and require modeling. This modeling
is the main challenge for a successful LES.

SGS models have been subject of research in hydrody-
namics for many decades, e.g. in the incompressible [8],
compressible [12] and astrophysical [9] regime. However,
work in the realm of MHD and in particular compressible
MHD is scarce, see [13] and [14] for recent reviews. Di-
rectly linked to this work are the MHD simulations of (de-
caying) turbulent boxes in 3D [15], in 2D [16] and in the
incompressible case [17, 18]. However, all these groups
use different numerical schemes, e.g. finite-differences or

(pseudo-) spectral methods, while we employ a shock-
capturing finite-volume scheme. Usually, these shock-
capturing methods are thought to provide an implicit
SGS model as shocks are captured by locally increasing
the effective numerical dissipation with the help of e.g.
slope limiting. Since this procedure is part of the overall
method, these simulations are also referred to as implicit
LES (ILES) [19].

In the presented work, we compare the a posteriori
behavior of several SGS model including a nonlinear
model that explicitly captures compressibility [10]. Their
performance was previously evaluated a priori [20, 21].
Here, we analyze a set of simulations of decaying homo-
geneous and isotropic turbulence with respect to a set of
statistical quantities including energy spectra, structure
functions and statistical moments of the primary fields.
More details on the numerics and the implementation are
given in the following section II where we also introduce
the different models tested and the setup of the particular
test case of decaying compressible MHD turbulence. Af-
terwards, in section III we present the results of different
statistics such as energy spectra, evolution of statistical
moments and structure function. Then we discuss these
results with respect to previous work in IV and conclude
in the last section V.

II. METHOD

A. Subgrid-scale models

In our a priori analysis [21] we tested three differ-
ent model families, eddy-dissipation, scale-similarity, and
nonlinear models, with different normalizations. For each
family we identified the best model with corresponding
coefficients. These models are now tested a posteriori
and described in the following.
a. The eddy-viscosity (EV) model has the longest

tradition with roots going back even further than its for-
mulation for LES by Smagorinsky [22]. While originally
developed for the kinetic SGS stress tensor in hydrody-
namics, the general idea has been transferred to MHD
[15, 18], where the EMF closure is usually referred to as
anomalous or eddy-resistivity. The names of these func-
tional models stem from their primary feature: purely
dissipative behavior analogous to e.g. molecular viscos-
ity and resistivity. We use the following formulations

τ̂uij = −2ρνuS̃∗ij + 2/3δijÊ
u,S∗
sgs , (8)

Ê = −ηtJ , (9)

where the strengths of the eddy-viscosity νu and eddy-
resistivity ηt are given by

νu = C1∆

√
Êu,S∗

sgs /ρ and (10)

ηt = C2∆

√(
Êu,S∗

sgs + Êb,M
sgs

)
/ρ . (11)
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They are locally scaled by the SGS energies derived from
realizability conditions of the SGS stresses resulting in
[20, 23]

Êu,S∗
sgs = C3∆2ρ|S̃∗|2 and (12)

Êb,M
sgs = C4∆2|M|2 . (13)

In agreement with the a priori analysis [21] the coeffi-
cients are set to C1 = C2 = 0.05 and C3 = C4 = 0.04.
Please note that the coefficient indices are different from
the ones in the referenced paper due to a reduced selec-
tion of models. Furthermore, the SGS Maxwell stress is
neglected as the eddy-diffusivity extension in compress-
ible MHD was found to not match the reference data
(correlations < 0.1) in the a priori analysis. Therefore,
the effects of the SGS Maxwell stress are modeled implic-
itly by the numerical scheme.

b. The scale-similarity (SS) model originates in ex-
perimental hydrodynamics where it was observed that
scale-to-scale energy transfer is self-similar up to inter-
mittency [24]. Formally, this additional scale separation

can be expressed by an additional (test) filter
︸︸2 whose

filter width is larger than the original one. The model is
given by

τ̂uij = C5

︸︸
ρ

(︸ ︸
ũiũj −

︸︸
ũi
︸︸
ũj

)
, (14)

τ̂bij = C6

(︸ ︸
BiBj −

︸ ︸
Bi

︸ ︸
Bj

)
, (15)

Ê = C7

(︸ ︸
ũ×B−

︸︸
ũ ×

︸︸
B

)
, (16)

and mass-weighted filtering also applies to the test fil-
ter where velocity components are involved. Again, we
choose the coefficients according to the a priori analysis:
C5 = 0.67, C6 = 0.9 and C7 = 0.89. The model allows
for energy transfer down- and up-scale and, as a struc-
tural closure, aims at reproducing closely the properties
of the SGS terms and not just their effects on the large
scales.

c. The nonlinear (NL) model is another structural
model and exhibited the highest correlations with refer-
ence data in a priori tests [20, 21]. It can be derived
from Taylor expansion of the inverse filter kernel [10, 25]
and requires no further assumptions about the underly-
ing flow features. We employ the primary compressible
extension resulting in the following model:

τ̂uij =
1

12
∆2ρũi,kũj,k , (17)

τ̂bij =
1

12
∆2Bi,kBj,k , (18)

Ê =
1

12
∆2εijk

(
ũj,lBk,l − (ln ρ),l ũj,lBk

)
. (19)

As previously shown, this model does not require a cal-
ibration coefficient a priori [21] and the prefactor 1/12
originates from the second moment of the Gaussian or
box filter.

TABLE I. Filter weights for a discrete representation of the
box filter based on an optimal filter approach by minimiz-
ing the residual between the analytic and discrete filter over
wavenumbers below the filter width. The filter width ∆ is
given in terms of grid-spacing ∆x.

Identifier
filter width filter weights

∆ wi wi±1 wi±2

GS 1∆x 1 0 0
F3 2.711∆x 0.4015 0.29925 0
F5 4.7498∆x 0.20238 0.22208 0.17673

B. Implementation and explicit filtering

We implemented the different models in the open-
source, community-developed magnetohydrodynamic
code Enzo [26]. The new terms are handled by operator-
splitting within the MUSCL-Hancock framework and
evaluated with centered finite-differences. They are ad-
vanced in time together with the other fluxes by the ex-
isting second order Runge-Kutta scheme.

Furthermore, we implemented a flexible filtering
framework that supports different stencils and weights in
real space. In order to determine the individual weights,
we construct discrete, explicit filters by minimizing the
residual between analytic and discrete filter yielding so
called optimal filters [27]. We optimize for wavenumbers
below the filter width [28]. The resulting weights and fil-
ter widths for a symmetric one-dimensional 3-point (F3),
and 5-point (F5) stencil of the box kernel are listed in ta-
ble I. We construct the corresponding multi-dimensional
filters of N -point one-dimensional stencils by

2i,j,k =

N∗∑

l=−N∗

N∗∑

m=−N∗

N∗∑

n=−N∗

wlwmwn2i+l,j+m,k+n ,

(20)
with discrete filter weights wi, N

∗ = (N − 1)/2, and
indices referring to discrete spatial locations. This trans-
lates to the sequential application of the one-dimensional
filters and results in large 3-d filter stencils (N3), e.g.
27 points for the F3 filter and 125 points for the F5 fil-
ter. However, this construction is more accurate [28] than
the alternative approach of simultaneous application. Fi-
nally, we also use the trivial grid filter (GS). In that case,
the quantities are used as they are computed in the orig-
inal simulation, which corresponds to a natural filter by
the discretization itself.

C. Simulations

All our simulations are run with Enzo [26] using the
HLL Riemann solver within the MUSCL-Hancock frame-
work with second order Runge-Kutta time integration.
Moreover, we close the equations of ideal MHD with
a quasi-isothermal equation of state, i.e. we employ
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an ideal equation of state with a ratio of specific heats
κ = 1.001.

In order to get proper initial conditions for freely
decaying, compressible MHD turbulence, we first start
from uniform initial conditions ρ = 1, u = 0 and

B = (0.6325, 0, 0)
T

(in code units) corresponding to an
initial plasma beta (ratio of thermal to magnetic pres-
sure) of βp = 5. These uniform initial conditions are
then driven in a cubic box with length L = 1 and res-
olution 5123 by a stochastic forcing field that evolves in
space and time [29]. The forcing field has a parabolic
profile between wavenumber 1 < k < 3 and is centered
at k = 2. Moreover, the overall forcing amplitude is set
to V = 3 and distributed between 1/3 compressive and
2/3 solenoidal components. The forcing leads to statisti-
cally isotropic, homogeneous turbulence with root mean
square sonic Mach number of Ms ≈ 3 after two turnover
times T = L/(2V ) and we follow its evolution for a total
of 20T . Assuming that two different snapshots are sta-
tistically independent from each other after one turnover
time, we have an ensemble of 19 different realizations
(at t = {2, 3, . . . , 20}T ) of isotropic, homogeneous turbu-
lence, which are statistically indistinguishable. We take
states from this ensemble as initial conditions for freely
decaying turbulence. This later allows us to analyze en-
semble statistics to better capture the intermittent na-
ture of turbulence.

For each realization we run the following 11 simula-
tions with different configurations – varying the resolu-
tion, models (or lack thereof) and explicit filter, namely:

• 3 implicit large-eddy simulations (ILES). Recall
that in these simulations there is no explicit model
(τ = E = 0), at resolutions of 1283, 2563 and 5123.

• 3 LES with the eddy-viscosity model at a resolution
of 1283: one with no explicit filter (EV-GS); one
with a filter with a three-point stencil (EV-F3);
and one with a five-point stencil (EV-F5).

• 2 LES with the scale-similarity model at 1283 em-
ploying three- (SS-F3) and five-point (SS-F5) ex-
plicit filtering (because a grid-scale scale-similarity
model does not exist).

• 3 LES with the nonlinear model again at 1283 with
all three different filters NL-GS, NL-F3, and NL-
F5.

The highest resolution 5123 ILES simulations are later
used as reference runs. Comparing the results between
the different ILES enables us to evaluate the pure influ-
ence of reduced resolution (and thus reduced dynamics)
on the evolution of the decay. From a comparison of
results between ILES and the different LES at identical
resolution (here 1283) we can draw conclusions on the
influence of the individual models on the evolution.

Each simulation follows the decay for two turnover
times. We capture snapshots every 0.05T resulting in 40

snapshots per simulation. Finally, we note that the ini-
tial conditions at lower resolutions (1283 and 2563) have
been calculated from the initial 5123 snapshot of each re-
alization by coarse-graining, i.e. volume-averaging over
23 and 43 cells, respectively. We choose this approach to
minimize the differences in the initial conditions between
the individual configurations of a particular realization.
In addition to this, all simulations, including the LES,
first decay for 0.2T without model before the actual 2T
decay that we follow and analyze. This is done in order to
obtain converged spectra at a given resolution, because
the process of coarse-graining leaves excess energy at the
smallest scales and the interaction between model and ex-
cess energy is unknown. Moreover, resolution dependent
quantities, e.g. magnetic energy or vorticity (see next
section), relax to their intrinsic value in this transient-
decay.

III. RESULTS

A. Energy spectra

Figure 1 shows the kinetic and magnetic energy spectra
initially at t = 0T and after two turnover times at t = 2T .

Initially, there is basically no variation of the individual
spectra between different configurations. However, the
difference in resolution is clearly visible. The highest res-
olution ensemble (ILES-512) exhibits the most extended
power-law range in the kinetic energy spectrum. Accord-
ingly the wavenumber k where the spectrum drops due to
numerical dissipation is shifted towards larger scales with
decreasing resolution (ILES-256 and ILES-128). This
also confirms our approach of removing coarse-graining
artifacts in the initial snapshots by the initial transient-
decay. We verified that the smallest scales are statis-
tically stationary in the following evolution. The small
peak still visible around k = 2 is due to the original char-
acteristic driving scale of the initial forced simulation.

After two turnover times, the differences between res-
olutions remain the most striking feature in the spectra
with respect to the wavenumbers where the spectrum
wears off. At the lowest resolution, the differences be-
tween the ILES-128 and the different SGS models are
subtle. There exists virtually no difference between the
ILES-128 and the grid-filtered eddy-viscosity (EV-GS)
and nonlinear (NL-GS) model or the scale-similarity runs
(SS-F3 and SS-F5) - both in the kinetic and in the mag-
netic spectrum. The SGS runs of the eddy-viscosity
model with explicit filtering lead to a slightly stronger
dissipative behavior. This is expressed by a marginal re-
duction of energy on the smallest scales k & 30 and more
pronounced (≈ 40%) for the larger filter width (EV-F5)
than for the smaller filter width (≈ 20% - EV-F3). The
nonlinear model (NL-F3 and NL-F5) seems to have a very
similar dissipative behavior to the eddy-viscosity model
given that the spectra coincide for the same filter.
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FIG. 1. Kinetic and magnetic energy spectra at initial time t = 0T and after two turnover times t = 2T of free decay.
The lines correspond to the median over all 19 realizations and the shaded areas (if not hidden by the linewidth) show the
interquartile range. The kinetic energy spectrum has been calculated based on the Fourier transform of

√
ρu. The insets show

a magnification of the configurations in the intermediate wavenumber range at t = 2T .

B. Temporal evolution of mean quantities

The evolution over time of the spatially averaged
kinetic energy, magnetic energy, vorticity magnitude,
current density magnitude and dilatation magnitude is
shown in figure 2. Overall, all quantities smoothly de-
cay over the two turnover times as expected. The panels
show a similar behavior of the SGS models as observed in
the energy spectra. However, there are subtle differences.

The evolution of the kinetic energy, ρu2/2, is con-
verged with respect to resolution and SGS model. In
contrast to this, the magnetic energy, B2/2, shows a clear
separation with resolution. The decreased turbulence in-
tensity or effective Reynolds number at lower resolutions
cannot sustain the original magnetic field strength of the
driven simulation conducted at higher resolution. Thus,
the differences in the initial values at t = 0T can be at-
tributed to the removal of coarse-graining artifacts (here,
the excess magnetic energy for a given resolution) by the
transient-decay. When removing the resolution effects,
e.g. by normalizing each ensemble to its initial value, all
configurations but one (EV-F5) collapse to a converged
evolution. The eddy-viscosity model with the largest ex-
plicit filter shows a ≈ 10% decrease in magnetic energy
indicating increased dissipation. However, in constrast to
the energy spectra, here not only the small scales are af-
fected by the model, but a back-reaction onto the largest
scales has taken place.

The derived quantities, i.e. the vorticity magnitude
|∇ × u|, the current density magnitude |∇ ×B| and the
dilatation magnitude |∇ · u|, exhibit comparable behav-
ior. In the raw data, resolution effects dominate and re-
solving smaller spatial scales leads to larger values. Con-
trary to the evolution of the magnetic energy, this effect

does not vanish when all configurations are normalized
and a lower resolution results in a slightly increased decay
rate. The same four SGS models (EV-F3, EV-F5, NL-F3
and NL-F5) as in the energy spectra now separate from
the bulk (EV-GS, NL-GS, SS-F3 and SS-F5), which is in-
distinguishable from the ILES-128 ensemble. The vortic-
ity and current magnitudes are reduced by 5% (NL-F3),
6% (EV-F3), 10% (NL-F5) and 12% (EV-F5) indicating
very similar behavior with respect to filter width between
eddy-viscosity and nonlinear model. In contrast, the di-
latation magnitude is only reduced by 5% (F3) and 6%
(F5) for the NL models, but by 8% (F3) and 16% (F5)
for the EV models. The latter indicates that the eddy-
viscosity model is more isotropic than the nonlinear one
in agreement with their functional form.

C. Higher-order statistics

After having described the evolution of mean quanti-
ties, we now consider the temporal evolution of the higher
order moments of the distributions. They provide insight
into the tails of the distributions, which are crucial in the
characterization and understanding of, for instance, the
intermittency of turbulence. In general, the variances of
all quantities (kinetic and magnetic energy, and vorticity,
current and dilatation magnitudes) posses the same char-
acteristics as their means in the previous section, i.e. an
overall decay is observed with similar ensemble variations
and configuration separations.

The next higher order moments we consider are the
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FIG. 2. Temporal evolution of the ensemble median (over
19 different realizations) of the spatial mean kinetic energy,
magnetic energy, vorticity magnitude, current density mag-
nitude and dilatation magnitude. The variations in terms of
interquartile ranges are illustrated in the insets.

skewness

skew x =

〈
(x− 〈x〉)3

〉

σ3 (x)
, (21)

with standard deviation σ and the (Fisher) kurtosis

kurtx =

〈
(x− 〈x〉)4

〉

σ4 (x)
− 3 . (22)

The kinetic and magnetic energy skewness and kurtosis
do not discriminate between the different models as the
ensemble variations for each configuration are larger than
the differences between the configurations. This picture
changes when looking at the higher order moments of the
derived quantities. The temporal evolution of the skew-
ness and kurtosis of the vorticity, dilatation and current
magnitude are very similar (with respect to the qualita-
tive evolution of the medians and interquartile ranges) as
shown in figure 3. Thus, we focus on the magnitude of
the current density for a quantitative discussion. Firstly,
both skewness and kurtosis are resolution dependent. A
lower resolution increases the skewness by ≈ 5% (ILES-
256 vs ILES-512) and ≈ 10% (ILES-128 vs ILES-1024),
and the kurtosis by ≈ 10% and ≈ 25%, respectively.

All eddy-viscosity and scale-similarity models follow
this trend. They evolve virtually identically to the ILES-
128 ensemble. Also the nonlinear model based on grid-
scale quantities (NL-GS) does not have a measurable im-
pact on the results. However, the explicitly filtered non-
linear models (NL-F3 and NL-F5) clearly improve over
the ensemble without model. Their evolution is consis-
tent with the higher resolution (ILES-256) results. More-
over, the differences between using a three-point stencil
and a five-point stencil are negligible indicating a con-
verged result.

To further illustrate this we show the instantaneous
probability density function (PDF) of the current magni-
tude at t = 1T in figure 4. The top panel (4(a)) illustrates
the raw PDFs. The ensembles at different resolutions are
clearly identified by an overall shift on the x-axis. This
corresponds to the decrease of the mean with resolution,
as described in section III B. The differences in the higher
order statistics of the different configurations are already
hinted at in the insets. A pure shift would equally affect
the left and right hand side tails. This is observed in
the PDFs of EV-F3 and EV-F5, which are both shifted
to the left in comparison to the implicit LES configura-
tion. In contrast to this, the PDFs of NL-F3 and NL-F5
only exhibit a shift in the right tail and coincide with the
ILES-128 in the left tail indicating a change in the shape
of the PDF.

This difference is evident in the PDFs of the normal-
ized current in figure 4(b), where the individual PDFs
have been normalized by the respective mean values. The
three features previously identified in the temporal evo-
lution of the skewness and kurtosis, i.e. the resolution
differences (ILES-128 vs ILES-256 vs ILES-512), the in-
sensitivity of the EV and SS models, and the improve-
ment by the nonlinear model, are clearly present. In fact,
the ensemble distributions of the nonlinear model (NL-F3
and NL-F5) at a resolution of 1283 match the distribution
of the implicit LES at a resolution of 2563 demonstrat-
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FIG. 3. Temporal evolution of the skewness and kurtosis of the distributions of current density, vorticity and dilatation
magnitude. The lines indicate the median over all 19 realizations. The shaded areas correspond to the interquartile ranges
(IQR). For clarity, they are only shown for ILES-128, ILES-512, NL-F3 and NL-F5 as the IQRs of similar lines are virtually
identical, e.g. the lines of ILES-128, EV-GS, NL-GS, SS-F3 and SS-F5,

ing a clear enhancement. Finally, we emphasize again
that the results of the current density presented in this
subsection are qualitative identical to the ones obtained
for the vorticity and dilatation magnitude, i.e. the explic-
itly filtered nonlinear models match the higher-resolution
ILES.

D. Structure functions

In order to gain further insight into the flow we analyze
the structure functions [e.g. 30]. In particular, we look
at the longitudinal velocity structure functions of order
p

Sp‖(l) = 〈|(u(x + l)− u(x)) · l/l|p〉 (23)

which are given by the moments of the velocity incre-
ments along the direction of separation l assuming ho-
mogeneity and isotropy. Structure functions are related
to the correlation functions and the energy spectrum.
Moreover, they exhibit scaling behavior in the inertial
range Sp(l) ∝ lζp so that scaling exponents ζp can be
determined. Figure 5(a) illustrates the second order lon-
gitudinal structure function S2

‖ for all configurations of

one arbitrary realization after one turnover time of free
decay. All structure functions have been calculated based
on 1010 randomly chosen pair of points. The conver-
gence has been verified by comparing the results with

the ones obtained by using twice the amount of points
for one particular snapshot. Two important features can
be observed. First, the structure functions of all config-
urations, i.e. independent of resolution and presence of
an SGS model, collapse (on top of each other) on scales
& 30∆x. On smaller scales, the differences with respect
to resolution are more pronounced. This is expected since
the increasing numerical dissipation with decreasing res-
olution leads to a decrease of variations in the velocity
field on the small scales. Again, the grid-filtered EV and
NL LES, and the scale-similarity runs are indistinguish-
able from the ILES run. The increased dissipation of
the EV and NL model already observed in the spectra
and mean quantities is also visible here in the slightly re-
duced variations on the smallest scales. Second, no clear
power-law range can be identified in any of the configu-
rations which can be attributed to the limited resolution,
which for these simulations indicates a too low Reynolds
number.

For this reason, we make use of the concept of ex-
tended self-similarity (ESS) stating that the scaling be-
havior with corresponding scaling exponents can be re-
covered by relating structure functions to each other.
While originally discovered in hydrodynamics [31], this
concept works remarkably well in MHD, too. For ex-
ample, in figure 5(b) we plot S2

‖ versus S3
‖ (of the same

snapshot as in figure 5(a)). A power-law behavior for
all configurations is clearly visible. Moreover, the scal-
ing exponents in this representations are by construction
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FIG. 4. Probability density function of the stacked current
density magnitude, i.e. each bin contains the sum over all 19
realizations, at t = 1T . The insets are magnifications of the
indicated regions.

identical to the original ones. Thus, we determine the
individual exponents in this representation by nonlinear
least-square minimization using the lmfit package [32].
With these exponents, we now continue our analysis in
two directions: reevaluation of the structure functions
versus separation distance, and scaling behavior with in-
creasing order p.

Figure 5(c) shows the median (over all 19 realiza-
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(a)Second order longitudinal structure function of one arbitrary
realization.

10−2 10−1 100 101

S3
‖(l)

10−2

10−1

100
S

2 ‖(
l)

ILES-128
ILES-256
ILES-512
scaling 0.694(0)
NL-GS
NL-F3

NL-F5
EV-GS
EV-F3
EV-F5
SS-F3
SS-F5

(b)Second order versus third order structure function
illustrating extended self-similarity of one arbitrary realization.

The best power-law fit (blue, dotted · · · ) to the ILES-512
simulation has an index of 0.694(0).
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(c)Second order structure functions normalized to the third
order structure function scaled by the best-fit exponent. The

lines indicate the median over all 19 realizations. Variations as
measured by the interquartile range are < 9%.

FIG. 5. Different illustrations of second order longitudinal
velocity structure functions S2

‖(l) at t = 1T .
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tion) second order structure function of all configurations
compensated by the corresponding third-order structure
function and scaling exponent, i.e. S2

‖/(S
3
‖)
ζ2 , versus

distance l. The plot illustrates where and to what ex-
tent the power-law scaling is found in the non-normalized
data. Approximate power-law scaling is observed for all
configurations on scales & 20∆x. Below 20∆x the in-
dividual configurations start to deviate from ideal scal-
ing. The deviations grow towards smaller scales for all
configurations, however, to different degrees for different
configurations. As expected, the highest resolution runs
(ILES-512) exhibit the least deviation (at most 6% on the
smallest scale), followed by the intermediate resolution
runs (ILES-256) with ≈ 7% on the smallest scale. At the
lowest resolution, the no-model (ILES-128), grid-scale fil-
tered SGS (EV-GS and NL-GS) and scale-similarity (SS-
F3 and SS-F5) runs show the strongest deviation, ≈ 15%.
The explicitly filtered eddy-viscosity (EV-F3 and EV-
F5) and nonlinear models (NL-F3 and NL-F5) display
an improved behavior over the other low resolution runs.
While the two EV models deviate by 10%, the nonlinear
models deviate 8-9%, reaching almost the performance
of the intermediate resolution runs. Qualitatively, the
same behavior observed for the structure functions of or-
der p = 2 is also observed for the structure functions of
order p = 1 and higher orders.

Finally, we analyze how the scaling exponents evolve
with order p depending on resolution and presence of an
SGS model. Figure 6 illustrates the median coefficients ζo
over all 19 realizations up to order p = 6. The coefficients
have been determined based on nonlinear least-square fit-
ting and employing extended self-similarity. For higher
orders the ESS does not provide robust exponents any
more. The left panel of figure 6 shows the influence of
decreasing resolution on the exponents. While the expo-
nents up to p = 4 are virtually identical, a lower resolu-
tion (ILES-128 and ILES-256) leads to a slight overesti-
mation of ζ5 (2%) and ζ6 (3%) in comparison to ILES-
512. For reference, we also plot the exponents as derived
by She and Leveque [33] under the assumption that the
most singular dissipative structures are filaments

ζp =
p

9
+ 2

(
1−

(
2

3

)p/3)
. (24)

The reference run ILES-512 fits the prediction remark-
ably well with a deviation of only 8h at the highest order
p = 6. In general, the different SGS models and filter-
ing procedures do not have a measurable influence on the
scaling behavior. All behave like the ILES-128 yielding
slightly overestimated exponents at high order, which can
be attributed entirely to the low resolution.

E. Computational efficiency

Finally, we compare the additional computational
costs incurred with the calculation of the different SGS

TABLE II. Computational efficiency of the different SGS
models relative to the no-model run at identical resolution
(ILES-128). For reference, the efficiency of the no-model run
at the next higher resolution (ILES-256) is also shown. The
numbers represent the mean values (at the fluid level) over
three test runs of 300 cycles each. Each run used the same
executable on a single machine employing 8 MPI-processes
(no threading). This corresponds to a 643 grid per process,
as suggested by the Enzo documentation.

GS F3 F5

NL 1.175(5) 1.468(5) 2.411(7)
EV 1.133(5) 1.431(6) 2.368(8)
SS 1.949(8) 4.804(16)
ILES-256 9.242(28)a

a Please note that this number only includes the time per cycle.
The total computational costs are increased by another factor
of & 2 due to the decreased timestep at higher resolution.

models and the filtering. Given that all LES were con-
ducted at a resolution of 1283 grid points, we compare
the relative overhead over the no-model ensemble at the
same resolution (ILES-128). Table II lists the mean ra-
tios of the time per individual cycle at the fluid level, i.e.
other factors such as inter-process communication are not
included. The time per cycle increases for all SGS models
when compared to the ILES-128 as expected. Further-
more, two general trends are visible.

First, the computational costs increase with increasing
filter width. For example, the nonlinear model with grid-
scale quantities increases the time per cycle by a factor of
≈ 1.18 (NL-GS). Explicit filtering introduces additional
computations and is thus even more expensive, i.e. a
factor of ≈ 1.47 for NL-F3 and of ≈ 2.41 for NL-F5, re-
spectively. The unproportional increase in computational
costs between F3 and F5 is easily explained by the unfa-
vorable memory access in the filtering procedure. For F5
the filter is build upon a stencil involving 53 = 125 points
resulting in many accesses to non-contiguous memory
and thus cache-misses.

Second, the eddy-viscosity and nonlinear model in-
troduce a similar overhead, with EV being a few per-
cent cheaper than NL, while the scale-similarity model is
about twice as expensive as the other two models. The
latter is attributed to the additional (comparatively ex-
pensive, explicit) filter operations. NL and EV only re-
quire filter operations on the 7 primary quantities (ρ, ũ
and B). The scale-similarity models also needs all fil-

tered mixed quantities (
︸ ︸
ũiũj ,

︸ ︸
BiBj , and

︸ ︸
ũ×B) which

involves 15 additional filter operations in total.
Finally, we also tested how the computational costs

increase for a no-model run at the next higher resolution
(ILES-256). At the level of a single fluid cycle the time
increases by factor of ≈ 9. However, this does not yet
take into account that the timestep is also reduced by
a factor of & 2 at 2563 versus 1283. Thus, the total
time required to reach a certain state in the simulation
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FIG. 6. Scaling exponents ζp of the longitudinal velocity structure functions of order p at t = 1T . The lines indicate the median
over all 19 realization and the errorbars illustrate the interquartile range. For reference, the theoretical scaling ζSLp derived by
She and Leveque [33] is shown in the left panel, and the reference simulation (ILES-512) is drawn in all panels.

is effectively increased by a factor of & 18.

IV. DISCUSSION

One of the most striking results from the analysis in
the last section is that models calculated from quanti-
ties at the grid-scale, i.e. EV-GS and NL-GS, and scale-
similarity models (SS-F3 and SS-F5) have no measurable
impact on the statistics of the flow. The results for the
grid-scale based models are in agreement with findings for
finite-difference schemes [34, 35] and for shock-capturing
methods [36], i.e. numerics dominate over (eddy-viscosity
type) SGS models when no explicit filtering is applied.
However this does not explain the results for the scale-
similarity closures, which employ an explicit filter. A
possible explanation for the absence of any observable
effect (apart from a very short transient behavior, e.g. in
the kurtosis and skewness of the current at t < 0.1T as
visible in figure 3) is that the filter separation is still too
small. Physically, this translates to the statement that
the modeling assumption of self-similar turbulence is not
fulfilled on these numerically strongly damped scales.

Another observation concerns the convergence with fil-
ter width for explicitly filtered eddy-viscosity (EV-F3 and
EV-F5) and nonlinear (NL-F3 NL-F5) models. The en-
ergy spectra and mean quantities exhibit a small depen-
dency on the filter width indicating increased dissipative
behavior with larger ∆. However, this is secondary from
a practical point of view because a smaller explicit filter
is desireable for two reasons. First, higher order statis-
tics, e.g. skewness, kurtosis and normalized structure
functions, show approximately converged results for F3
and F5. Thus, the improvements over the ILES-128 can
already be achieved with the smaller explicit filter and
the nonlinear model (NL-F3) while possessing a smaller
intrinsic dissipation and being computationally more ef-
ficient than the F5 counterpart. Second, larger explicit
filters in their current form are impractical for actual LES

in any case.
Due to the unfavorable memory access in the filtering,

the computational cost grows exponentially with increas-
ing filter width. In addition, more and more ghost zones
are required increasing the costs even further. Build-
ing multi-dimensional filters based on the simultaneous
application of one dimensional ones rather than the se-
quential application could be a potential way out. Even
though they are found to be slightly less accurate [28],
their multi-dimensional stencil size is decreased dramat-
ically, i.e. from N3 to 3(N − 1) + 1 supporting points in
three dimensions with N being the number of points for
the 1-d filter. Alternatively, the filtering could be realized
in spectral space. While the process of filtering itself is
then reduced to a simple local multiplication, additional
complexity independent of the filter width, is introduced
by the transformations between real and spectral space.

Our current filtering framework could also be further
optimized to reduce the computational overhead of the
filtering. For example, cache misses would be partly
avoided by using fixed, compiled-in stencils rather than
dynamic ones in each cycle. Independently of this, in
practice the estitamed SGS modeling overhead in a sim-
ulation is rather conservative. The total wallclock time
always depends on additional factors than the time spent
at the pure fluid level, most notably inter-process com-
munication. Moreover, additional physics present in the
simulation such as gravity or chemistry can reduce the
relative overhead introduced by an SGS model even fur-
ther.

Finally, we comment on the numerical stability of the
different models. All models and filters lead to stable
simulations and we did not employ any explicitly regu-
larization. While this comes as no surprise for the eddy-
viscosity type models, which are only capable of trans-
ferring energy down-scale, other groups, e.g. [17, 37],
typically find that regularization is required for scale-
similarity and nonlinear type models. These models also
allow for up-scale energy transfer and are thus capa-
ble of seeding numerical instabilities when this inverse
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transfer is not controlled. Most frequently, both type
of models are therefore supplemented with an additional
eddy-viscosity type term which successfully stabilizes the
simulations. However, this only concerns (non shock-
capturing) finite-volume, finite difference or (pseudo-)
spectral schemes. In our case of a shock-capturing finite-
volume scheme, the inherent numerical dissipation acts
as an effective eddy-viscosity model (thus the term im-
plicit LES, see e.g. [19]) and evidently provides sufficient
regularization for stable simulations.

V. CONCLUSIONS AND OUTLOOK

In this paper we analyzed the free decay of homoge-
neous, isotropic, supersonic MHD turbulence with differ-
ent SGS models and without explicit model on various
grid resolutions. SGS models are typically introduced
to LES in order to incorporate unaccounted effects from
below the grid-scale, and to improve the quality of the
simulation at lower computational cost. We measured
the quality of the SGS models by their capability to re-
produce the results of a reference simulation at higher
resolution. The reference quantities included the energy
spectra, the evolution of different statistical moments of
the kinetic and magnetic energies, the vorticity, the cur-
rent density and the dilatation magnitudes. In total,
we compared three SGS models: eddy-viscosity, scale-
similarity and nonlinear. Additionaly, we evaluated the
influence of using implicit-, grid-filtered quantities ver-
sus explicitly filtered quantities to calculate the model
terms. We analyzed an ensemble of 19 different initial
conditions for each configuration as temporary, transient
fluctuations can easily dominate individual simulations.

We find that the simulations employing a grid-filtered
eddy-viscosity (EV-GS) or nonlinear (NL-GS) model, or
a scale-similarity model with the tested explicit filters
(SS-F3 and SS-F5) produce results that are indistinguish-
able from an implicit LES, i.e. without an explicit model,
at the same resolution. Moreover, we find that the eddy-
viscosity and nonlinear models with the two tested ex-
plicit filter widths, i.e. with filter widths of 2.71∆x (EV-
F3 and NL-F3) and 4.75∆x (EV-F5 and NL-F5), intro-
duce little additional dissipation on the smallest repre-
sented scales e.g. in the energy spectra or the evolu-

tion of the mean quantities. Finally, the nonlinear model
(NL-F3 and NL-F5) improves higher order statistics of
small-scale dependent quantities, such as the kurtosis and
skewness of the current density, dilatation and vorticity.
For these quantities, the results of an ILES at doubled
resolution (in each dimension) can be achieved while in-
troducing only a small computational overhead — less
than factor of 1.5 (versus ≈ 16 for the higher-resolution
ILES). This similarly applies to the normalized structure
functions and is independent of the explicit filter width.

Based on these results we conclude that an explicit fil-
ter is required in order to obtain a measurable impact of
an SGS model for shock-capturing finite-volume schemes
of second order. In how far this conclusion holds for
schemes of higher order and more dynamic versions of
the SGS models, e.g. with dynamic coefficients, is yet
to be seen and subject to future work. Furthermore, ad-
ditional dissipation for the explicitly filtered models is
not required as numerical dissipation proves to be suf-
ficient (if not too high). Thus, the introduction of an
eddy-viscosity model in these schemes is unnecessary.
However, as the nonlinear model improves higher order
statistics, it would be desirable to remove the unneces-
sary dissipation to improve the lower-order statistics as
well. This kind of regularization is also subject of future
work. Finally, the nonlinear model in its current version
can readily be used with a small explicit filter in situa-
tion where higher order statistics are important at little
extra cost. The associated code will be made publicly
available together with the publication.
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6 Summary and conclusions

In this thesis, we introduced and validated a new nonlinear subgrid-scale model for highly
compressible MHD turbulence. Overall, we pursued the following structured approach:

First, we proposed a simple nonlinear closure (Grete et al. 2015) and compared it to
the most established closure in literature, i.e. a closure of eddy-viscosity/Smagorinsky
type where the local strengths of the turbulent viscosity (and resistivity) are regulated via
the SGS energy. The comparison was based on a priori tests in the supersonic regime
(Ms ≈ 2 − 4) of homogeneous, isotropic, isothermal MHD turbulence. We analyzed the
turbulent energy cascade flux across a fixed filter scale and the angular alignment be-
tween exact and predicted SGS electromotive force. We found that the simple nonlinear
closures for all SGS terms, i.e. kinetic and magnetic SGS stress and EMF, outperform the
traditional closures in all tests. They have consistently higher correlations in the energy
fluxes, are capable of reproducing the up-scale energy transfer present in the reference
data, and show a preferred alignment with the data vector versus random alignment for
the eddy-viscosity closures. At the same time, the free coefficients that come with all clo-
sures proved to exhibit negligible variations in the case of the nonlinear closures whereas
significant variations (and even switching signs) are observed for some coefficients of
the eddy-viscosity closure. In addition, we proposed (magnetic) and tested (kinetic and
magnetic) instantaneous closures for the SGS energies and showed that both are well cor-
related with the data maintaining virtually constant coefficients throughout the datasets.

Second, motivated by these promising results, we analytically derived fully compress-
ible nonlinear closures (Vlaykov et al. 2016) based on an approximate deconvolution ap-
proach via a truncated gradient expansion of the filter kernel. These closures explicitly
take into account variations in the density. While the SGS Reynolds stress closure re-
mains unaffected because, as we show, compressibility effects are accounted for by the
mass-weighted filtering operation, the closure for the EMF has an additional term. Given
that this term is proportional to the partial derivatives of the logarithmic density, it is first
expected to be important in the highly supersonic regime where very strong density vari-
ations exist. Moreover, we also showed that in the case of mass-weighted filtering the
filtering operation and derivation do not commute any more so that additional terms enter
both, SGS Reynolds stress and EMF, closures. Eventually, we discussed the energy and
cross-helicity dissipation properties of the compressible nonlinear closures and specifi-
cally highlighted the potential channels of up-scale transfer, e.g. due to compression via
the SGS Maxwell stress.

Third, we largely extended the a priori analysis in Grete et al. (2016) in several ways
such as reference quantities, parameter space and closures tested. The reference quanti-
ties covered not only the turbulent energy cascade flux, but also turbulent cross-helicity
cascade flux, and the total fluxes of both energy and cross-helicity. All these quantities
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evaluate the functional performance — as does the average (i.e. global) SGS dissipation,
which we analyzed, too. In addition, we also assessed the structural performance of differ-
ent closures, in particular, the topological structure of the SGS stresses, and the alignment
and magnitude of the SGS vectors in the primary equations. All tests were performed over
a parameter space now ranging from the weakly compressible (Ms ≈ 0.2) to the highly
compressible (Ms ≈ 20) regime. With respect to the filtering, not only the Gaussian filter
was used, but also the box filter. Furthermore, the filter scale was varied significantly so
that it covered the full range from close to the forcing scale up to the beginning of the
(numerically) dissipative scales. Lastly, the amount of tested closures has been greatly in-
creases. Specifically, closures of scale-similarity type were tested next to eddy-viscosity
and nonlinear type closures. For the latter two types, also scalings based on different
SGS quantities that locally determine the strength of the overall closure were evaluated,
including SGS energy and SGS cross-helicity based ones. We found that across all ref-
erence quantities and parameters the nonlinear closures outperform closures based on the
other two approaches. In particular, we were able to show that the explicit compressible
extension of the nonlinear closures significantly increases the correlation between closure
and reference data when compared to the simple compressible version in the highly su-
personic regime. Even more, the original (unscaled) nonlinear closures do not require
an external coefficient as the optimal coefficient (from nonlinear least-square fitting) was
found to be unity.

Fourth and finally, we implemented the best performing closure of each type (eddy-
viscosity, scale-similarity, and nonlinear) in an existing shock-capturing finite-volume
code and analyzed their performance as an SGS model in large eddy simulation of decay-
ing, supersonic MHD turbulence (Grete et al. submitted). The test setup was comprised
of an ensemble of 19 different realizations in which for each we followed the decay from
an initial sonic Mach number of Ms ≈ 3 for all models. Moreover, we implemented an
explicit filtering operation and varied the effective scale on which the SGS models were
calculated from using the grid-scale (∆x, no explicit filter) to calculations based quanti-
ties subject to an explicit 5-point stencil filter ≈ 5∆x. We then compared the evolution
against the results from (no model) implicit LES at the same and higher resolution. We
found that lower-order statistics, e.g. the mean magnitudes of kinetic energy, magnetic
energy, vorticity, current and dilatation are mostly dominated by resolution effects and
that the presence of an SGS model has virtually no influence on the flow. This is also
true for the higher-order statistics (e.g. skewness and kurtosis) if the SGS models are
calculated at the grid-scale, or in case of the scale-similarity model even in general. In
contrast to this, the nonlinear SGS model employing an explicit filter is able to match the
performance of the reference run at twice the resolution (in each dimension), for instance
for derived quantities such as the current density and the vorticity magnitude. We also
showed that the improvement is present in the longitudinal velocity structure functions.
Finally, we concluded that, despite the odds of being masked by the numerical dissipation
in shock-capturing methods, the presence of an SGS model (in particular the proposed
nonlinear one) improves higher-order statistics, which are essential in our understanding
of turbulence.

Related work to the subject of subgrid-scale modeling of (highly) compressible MHD
turbulence in finite-volume methods is rather sparse, or, more precisely, non-existent to
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our knowledge. However, different aspects have been covered by different groups.
One of the most active groups with approximately 10 papers since 2006 is probably

Chernyshov et al. (2014). The latter is a review covering their previous work. In gen-
eral, they employ a compressible framework to analyze mostly decaying, e.g. Chernyshov
et al. (2006, 2007, 2009) MHD turbulence. Nevertheless, their simulations typically cover
the weakly compressible and sub-Alfvénic regime only. Thus, they can employ a high-
order finite-difference scheme and forgo shock-capturing mechanisms. Similar to our
work, they evaluate different SGS models including models of eddy-viscosity type (with
different scalings) and of scale-similarity type. However, despite using a compressible
formalism they always neglect the SGS Maxwell stress referring to Müller and Carati
(2002), who find that it has no measurable impact on the results of forced and decaying
incompressible MHD turbulence using a pseudospectral code. In general, Chernyshov
et al. (2014) find that the Smagorinsky-type eddy-viscosity model with a dynamic cal-
culation of the coefficients (Germano et al. 1991, Lilly 1992) and a cross-helicity based
model provide the best results when comparing LES (at a resolution of 643) to DNS (at
a resolution of at most 2563). In light of their numerical scheme this is expected. Given
that high-order finite-difference schemes usually have very low numerical dissipation any
SGS model providing additional mechanisms to dissipate energy is expected to improve
the quality of the solution.

Similar findings are reported by Miki and Menon (2008), who use a finite volume code
based on central differences. Again, they employ a compressible formalism in the deriva-
tion of the closures, but eventually apply them in the incompressible limit (of forced,
decaying and rotating turbulence). In contrast to the previous works, they only use single
closure strategy, which, in turn, is much more elaborate. In particular, they build upon the
early work of Yoshizawa (1990), who used a two-scale direct interaction approximation
to derive closures for all terms. Both SGS stresses are modeled with diffusive terms, i.e.
a Smagorinsky-type eddy-viscosity for the kinetic part and an equivalent eddy-diffusivity
for the magnetic part. The electromotive force contains three terms: an α term propor-
tional to the residual helicity, a β term corresponding to an eddy-resistivity, and a γ term
incorporating SGS cross-helicity. In addition, Miki and Menon (2008) introduce dynam-
ical equations for the kinetic and magnetic SGS energies, which are also used to locally
determine the strengths of the diffusive SGS terms. A similar framework is also used by
Yokoi (2013) but for incompressible mean-field simulations. In comparison to our results,
we were not able to confirm any particular significance of the eddy-diffusivity closure for
the SGS Maxwell stress or the cross-helicity related term in the EMF a priori. In fact, in-
dependent of the scaling used for the stress tensor (e.g. based on cross-helicity or energy),
closure and reference data are virtually uncorrelated, and, in the case of the EMF, the ad-
ditional cross-helicity term does not improve the moderate correlations already provided
by an eddy-resistivity term.

This is also in agreement with Müller and Carati (2002), who, as already mentioned,
measure no impact by these terms a posteriori. More generally, they compare the results
from DNS of forced (at a resolution of 2563) and decaying (5123) helical MHD turbulence
to LES (643) with different SGS models including a dynamic eddy-viscosity model, a
cross-helicity based model, a model of nonlinear type, and mixed variants of these. Given
their low-dissipation pseudospectral scheme they find that basically all models improve
the low resolution LES by providing an additional dissipation mechanism. However, one
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model, the cross-helicity based, model is observed to "perform outstandingly well". This
is attributed to the fact that, by allowing for a negative eddy-resistivity in the EMF clo-
sure, magnetic energy can be transferred to large scales effectively supporting the inverse
cascade of magnetic helicity.

While all the results mentioned so far are only concerned with a posteriori perfor-
mance of MHD SGS models, there also exists (to our knowledge) a single work related
to a priori verification. Balarac et al. (2010) analyze eight different EMF models, includ-
ing eddy-resistivity, scale-similarity, nonlinear and mixed models, in an incompressible,
forced, homogeneous, isotropic MHD turbulence simulation using a pseudospectral code
at a resolution of 2563. Similar to our work, they use different filter types (here, spec-
tral and box) and scales, and differentiate between functional and structural performance.
They find that structural models, i.e. of scale-similarity and nonlinear type, provide bet-
ter results than functional ones with the mixed scale-similarity model (complemented by
an eddy-resistivity term) showing overall the best performance. While their functional
analysis is based on the turbulent energy cascade flux (as is our first investigation), their
structural evaluation makes use of optimal estimator theory. Moreau et al. (2006) gener-
ally proposed this concept to a priori verification of LES. To be more specific, an artificial
neural network (ANN) is used (i.e. trained) to provide the best approximation to an ob-
servable variable (e.g. the EMF) given a limited set of input variables (e.g. the filtered
quantities). Just recently, Gamahara and Hattori (2016) employed this method to study
models for the SGS Reynolds stress in incompressible hydrodynamics. The ANN does
initially not possess any structure as it is first constructed during the training phase. In-
terestingly, they find that the final ANN after the training closely resembles a nonlinear
type SGS model in terms of structure and performance. This is also in agreement with
the findings of a project (in progress) of ours in which we briefly evaluated MHD SGS
closures with ANNs.

Main conclusions The majority of the related work covers the incompressible or weakly
compressible MHD regime. However, supersonic shocks and magnetic fields are present
in many different astrophysical systems, from the solar wind over the interstellar medium
to galaxy clusters. Given their compressible nature and their strong influence on the over-
all dissipative behavior of a system, compressible effects should not be neglected easily.
Instead, an explicit and correct treatment is often crucial to the representation of such
physical system in a simulation. The new nonlinear closures explicitly take compressibil-
ity into account. We also showed that it significantly improves the SGS model perfor-
mance in the highly supersonic regime. Thus, large eddy simulations of, for example, the
molecular clouds in ISM with Mach numbers Ms & 10 should benefit from this explicit
treatment.

Turbulent pressure contributes a significant fraction to the total pressure in many sys-
tems. In the presence of magnetic fields, the turbulent pressure is not only of hydrody-
namic nature any more, but there is turbulent magnetic pressure, too. Again, omitting
this feature potentially translates to omitting a relevant physical ingredient in the over-
all dynamics. The nonlinear closure automatically accounts for the unresolved magnetic
pressure and no special treatment is required. Hence, LES with the nonlinear SGS model
could, for instance, contribute to the discussion on the role of the negative effective mag-
netic pressure instability (NEMPI, Brandenburg et al. 2011). This instability is driven by
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the imbalance between the kinetic and magnetic contributions to the total turbulent energy
and turbulent pressure. It allows for the large-scale concentration of coherent magnetic
fields from small-scale motion and thus might drive the formation of solar active regions.

Finally, dynamo processes are present on many different scales in the universe. In
the process, kinetic energy is converted to magnetic energy. However, the process is not
necessarily local in the sense that magnetic energy can grow on the large scales from
turbulent motions on the smallest scales (cf. the small-scale dynamo). Naturally, the
nonlinear model allows for energy transfer from the unresolved to the resolved scales.
For this reason, the known resolution dependence of small-scale dynamo action could
possibly alleviated by introducing the nonlinear SGS model to the simulations.

Outlook As we were able to show in the previous chapter, SGS models, in fact, work
in shock-capturing finite volume methods when explicit filtering is used. In particular,
the nonlinear model is able to improve higher-order statistics. However, it also slightly
increases the dissipation on the smallest scales. Generally, this behavior is unfavorable
in shock-capturing methods given that the numerical dissipation should be kept to a min-
imum in order to achieve the highest accuracy possible. An optimal shock-capturing
scheme thus provides this minimum only. For this reason, regularization of the nonlinear
model could be introduced when applied in shock-capturing schemes targeting, for exam-
ple, highly supersonic astrophysical flows. The discussion would, of course, be different
for other schemes such as spectral schemes or higher-order compact central ones. In the
latter case, Vreman et al. (1997) suggested to limit the excessive backscatter of nonlin-
ear type models by using the model locally only in places where it produces down-scale
energy transfer. This idea is based on the observation and a similar proposition for the
scale-similarity model by Liu et al. (1994), which is also known to produce excessive
backscatter. More recently, this approach has been refined by Vollant et al. (2016) who
split the flux according to compressional, stretching and rotational effects and eventually
suppress the component associated to inverse transfer only. This concept could be trans-
ferred to shock-capturing schemes with a fundamental difference: suppressing the down-
scale transfer rather than the backscatter. Assuming that the shock-capturing provides just
the necessary amount of dissipation, the nonlinear model would then be able to provide
a channel for up-scale transfer (of e.g. magnetic energy) while not introducing additional
dissipation at the same time. An alternative approach to reduce the excess dissipation
of the nonlinear model could be the introduction of a mixed model, i.e. the nonlinear
model is complemented with an eddy-viscosity term. In contrast to non-shock-capturing
schemes, where this type of mixed model is introduced to stabilize the backscatter of
structural models (Bardina et al. 1983), here, a negative eddy-viscosity could be used to
counteract the dissipative effect of structural models. However, we point out that this kind
of mixed model has no physical grounds and would be motivated from a purely numerical
point of view.

Another potential improvement of the overall implementation in practice concerns the
explicit filtering. Given that this type of filter is essential (grid-scale based models have no
significant influence on the evolution of the flow) an efficient calculation is desirable. Due
to the nature of being a convolution, this is straightforward in spectral space, whereas the
procedure is much more inefficient in real space implementations, e.g., because of distant
memory access. In astrophysical simulations adaptive mesh refinement (AMR) (Berger
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and Colella 1989) is often used to bridge the gap between the vastly varying scales. In
AMR, regions of interest are simulated at a higher resolution than the root grid. However,
the quantities, which are calculated on fine grids, are also present on the coarser grid —
and already in a smoothed, averaged fashion. These quantities would naturally correspond
to the low-pass filtered representations of the quantities calculated on the smaller scales.
Unfortunately, this kind of implicit filtering is anisotropic by construction. A cell on the
coarse grid hosts 23 finer cells (in the case of a 3-dimensional simulation and a refinement
factor of 2) of which none is spatially centered with respect to the higher level. In how far
this influences the integrated results can hardly be estimated a priori. For this reason, we
suggest a more detailed study on the connection between explicit filtering and AMR.

There also exists an interesting extension of the overall formalism. The deconvolution
approach we used to derive the compressible nonlinear model straightforwardly extends
to closure terms of higher order. Thus, it could also be used to model the unclosed terms in
the dynamic equations of e.g. SGS kinetic and magnetic energy, or SGS cross-helicity. In
contrast to the zero-equation closures we derived, these additional equations would allow
for an intermediate reservoir to mediate between different (additional) SGS physics.

In astrophysics, this technique is used by Schmidt et al. (2014) to explicitly treat the
commutator between grids of different resolutions in AMR, or by Braun and Schmidt
(2015) to take non-adiabatic processes in the multi-phase ISM into account. While this
treatment is so far only applied in hydrodynamic simulations, it offers great potential in
MHD applications, too. A more detailed representation of subgrid-scale physics could
significantly improve the quality of simulations, especially in processes where the in-
teraction between (unresolved or small-scale) kinetic and magnetic fields is important.
This concerns, for example, simulations involving a dynamo, the redistribution of mag-
netic fields from supernovae, or the joint dynamics of turbulent motion and small-scale
magnetic fields during galaxy mergers (Rodenbeck, Kai and Schleicher, Dominik R. G.
2016). Similarly, Egan et al. (2016) presented a first step towards a more detailed, co-
herent description of subgrid-scale physics in the ICM. The local plasma properties and
in particular the interaction of plasma turbulence and magnetic fields should eventually
be incorporated in an SGS model on the macroscopic scales. This model aims at treating
different physical processes including thermal conduction, viscosity and turbulence as in-
trinsically linked below the grid scale. Thus, a uniform description, i.e. a self-consistent
SGS model from first principles, is desirable.

We conclude that this work provides a solid basis from which it can be expanded
into many different areas: from a theoretical point of view connected to the numerical
scheme, over practical aspects concerning the implementation, to actual simulations of
a wide variety of (astrophysical) phenomena including stellar convection, the ISM and
galaxy cluster dynamics — and all this despite being barely able to simulate the simple
cup of coffee discussed at the very beginning.
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Appendix





A Discrete filter approximations

1 a l p h a = [ 1 , 1 / 1 2 , 1 / 8 0 , 1 / 4 4 8 , 1 / 2 3 0 4 ] # Box f i l t e r
# a l p h a = [ 1 , 1 / 1 2 , 1 / 4 8 , 5 / 5 7 6 , 3 5 / 6 9 1 2 ] # G a u s s i a n f i l t e r

3

N = 2 # o r d e r / 2
5 eps = v a r ( ’ e p s i l o n ’ )

a = v a r ( ’ , ’ . j o i n ( ’ a%s ’%i f o r i i n r a n g e (N+1) ) )
7

eqns = [ a0 == e v a l ( ’1− ’ + ’− ’ . j o i n ( ’ 2∗ a%s ’%i f o r i i n r a n g e ( 1 ,N+1) ) ) ]
9

# t h i s l i s t h e l ’
11 f o r l i n r a n g e ( 1 ,N+1) :

l h s = eps ^ ( 2∗ l ) ∗ a l p h a [ l ]
13 r h s = 2 ∗ sum ( a [ i ]∗ i ^ (2∗ l ) f o r i i n r a n g e ( 1 ,N+1) )

eqns . append ( l h s == r h s )
15 s o l v e ( eqns , a )

Listing A.1: Code snippet showing the symbolic calculation in Sage (http://
sagemath.org) of the discrete filter operator coefficients that match the continuous box
or Gaussian filter kernel.

1 d e f G d i s c r e t e ( k ,w) :
# t h i s e x p r e s s i o n a l r e a d y employs p r e s e r v a t i o n o f c o n s t s .

3 # w0 + 2∗w1 = 1
r e t u r n ( 1 . + 2 . ∗w[ 1 ] ∗ ( np . cos ( k ) −1 . ) )

5

d e f GBox ( k , eps ) :
7 i f k == 0 . :

r e t u r n 1 .
9 e l s e :

r e t u r n 2 . / ( k ∗ eps ) ∗ np . s i n ( k∗ eps / 2 . )
11

vGBox = np . v e c t o r i z e ( GBox )
13

15 d e f r e s i d u a l ( params , x ) :
w = [ params [ ’w0 ’ ] . va lue ,

17 params [ ’w1 ’ ] . v a l u e ]

19 eps = params [ " eps " ] . v a l u e
a n a l y = vGBox ( x , eps )

21 d i s c r = G d i s c r e t e ( x ,w)

23 r e t u r n ( ana ly − d i s c r )
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A Discrete filter approximations

25 # use d i f f e r e n t i n i t i a l v a l u e s i n o r d e r t o f i n d l o c a l minima
f o r eps i n np . l i n s p a c e ( 1 . , 3 . , 2 0 ) :

27 params = P a r a m e t e r s ( )

29 params . add ( ’w1 ’ , v a l u e =0 .25 , min = 0 . )
params . add ( ’w0 ’ , exp r= ’ 1 − 2∗w1 ’ )

31 params . add ( " eps " , v a l u e=eps , min =1 . , max = 3 . )

33 N = 315
x = np . l i n s p a c e ( 0 . , np . pi , N, e n d p o i n t=True )

35

o u t = minimize ( r e s i d u a l , params , a r g s =(x , ) )

Listing A.2: Python code snippet to calculate optimal coefficients of the discrete box filter
to match the continuous filter with the lmfit package.

Table A.1: Discrete filter coefficient values for a positive, symmetric box filter. The star
(*) marks the solution with the lowest residual for a given order in the cases where the
coefficients have been determined by least-square fitting to the analytic function.
ID Case order ε a0 a1 a2 a3

O2-Ia-D2.45 Ia 2
√

6 1/2 1/4 — —
O4-Ia-D4.58 Ia 4 4.5854 0.18886 0.25 0.15556 —
O6-Ia-D4.58 Ia 6 4.5848 0.18776 0.24983 0.15612 0.00017
O6-Ia-D6.59 Ia 6 6.5927 0.16224 0.13932 0.16888 0.11068

O2-Ib-D2.69 Ib 2 2.6939 0.39524 0.30238 — —
O4-Ib-D2.77 Ib 4 2.7711 0.38438 0.30376 0.0040484 —
O4-Ib-D4.67 Ib 4 4.671 0.21488 0.22038 0.17218 —
O6-Ib-D4.77 Ib 6 4.7733 0.20582 0.21659 0.17834 0.0021545
O6-Ib-D6.63 Ib 6 6.6274 0.14217 0.15446 0.1589 0.11556

O2-IIa-D2.71 IIa 2 2.711 0.40149 0.29925 — —
O4-IIa-D2.81* IIa 4 2.8051 0.37989 0.30335 0.00671 —
O4-IIa-D4.75 IIa 4 4.7498 0.20237 0.22208 0.17673 —
O6-IIa-D2.81 IIa 6 2.8051 0.37989 0.30335 0.00671 0.00000
O6-IIa-D4.85* IIa 6 4.8526 0.20015 0.21362 0.18112 0.00518
O6-IIa-D6.77 IIa 6 6.7661 0.15192 0.14379 0.15472 0.12555

O2-IIb-D2.60 IIb 2 2.5978 0.43787 0.28106 — —
O4-IIb-D2.69 IIb 4 2.6926 0.40915 0.29325 0.00222 —
O4-IIb-D4.57* IIb 4 4.5709 0.18768 0.25137 0.15479 —
O6-IIb-D2.69 IIb 6 2.6926 0.40915 0.29320 0.00222 0.00000
O6-IIb-D4.67 IIb 6 4.6743 0.19559 0.23451 0.16668 0.00101
O6-IIb-D6.55* IIb 6 6.5461 0.18695 0.12084 0.18130 0.10438
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