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ABSTRACT

Thermal analysis has become a core activity of the spacecraft and space subsystems design.
Thermal models complexity is increasing and, for some activities, it is necessary to reduce the
size of the models in order to make them easier to handle and faster to analyze (among other
reasons). Thermal model reduction is a recurrent activity for space thermal analysts, thus the
convenience of having a technique to reduce the models in an automatic and reliable way.

A matrix method is developed to reduce the number of elements of spacecraft thermal
mathematical models based on the lumped parameter method. The aim of this method is to
achieve a satisfactory thermal model reduction for steady state problems, in an automatic way,
while preserving the physical meaning of the system and the main characteristics of the model.
The simplicity of the method, and the computational cost, are also taken into account. The
reduction process is based on the manipulation of the conductive coupling matrix, taking into
account the temperature differences among the nodes of the detailed model. The resulting
matrix is then treated as an undirected sparse graph adjacency matrix. Then, a depth-first search
algorithm is used to find the connected components, which defines the condensed nodes.
Finally, all the thermal entities are reduced, and the results from the condensed model are
compared to those from the detailed one, upon definition of results correlation criteria. A brief
theoretical introduction is given before describing the reduction algorithm in detail.

The entire reduction process is tested on a simple model, describing the method step-by-step
procedure. Then the reduction technique is tested on a real thermal model, showing a good
performance. The reduced thermal model is also tested in transient conditions, in order to check
the usability of the condensed model in that kind of analysis.

In the conclusions section the characteristics and limitations of this method are shown, as well
as the possible future work to be done in order to improve the method and solve its deficiencies.

Finally, the annex includes some additional material that completes what is exposed along the
main body of the dissertation.
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RESUMEN

El análisis térmico constituye una parte clave del diseño de vehículos espaciales y sus diferentes
subsistemas. Los modelos térmicos usados a tal efecto han ido ganando en complejidad y
tamaño conforme han aumentado los recursos informáticos disponibles. A menudo, es necesario
reducir el tamaño de dichos modelos, con el objetivo de facilitar su uso y acortar los tiempos de
análisis, entre otras razones. La reducción de modelos térmicos es una actividad recurrente para
el  analista,  de  ahí  la  conveniencia  de  disponer  de  un  método  fiable  y  automático  que  permita
obtener dichos modelos reducidos.

Para reducir el número de nodos de los modelos térmicos basados en el método de las
capacitancias concentradas, se ha desarrollado un procedimiento matricial. El objetivo de dicho
procedimiento es conseguir una reducción satisfactoria para problemas estacionarios, de forma
automática, preservando el significado físico y las características del modelo. La simplicidad del
método y su coste computacional han sido también tenidos en cuenta. El proceso de reducción
está basado en la manipulación de la matriz de acoplamientos conductivos, teniendo en cuenta
también la diferencia de temperatura entre los distintos nodos del modelo térmico detallado. La
matriz resultante es tratada como una matriz de adyacencia que representa un grafo disperso no
dirigido. Sobre esa matriz de adyacencia se usa un algoritmo de búsqueda en profundidad para
encontrar los componentes conectados, que definirán los nodos condensados que forman el
modelo reducido. Después, todas las matrices y vectores que conforman el modelo térmico
detallado son compactados, y se pueden obtener resultados (temperaturas y flujos de calor) con
el modelo reducido. Estos resultados pueden ser comparados con aquellos obtenidos con el
modelo detallado, usando para ello los criterios de correlación previamente definidos. Al
principio del texto se realiza una breve introducción teórica del algoritmo, describiéndose a
continuación el proceso en detalle.

El método de reducción se ha probado primero en un modelo simple estacionario, describiendo
el proceso paso por paso, y a continuación en un modelo térmico real en un análisis transitorio,
en el que se muestra también un buen rendimiento.

En las conclusiones se recogen las principales características y limitaciones del método de
reducción, así como posibles vías para mejorarlo y ampliar su ámbito de aplicación.

Finalmente, en el anexo se muestra diverso material adicional que completa lo expuesto a lo
largo del texto principal de la disertación.
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1 INTRODUCTION

When designing a space-borne scientific instrument or a satellite, one of the most important
constraints the designer has to face are the temperature requirements of the different parts
involved. Precisely, the spacecraft thermal control addresses the problem of keeping space
vehicles and their components temperatures within the appropriate range [1–4]. The assessment
of the compliance of the system to these thermal requirements is done through thermal analysis
and  testing.  During  the  first  phases  of  a  space  program  (phases  0,  A  and  B  in  the  frame  of
European programs, see [5, 6]), thermal analysis is typically the only tool for the appraisal of
the  system thermal  performance.  In  later  stages,  thermal  testing  becomes  fundamental  for  the
system verification, although sometimes complete testing is not possible, due to budget or
physical limitations.

1.1 Thermal analysis and modelling
In the earliest stages of the design, the preliminary studies can be performed using analytical
calculations [7–13]. However, as the system becomes more complex and detailed, it is necessary
to rely on other tools. While thermal tests allow the design to be verified (verification of the
design and the thermal mathematical models), they are very complex and expensive.
Complementary to the tests, thermal simulation has become more and more relevant, as the
software packages have evolved rapidly in the last years. And so did the thermal models sizes:
from the 400-node network used in the 1980s for Ulysses spacecraft [14] to roughly 30 000
nodes used in present day Solar Orbiter [15] spacecraft thermal mathematical model (TMM).

Nowadays, it is quite usual to have very detailed thermal models for the element under study
(for typical lumped parameter method (LPM) solvers, it is in the range of 103 – 104 nodes). In
Europe,  one  of  the  standard  packages  for  thermal  analysis  in  the  space  industry  is  ESATAN-
TMS [16]).

The purpose of the thermal modelization of a system is to build up a system of ordinary
differential equations (ODEs) that allows, by solving it, to find the temperatures and heat fluxes,
in transient or steady state conditions. The setting up of a thermal and geometrical mathematical
model starts generally with a mechanical model of the element under study. It can be a very
detailed computer-aided design (CAD) model or a rough shape of the equipment. Regardless of
the maturity of the mechanical design, it is necessary to build up a geometrical model, assigning
to the different shapes and surfaces the corresponding thermo-optical properties –infrared
emissivity, solar absorptivity– and bulk material properties –thermal conductivity, density,
specific heat–. The surfaces can be meshed, depending on the detailed that is judged necessary
by the engineer. Based on the type of analysis, it might be required to define orbit and mission
characteristics.  Before  solving  the  thermal  problem,  it  is  necessary  to  calculate  all  the
conductive  couplings  that  are  not  automatically  calculated  by  the  software,  as  well  as  to
implement any additional functionality or characteristic of the model (power dissipation values,
thermostats, etc.). Finally, the boundary conditions, when not imposed by the orbit, must be
defined. The aspect of the system of ODEs is given by

∋ ( ∋ (4 4

1
, 1, , ,    ,

dn
i

i ij j i ij j i i d
j

dTC K T T R T T Q i n i j
dt <

 < , ∗ , ∗ < ≈ ÷  (1)
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The terms of equation (1) are explained in detail in chapter 3.

If the element under study needs to be included in a higher hierarchy model, or if the analyst
needs to run extensive simulations (thermal test predictions, in-orbit simulations, sensitivity
analyses, etc.) the number of nodes of the model (the so-called “size”), and consequently the
runtime,  can  become  a  problem.  Therefore,  it  might  be  necessary  to  reduce  the  number  of
nodes. The reduced thermal model must behave as the detailed one (in terms of temperatures
and heat fluxes through the boundaries), while having a significantly smaller number of nodes.

Example

The  Solar  Orbiter  spacecraft  detailed  TMM  had,  at  the  time  of  the  Critical  Design  Review
(CDR), around 25 000 nodes (most of them devoted to represent the platform itself, rather than
the scientific instruments). The Solar Orbiter mission scientific payload consists of ten
instruments, one of which is the Polarimetric and Helioseismic Imager (PHI) [17]. In turn, the
PHI instrument is composed of five different units (optics, electronics, harness, and two heat
rejecting entrance windows). Taking the Optics Unit for instance, its detailed TMM has around
6000 thermal nodes. The Electronics Unit thermal model, as well as other models of units
belonging to different instruments, is in the same order of magnitude. This means that in case
the Solar Orbiter spacecraft prime contractor wanted to assemble all the instruments detailed
thermal models together with the spacecraft one, the final product would likely have more than
250 000 nodes. This number might not represent a concern in structural finite element method
(FEM) models, but for thermal LPM models, this number of nodes is unmanageable. Taking
into account the number of analyses that are necessary for a mission such as Solar Orbiter
(worst-case steady state scenarios, planetary flybys –corresponding to gravity assist maneuvers
(GAM)–, off-pointing cases, etc.), such amount of nodes would make the computational effort
unaffordable (let alone the difficulty of handling all the nodes and associated information, post-
processing results…). Therefore, during the whole extent of the spacecraft development, the
payload teams are required to deliver representative and updated reduced thermal models of the
different instrument units, so that the prime contractor can derive reliable results for the payload
and their interfaces with the spacecraft, without compromising the overall size of the thermal
model used to that end. Hence, some rules for delivering the reduced thermal models must be
stablished. These are related to the maximum number of nodes and geometric elements within
the new model, some limitations in terms of physical reduction, and the maximum acceptable
temperatures and heat fluxes differences in selected analysis cases. Once the prime contractor
has assembled the platform thermal model with the different reduced models from payload
teams and subcontractors, new results are obtained. These can be used to derive a new set of
environmental  conditions,  in  such  a  way  that  the  team  responsible  for  the  payload  and  the
subcontractors are able to use them in order to refine their thermal models. In turn, the updated
reduced thermal models are then provided back to the prime, in an iterative process that takes
place during the whole mission development program.

This example reveals the importance of the reduced thermal models in spacecraft development.
Before addressing the particular aspects of spacecraft thermal model reduction, let us start with
a brief summary of general mathematical models reduction.
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1.2 Model reduction
Many references can be found in the literature related to model-order reduction (MOR). Of
course, the problem of reducing the size or mathematical complexity of numerical models is not
exclusive to spacecraft thermal mathematical modelling. Indeed the problem is quite the
opposite: in the general MOR references, there are no examples or techniques addressed to
reduced spacecraft related TMMs. MOR was originally developed in the systems and control
theory disciplines, and then extended to electronic circuits, Computer Fluid Dynamics (CFD)
and structural dynamics (although different authors hold different origins, see for instance [18]
and [19]). One of the best reviews is given by Besselink et al in [18] (other reviews are very
interesting as well, for instance [19] and [20]). Three different fields are described in that paper:
structural dynamics, numerical mathematics (electronic circuits) and dynamical systems and
control. Each one having different model reduction techniques.

Structural dynamics

The structural problem is mathematically modelled in terms of partial differential equations and
then discretized by applying FEM1. The reduced model shall capture the global dynamic
behavior of the system. According to [18], the basis for setting up reduced-order models in this
field is to use a small number of free vibration modes with a reduced number of generalized
coordinates, being able to represent the displacement pattern. The methods that follow this
approach are called mode superposition methods. The original one is known as mode
displacement method (MDM), which has some variations, like model acceleration method
(MAM) and modal truncation augmentation. While these methods try to improve some aspects
of the resulting reduced model, they do not provide any kind of a priori error bound, so their
performance in terms of accuracy shall be evaluated after reducing the system, by comparing
the results between the original and the reduced model. Alternative to the mode superposition
methods, there exist the methods known as component mode synthesis techniques, such as
Craig-Brampton and Rubin and MacNeal methods. The reader can consult [21] to get more
information about these dynamic substructuring techniques. Besselink does not mention in [18]
a well-know and popular method: the static condensation of Guyan [22] (also known as Guyan-
Irons). As it will be explained later in section 1.3, this is the base for a thermal model reduction
method described in [23–27].

Numerical mathematics

The field of numerical mathematics corresponds mainly to electronic circuits (with large linear
sub-circuits) and micro-electro-mechanical systems (MEMS). The techniques described for
model reduction in this field are based in Krylov subspace methods (by transfer function
expansion moment matching). This approach aims to preserve the input/output behavior of the
system, reducing the number of degrees of freedom (DOFs). The idea is to approximate the
system transfer function accurately enough for a particular frequency range. Some of the general
characteristics of these MOR methods are:

1 There are other methods available, such as boundary element method (BEM).
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a. They are local (the model is reduced for a particular frequency range).
b. There is not a priori error bound.

c. They are very efficient computationally –managing easily models of order ∋ (610Ν –.

d. They can preserve some model features such as stability, passivity and RLC
realizability of electrical circuits (resistors, inductors and capacitors). The
characteristics preserved depend on the model to be reduced and the method chosen for
model reduction.

One of the first methods that appeared involving the use of Krylov subspace was the asymptotic
waveform evaluation (AWE) in 1990, followed by Padé via Lanczos (PVL) in 1995, PRIMA
(passive reduced-order interconnect macromodeling algorithm) in 1998 and SyPVL (1996).
Pieter Heres presents a thorough analysis of different Krylov subspace methods in [28].

Systems and control

This field focuses on the analysis of dynamical systems. The models try to represent very
accurately the input-output behavior; therefore, the associated reduced models have the same
goal. The models used are usually not as big as those used in numerical mathematics, but since
the analysis of dynamical systems is ordinarily done to design a feedback controller, the models
have to be solved in real time. Thus, the necessity of reduced order models.

Balance truncation realization (BTR) method is the most popular reduction approach for
dynamical  systems  problems  (an  alternative  to  BTR  is  the optimal Hankel norm
approximation). Some of its characteristics are:

a. It is global, aimed at the whole frequency range.
b. It provides an a priori error bound.
c. The method requires solving the Lyapunov equations, which makes it not efficient

computationally. In practice, it limits the applicability of the method to models of order

up to ∋ (310Ν .

d. It preserves the stability of the system.

Altough Besselink et al [18] is a very complete reference, they still leave out some reduction
methods in their paper. In particular, all the techniques described in their study are “model-
based reduction techniques for linear time-invariant dynamical systems”. A priori, none of the
methods abovementioned would work for spacecraft thermal model reduction, given the strong
nonlinear behavior caused by the thermal radiation terms. Nonetheless, they are discussed here
because they have already been considered by some authors for spacecraft thermal models
reduction purposes. In this regard, there are two methods that address precisely the nonlinear
problems: trajectory piecewise linear (TPWL) and proper orthogonal decomposition (POD).

Trajectory piecewise linear approach

According to Rewienski and White in [29], the idea in the TPLW approach is to simulate the
nonlinear system for a “training” input, obtaining a trajectory based on that  input. Many
linearized models are then generated around different points in the trajectory. The linearized
models are assembled using state-dependent weights. The TPWL reduced model can be used to
solve the nonlinear dynamic model. If the input signal originates a trajectory far enough from
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the one used for building the TPWL reduced model, the results could be not accurate enough.
This situation can be solved by generating more TPWL models along different trajectories,
covering a wider input space. The method does not provide a priori error bound, but the error
can be estimated as the linear models are generated. It is noted by Rewienski that the generation
of the linear models does not necessarily imply solving the full nonlinear model. Instead, it can
be used an approximation of the full nonlinear model. This can be relevant if solving the
nonlinear original model is costly. This is one important difference between TPWL and POD
MOR techniques. The TPWL approach has been applied by Wang, Qian et al in the problem of
spacecraft thermal model reduction [30, 31], and briefly commented by Deiml et al in [32];
these references will be discussed later. It has also been applied in nonlinear heat transfer
problems by Yang and Shen in [33]. More details about TPWL MOR can be found in [34].

Proper orthogonal decomposition

POD is also known as Karhunen–Loève decomposition, least-squares estimation, and principal
component analysis (PCA). In contrast with all the MOR techniques explained before (model-
based),  POD  is  a  data-based  MOR  method  (although  POD  is  frequently  used  just  as  a  data
analysis tool). It has typically been used in CFD, controllers design, signal analysis and inverse
problems in structural dynamics. The method does not make any assumption about the system
dynamics, and only relies on the dataset generated in an experiment or by analysis. The goal is
to find an orthogonal reduced basis of the data, and as it turns out, POD produces an optimal
basis in the sense of least-squares error of the data reconstruction (hence the name of least-
squares estimation). This data matrix can be constructed by using a dataset from an experiment
–see for instance [35]– or assembling simulation data (by the so-called snapshots method
introduced by Sirovich in [36]; every snapshot containing the values of the state variables for
each time step, solved with the full-scale system). The matrix is then factorized by single value
decomposition (SVD), and the obtained POD modes are truncated to some dimension lower
than the original system. This reduced basis can be used to project the original system in this
new subspace, obtaining a reduced order model. It is important to note that even though the
POD modes are an optimal representation of the data, it does not imply their optimality for the
reduced model generation. The reader can find more information regarding general POD
applications and theory in [37], whereas POD application for spacecraft thermal model
reduction is discussed in [31] and [32] and will be reviewed later in section 1.3.

This review of MOR methods does not intend to be exhaustive; there are many techniques
precluded from the analysis. As mentioned before, good summaries can be found in [19, 20, 28],
and also in [38, 39] .

1.3 Spacecraft thermal model reduction
The literature regarding the spacecraft thermal model reduction is unfortunately not as abundant
as for general MOR (it is more abundant, however, for reduction of thermal models in
electronics and building construction, which are essentially linear systems, see for instance
[40]). Below these lines, the “classical” or traditional methodology for spacecraft thermal model
reduction is described, followed by the review of the most interesting references, generally
ordered by publication date or by analogy order in few cases.
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In the spacecraft thermal modeling domain, the classical approach to deal with this situation is
to set up a reduced geometrical mathematical model (RGMM). The reduced thermal
mathematical model (RTMM) is built on a user-defined basis. This means the modeler builds
the RGMM and, according to its definition, the nodes from the detailed thermal mathematical
model (DTMM) are condensed into RTMM nodes. Then, the general practice is to get two
snapshots of the DTMM, generally the hot and cold operational worst cases, which use to be the
sizing ones, and, by tuning the conductive couplings and the heat loads, try to match the results
from the RTMM and the DTMM. This process is time consuming, and tends to be error-prone.
The main advantages of the classical approach are that the generated reduced model keeps the
topological properties of a thermal mathematical model (symmetric conductive and radiative
couplings matrices, with non-negative elements), no artificial couplings are created (although
this totally depends on the engineer) and the RGMM can be integrated into another thermal
model.

Jouffroy et al make in [41] a good description of the classical approach for TMM reduction. In
what respect the automatization of the procedure indicated above, they present a thermal model
reduction method for telecommunications satellite walls. The DTMM is set up with Airbus
internally developed software GENASSIST, which produces high level of detail, and
consequently a high number of nodes. The method they introduce is based on LPM models, and
consists in mathematically generating an equivalent conduction matrix, inspired by the Guyan
static condensation [22]. Nodes are divided in two types: control nodes (kept “as they are”) and
condensable nodes (to be condensed), following a static condensation reduction scheme
(somehow already proposed by Bushard in [42], but not dealing with radiation terms). The
“goal” temperature of a reduced model node is defined as the surface-weighted average of the
nodes of the detailed model belonging to that reduced node. On the other hand, the radiative
fluxes are computed following the assumption that the radiative heat flux of a detailed model
node is a surface-weight fraction of the total corresponding to the reduced node to which the
detailed node belongs. The errors in this reduction method –defined as differences between the
surface-weighted average reduced model condensed nodes temperatures (“goal” temperatures)
and those calculated by solving the reduced model itself– come from the radiative heat fluxes.
The reduction is exact for pure conductive models. The main drawback is that the reduced
conduction matrix can present couplings between reduced nodes that have no physical contact.
In addition, some of the reduced couplings can be negative. DTMM nodes to be condensed into
RTMM nodes seem to be defined by the user, which limits the automatization of the method.

Molina  and  Clemente  follow  in  [43,  44]  a  similar  approach.  However,  they  introduce  a  very
interesting concept: the energy balance between detailed and reduced nodes, which yields an
equivalent reduced conductance: a sort of reference value for comparing the heat fluxes between
reduced nodes and their equivalents in the detailed model.

In line with Jouffroy and Molina in [41, 43, 44], Bernard et al present in [23–27] a software
called Thermal Model Reduction Tool (TMRT), which is distributed under license by Thales
Alenia Space. The mathematical development of the method given in [24] makes easier to
follow the different steps involved in the model reduction (compared to the papers discussed
earlier). A new category of nodes, called “suppressed” –which are neither condensed nor kept in
the RTMM– is defined by the authors. These nodes are limited to those coupled to their
neighbors only by conduction.



1 Introduction

7

Kim and Kim use in [45] the same approach, giving a very simple numerical example, which
helps to understand part of the algebra involved. Kim and Kim use the software COMSTAP
(developed by the Korean Space Research Institute) to generate the thermal mathematical
model. In this paper, the authors define the reduced nodes by grouping nodes that are within a
temperature difference range, with the help of the above-mentioned software (Fernández-Rico et
al  do  something  similar  in  [46],  which  is  the  basis  for  this  thesis  dissertation).  Kim and  Kim
establish the relation between the level of isothermality of the condensed nodes in the definition
phase and the temperatures obtained by solving the RTMM.

In [47], Krishnamoorthy and Chowdhury also use static condensation for compact thermal
modelling of electronic components. This paper is unrelated to spacecraft thermal modelling,
and they do not include radiation terms, but the interesting thing is that they suggest the
representation of the thermal network as an undirected graph.

Following a completely different methodology, Noor et al propose in [48] to reformulate the
nonlinear steady state thermal problem in terms of a reduced basis, calculated by making use of
perturbation techniques and the Bubnov-Galerkin method (the math involved is very complex).
The  analysis  uses  the  finite  element  method;  the  aim is  to  generate  a  lower  order  system for
steady state analysis, but not to generate a stand-alone model to be included in a higher
hierarchy model.

Gorlani and Rossi present in [49, 50] a stochastic optimization for thermal model reduction. The
method is divided in two steps. The first step deals with the geometrical mathematical model
(GMM), and aims to define the reduction scheme, that is, the correspondence between DTMM
and RTMM nodes. This seems to be done manually by the engineer, and takes (usually) a single
iteration. The second step takes the reduced model conductive couplings as variables (the
existing reduced conductors that have been already stablished), and performs a full factorial
analysis with stochastic optimization to determine the reduced conductors that best fit the goal
temperatures. The stochastic optimization is carried out with PANAMA, a software tool
developed by the authors. The reduced model ends up with positive reduced conductive
couplings, no artificial conductors, with a reduction ratio of about 80%. The reduction errors are
defined, as before, by comparing the defined and calculated reduced model nodes temperatures,
and by computing the root sum square of the temperature differences indicated before. This
reduction approach has some similarities with thermal model correlation methods, which will be
referred to further on.

The application of POD and TPWL to spacecraft thermal model reduction is studied by Wang,
Qian et al in [30, 31]. The goal of the studied approaches is not to generate a new model to be
integrated within other models, but to obtain results under new boundary conditions and
environmental fluxes. An interesting aspect to be mentioned is that the paper discusses in its
introduction the data-driven heuristic models, posing them as not suitable for dynamic behavior
prediction. To the best of our knowledge, these heuristic models have not been used among
European space thermal community. TPWL shows an excellent performance with the case
studies. As mentioned in section 1.2, the usability of the reduced model can be limited if the
new inputs intended to be simulated differ too much from those used for the reduced model
generation. POD, as discussed before, is a very popular nonlinear MOR method. It shows also
good performance for the spacecraft thermal reduction. POD presents an important limitation:
the necessity of evaluating the nonlinear terms in the detailed model, which limits the
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computational efficiency. Qian et al propose the use of discrete empirical interpolation method
(DEIM, see [51]) to mitigate this calculation burden. A couple of examples are given in the
paper, showing a good performance of both methods.

Deiml et al make in [32] a clear distinction between GMM and TMM in the process of reducing
a spacecraft thermal model. The model has the environment –including deep space–, the
boundaries (which are the nodes/geometries that have couplings with the environment) and
internal nodes/geometries (which are only connected to the model boundaries). The first step is
to reduce the GMM externally. Model geometry is simplified, trying to match heat flows
between environment and the boundaries, by varying the thermo-optical properties –which will
have an influence in the radiative exchange factors, REFs. To reduce the pure geometry,
polygon reduction techniques are explored and several methods are tested by the authors in
order to adjust the thermo-optical properties:

- Sequential Quadratic Programming (SPQ) algorithm [52].
- Global optimization derivative free algorithm [53].

The results obtained with the polygon reduction techniques are not very satisfactory, so the
manual reduction is considered as the most effective way. More research is necessary in this
area, since most of the references do not even mention the problem of reducing the GMM, so in
this respect Deiml is very innovative. Regarding the adjustment of thermo-optical properties for
heat fluxes matching, the SPQ algorithm does not work as expected, but the Global optimization
derivative free algorithm seems to fulfill the requirements and yield good results.

The second step in the reduction process is the simplification of the TMM concerning heat
fluxes between environment and boundaries. Again, this can be done by modifying the thermo-
optical properties. Unfortunately, no information is given by the authors about what happens to
conductive fluxes.

Third step is to reduce the internal nodes. For that, linear and nonlinear MOR methods are
investigated by the authors. The following linear reduction methods are suggested in the paper:
Guyan, Truncated Balance Realization and Krylov subspace methods. Their results are not
listed  in  the  case  studies  shown  in  the  paper,  as  they  are  not  considered  useful.  Regarding
nonlinear  methods,  POD is  tested  but  it  is  not  considered  useful  for  the  reduction,  due  to  the
necessity of calculating the nonlinear terms (also mentioned in [31]). TPWL is not applicable
for the goal stated in the paper, which is the further integration of the reduced model in other
models –TPWL only allows to solve the system to get results. Balancing for nonlinear systems
[54] is very difficult to implement according to the authors. Apart from the methods explained
above, three model reduction techniques are developed in the article:

- Empirical model reduction technique (no insight of this method is provided in the paper
text).

- Matrix-based reduction method (also no specific details are given; it is described as “an
exact  reduction  of  the  thermal  model  along  a  reference  trajectory,  typically  a
superposition of hot and cold cases”).

- Summation method is chosen as the best one among those tested. The performance and
solution runtime are considered adequate, but the description is limited to the name, so
it is difficult to judge the adequacy for different models and circumstances.
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The first two methods are not considered useful by Deiml et al, as the lack of performance and
the drawbacks are excessive.

Hengeveld and Biskner present in [55, 56] a novelty approach different from nodal reduction
methods, since it relies in the data generated by solving the detailed thermal mathematical
model. The approach does not aim to generate a reduced model as such (in the sense that can be
implemented in a higher hierarchy model), but to obtain results with alternative configurations
(different inputs for the detailed model). The development of the reduced model is based on
sampling the input space and fitting the data obtained by running the detailed model in the
sampled points. Latin Hypercube Sampling (LHS) pursues the sampling of the design space,
defined as the combinations of values of different input parameters –for instance, boundary
temperatures and physical properties– in the model definition. Once the design space has been
sampled with LHS, the detailed model is run for each point in that design space (training input),
producing training results for the data fitting. The outputs are then modeled as an overall mean
plus a Gaussian process, thus mapping the inputs to outputs. The proposed method is judged
very interesting and versatile for sensitivity analysis and finding possible design optimums, but
it is not suitable for producing reduced order models that can be combined with other models.

A model reduction for FEM thermal models is proposed by Jacques et al in [57]. FEM is not as
popular as the lumped parameter method within the spacecraft thermal analysis community.
One of the reasons (among many others, see [58]), is the computational cost of calculating the
REFs by means of the Monte Carlo ray tracing method. This difference in computational cost is
because FEM model meshes are usually much more dense than LPM ones. Nevertheless, the use
of FEM models is particularly interesting when using a mesh coming from a structural model.
Jacques proposes the use of mesh clustering and super nodes to alleviate the problem of the
calculation runtimes. For the calculation of REFs, the finite element mesh is clustered starting
from the seed locations defined by the engineer. The reduction of the conductive model to super
nodes relies on the zones already created by the mesh clustering. The determination of the
reduced conductive couplings matrix is done by expanding the linear matrix system with the
super nodes temperatures, and assuming that the loads are uniform within a super node. The
authors also define a procedure that avoids the necessity of inverting the extended coefficients
matrix for finding the reduced model conductive couplings matrix. This MOR approach seems
to be in general very efficient and complete, but it presents some limitations for our purposes:
the assumption that the loads are uniform within the super nodes, and the necessity of user-
defined seeds for mesh clustering, which in turn define the super nodes. For the adaptation of a
structural FEM mesh for thermal analysis, the method performance seems outstanding.

From the review of all the references above, one can notice that in general, the GMM reduction
is left unaddressed. In addition, the reduction scheme (how the detailed model nodes are
grouped and condensed into reduced nodes) is often defined by the user, rather than determined
automatically by an algorithm.

1.4 Objectives and content structure
Without demeaning all the techniques and methods described in the previous section, in our
opinion there is some space for improving the spacecraft thermal model reduction. Our idea is to
use the physical insight of the thermal models to reduce their complexity. The aim shall be to
reproduce the input-output behavior (basically the heat fluxes through the boundaries), as well
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as  the  inner  behavior,  that  is,  the  system temperatures,  while  keeping  the  structure  of  a  LPM
thermal model, so that it can be further integrated with other thermal models (thus, not just a
black box that matches the DTMM results). Aiming to guarantee that the RTMM resulting
temperatures are really representative of the behavior predicted by the DTMM, it is necessary to
preserve the hot and cold spots during the reduction process. For this reason, the condensation
of nodes here proposed will be based on the identification of quasi-isothermal zones. The nodes
part of these isothermal zones will be potential candidates to be condensed, provided that they
are in physical contact.

Summarizing, the main goals and characteristics of the quasi-autonomous thermal reduction
process presented here are:

a. Reduce the thermal model taking into account the different quasi-isothermal zones. By
grouping similar-temperature nodes, it is possible to reduce the error produced by
reducing the matrices. Furthermore, it can be supposed that parts that are strongly
connected –larger conductive couplings– will be more isothermal than other parts that
are weakly connected.

b. The model reduction should be done in a quasi-automatic way. This means, the only
parameters that need to be defined are the maximum allowable temperature and heat
fluxes differences, as well as the desired reduction ratio.

c. The reduction process will depend on the temperatures and boundary conditions.
Having more scenarios (e.g. hot and cold operational cases) will constrain the problem
more.

d. In engineering applications, it is essential to preserve the physical interpretation of the
model elements, as well as the physical characteristics, to be able to take design
decisions changing physically achievable parameters. This implies having positive
thermal couplings, to preserve the boundary nodes, the heat loads, the symmetry in the
coupling matrices, and the conductive physical paths. We can define this as structure-
preserving reduction.

This dissertation is divided in six chapters. The first chapter (above these lines) corresponds to
the introduction and the literature review. The second chapter provides a brief theoretical
introduction to the reduction process. Chapter 3 describes the main quantities and parameters in
a thermal mathematical model. Chapter 4 gives a detailed description of the reduction process.
In  chapter  5,  the  reduction  process  is  tested  on  two  models.  Chapter  6  summarizes  the
conclusions and some ideas for future developments.
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2 THEORETICAL BACKGROUND

Before entering into the full description of the reduction method, let us start with a brief
theoretical introduction to describe the condensation philosophy. First, a 4-node purely
conductive model is analyzed, and then the conclusions found are applied on a general basis.

2.1 Reduction analysis of 4-node model

The couplings among the four nodes that form the model are shown in Fig. 2-1. It simulates a
body made of two parts (nodes 1 and 2 on one side, and nodes 3 and 4 on the other) that
internally are strongly connected, but are weakly connected to each other. There is a fifth node
labeled as B that represents a boundary condition in temperature. It is included to avoid the
singularity of the system.

Fig. 2-1. 4-node model schema.

The couplings of the system in this example are such that

13 14 24 23 12 34K K K K K K9 9 9 < 9 (2)

The sign convention is 0iQ =  when heat enters the node. We can write the energy balance
equations, one per node:

∋ ( ∋ ( ∋ (
∋ ( ∋ ( ∋ (
∋ ( ∋ ( ∋ (
∋ ( ∋ ( ∋ ( ∋ (

12 2 1 13 3 1 14 4 1 1

12 1 23 3 24 4 1

13 1 3 23 2 3 34 4 3 3
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2 2 2

0

0
.

0

0B B

K T T K T T K T T Q

K T T K T T K T T Q

K T T K T T K T T Q

K T T K T T K T T K T T Q

, ∗ , ∗ , ∗ <


, ∗ , ∗ , ∗ <


, ∗ , ∗ , ∗ <
 , ∗ , ∗ , ∗ , ∗ <

(3)
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In matrix form:

,K T = Q (4)

where

∋ (
∋ (

∋ (
∋ (

12 13 14 12 13 14

12 12 23 24 23 24

13 23 13 23 34 34

14 24 34 14 24 34 4 B

K K K K K K
K K K K K K
K K K K K K
K K K K K K K

<

, ∗ ∗∑ ⌡
 , ∗ ∗ 
 , ∗ ∗
  , ∗ ∗ ∗ 

K

(5)

1 1

2 2

3 3

4 4 4

  ,  .

B B

T Q
T Q
T Q
T Q K T

,∑ ⌡ ∑ ⌡
   ,   < <
   ,
   

, ,   

T Q (6)

Summing up the four equations in (3), we get

∋ ( 1
4 4 1 2 3 4 4

4

 .

dn

i
i

B B
B

B

Q
K T Q Q Q Q T T

K
T << , , , , ↑ < ∗,

 (7)

Expression (7) allows us to fix a temperature level for the system. Based on the relations in (2),
we can associate the nodes 1 and 2 on one side, and nodes 3 and 4 on the other, forming two
reduced nodes called

1cN  and
2cN  respectively.  Let  us  call  the  temperatures  of  the  reduced

nodes as 1
RT  and 2

RT . For each node i of the detailed model:

, 1, , , 1, ;R
i j i d cT T i n j nσ< ∗ < <ϑ (8)

τi represents the difference between the temperature of node i and  the  temperature  of  its
associated reduced node

jcN .  We  can  reorganize  the  system  in  (5)  and  (6),  using  (8),  by

condensed nodes:

∋ (∋ (R
0 1 ,∗ ∗ <K K T τ Q (9)
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where 0 1∗K = K K , which are defined as follows
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 
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K (11)

the terms in eq. (9) can be expanded, yielding

| |a b c
R R

0 1 0 1 .∗ ∗ ∗ <K T K T K τ K τ Q
53637 (12)

Let us analyze the different elements in (12):

a. R
0 0<K T : This represents the heat fluxes within the nodes belonging to the same

reduced node, assuming that their temperatures are the same as the reduced node one.
Obviously, these heat fluxes will be zero. For instance, for the first row:

1 112 12 0  .c cK T K T, ∗ < (13)

b. R
1 <K T Q : gives the equations to calculate the reduced nodes temperatures. For the

first two rows:

∋ (
∋ (

1 2 2

1 2 2

13 14 13 14 1

23 24 23 24 2

.c c c

c c c

K K T K T K T Q

K K T K T K T Q

, ∗ ∗ ∗ < ,

, ∗ ∗ < ,



 ∗

(14)

Grouping by the difference ∋ (2 1c cT T, :

∋ (∋ (
∋ (∋ (

2 1

2 1

13 14 1

23 24 2

.
c c

c c

K K T T Q

K K T T Q

∗ , < ,

∗ < ,



 ,

(15)

Summing up both equations, we get

∋ (∋ ( ∋ (
2 113 14 23 24 1 2   .c cK K K K T T Q Q∗ ∗ ∗ , < , ∗ (16)

Analogously, for rows 3 and 4 in R
1 <K T Q :

∋ (∋ ( ∋ (
1 2 213 14 23 24 4 3 4 4   .c c B c B BK K K K T T K T Q Q K T∗ ∗ ∗ , , < , ∗ ∗ (17)
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Combining (16) and (17):

2 2

1
4 1 2 3 4 4

4

  .

dn

i
i

B c B B c B
B

Q
K T Q Q Q Q K T T T

K
<< ∗ ∗ ∗ ∗ ↑ < ∗
 (18)

Given the structure of the model (unique boundary condition solely connected to a single node),
eq. (18) coincides with eq. (7). We can use the expression for

2cT  given by (18) in equation

(16), to get
1cT :

1 2
13 14 23 24

1 2 .c cK K K
QT T

K
Q∗

< ∗
∗ ∗ ∗

(19)

The reduced model, with the aggregated loads and couplings, is shown in Fig. 2-2.

Fig. 2-2. Condensed 4-node model schema.

c. ∋ (0 1 0∗ <K K τ describes the heat fluxes among the nodes in the detailed model, as a

consequence of the deviation between the original model temperatures and its
associated reduced nodes ones. Having found the reduced thermal model node
temperatures with (12)-b, we can calculate the deviations between iT  and R

jT . Of

course, solving the system (4) allows us to get the detailed model temperatures T, and
then use together with TR in (8) to obtain τ.

2.2 General approach
Consider a thermal model consisting in n thermal nodes described by its coupling matrix K. Let
us have matrix K already sorted by the reduced nodes, so as shown in (9) 0 1< ∗K K K :

a. K0 is a block diagonal matrix; each block groups the nodes belonging to the same
reduced thermal model node. In principle, K0 has the higher order couplings Kij.

b. K1 is a matrix with blocks out of the diagonal; each block groups the couplings Kij

(presumably lower order) between nodes belonging to different reduced thermal model
nodes.

Regarding the temperatures, as per (8) R< ∗T T τ :

a. TR is a vector with the reduced nodes temperatures. For matrix operations, TR would
have nc different components (one per reduced thermal model node), each of them
repeated as many times as the amount of detailed model nodes condensed in each
reduced node.

b. τ represents the temperature difference between the detailed mode node and its
associated reduced node.
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The system is defined by the eq. (4), which can be expanded to get the expression (12), written
again below for clarity:

| |

∋ (
c0 b

R R
0 1 0 1 .
<

< ∗ ∗ ∗ <K T K T K T K K τ Q
53637

(20)

The reduced thermal model temperatures can be obtained with R
1 <K T Q , combining rows

and columns by condensed nodes (also compacting vectors TR and Q),  to  get  a  system  of
dimension nc. The equation (4) can be solved to get the detailed model temperatures

1 .,<T K Q (21)

This allows assessing the temperature differences τi. The better the reduction the smaller should
be τi.

If the thermal problem involves also radiation, there will be another matrix called R,  with the
radiative couplings between the nodes of the detailed model. Since the radiative heat exchange
goes with the difference of the fourth power of the temperatures, this makes the problem
nonlinear. One can try to linearize the system around the solution point, and incorporate the
linearized terms in K, getting a new matrix called *K . In principle, the whole approach
explained above these lines is valid, regardless of the existence of radiation or not.

The quality of the reduction process is based in the way the nodes of the detailed model are
grouped together. We need a systematic approach to select the nodes belonging to the same
reduced thermal model nodes, reducing the model; that is, determining the thermal couplings
between reduced thermal model nodes, keeping the temperature differences τi as small as
possible or below a previously defined threshold, and matching the heat exchanges between the
model and its boundaries. The following chapters are devoted to develop and test the reduction
algorithm.
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3 THERMAL MODEL

The lumped parameter method thermal mathematical model is described by Eq. (22), one
energy balance equation per node [59]:

∋ ( ∋ (4 4

1
, 1, , ,    ,

dn
i

i ij j i ij j i i d
j

dTC K T T R T T Q i n i j
dt <

 < , ∗ , ∗ < ≈ ÷  (22)

where Ci is the thermal capacitance of node i, Kij and Rij the conductive and radiative couplings
between nodes i and j, respectively, and Qi the heat load per unit of time on node i. Ci includes
the nodal volume, specific heat and density. Kij includes the effect of nodal areas, distances,
thermal conductivities and thermal contact conductances involved in the calculation. Rij includes
the Stefan-Boltzmann constant, σ. Rij includes also the different parameters used for its
determination: view factors, thermo-optical properties and areas. As indicated before, the sign
convention is 0iQ =  when heat enters the node. The coefficients of these equations are usually
generated with a thermal analysis software package, but they can be partially or totally produced
by other means. For the development and execution of the reduction algorithm, the reference
software is ESATAN-TMS, as one of the standard tools for space thermal analysis in Europe. In
particular, all the magnitudes contained in the ESATAN thermal model data2 (TMD) output file
will be considered known, and are the base for the numerical method developed in this work.
Thus, all the variables that appear in eq. (22) are considered as available inputs. These are K
(conductive coupling matrix), R (radiative coupling matrix), T (temperature vector), C (node
thermal capacity vector) and Q (node heat load vector). Also the node spatial coordinate matrix,
X, is considered to be known.

In general, it could be also considered that the material properties (thermal conductivity,
specific heat and density) of the different parts of the thermal model are known. However, while
these properties allow the calculation of some of the matrices and vectors indicated in equation
(22), they are not explicitly output by ESATAN in the TMD file.

We can delimit a little bit more the available inputs. As it will be shown in section 4.2.1, the
node associated geometry thickness could be very useful for the model reduction. However, this
information is not available in the ESATAN TMD output file, and therefore it is not used in the
reduction method. In addition, the nodal area could be helpful, and it is output in the TMD file,
but the way in which this is output is ambiguous3.

2 TMD is a thermal data file formatted in Hierarchical Data Format (HDF) Version 5.
3 When radiative active geometry, a shell defined in the GMM with the same node number on both sides
will account twice for the face area, whereas if the shell has different node numbers, the output surface
indeed corresponds to the real face area. In general, it is impossible to distinguish between both situations
based on what is output in the TMD file.
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4 REDUCTION PROCESS

4.1 Scope
Reducing pure resistive electric circuits networks –with the same behavior as linear thermal
models, that is, those exclusively made of conductive couplings– has been addressed in some
references  [60,  61]  and  can  be  done  to  get  exact  results  in  terms  of  heat  fluxes  through  the
boundaries. However, reducing nonlinear models (in principle, those that include radiative
terms) can lead to excessive temperature deviations between the detailed and the reduced
models, and consequently produce excessive heat flux differences through the boundaries.
Normally,  nodes  with  similar  temperatures  –and  that  can  therefore  be  considered  as
condensable– are internally conductively coupled. Radiation is usually not as important as
conduction. Thus, for the reduction, groups of nodes physically well connected and with a
similar temperature level are sought.  In addition, it is considered here that two nodes can be
condensed only if they are connected by a material medium, so that the physical meaning is
preserved. That is why only the conductive couplings matrix K is taken into account to run the
reduction algorithm. Once the model has been reduced, the radiative couplings matrix R is
reduced using the same scheme and the problem can be linearized and solved.

A  flowchart  of  the  reduction  process  that  is  explained  in  the  subsequent  sections  is  shown  in
Fig. 4-1. Detailed view of the process can be found in Fig. 4-2. The goal of the reduction
process is to find, in an autonomous way, the scheme that condenses the detailed thermal model
nodes into reduced thermal model nodes. In particular, the aim is to transform the matrix system
dimension from nd (number of nodes of the detailed model, including the boundary nodes) to nc

(number of nodes of the reduced model, including the boundary nodes). The relation between
nd, nc and nb (number of boundary nodes, invariant in the reduction process) is here called
reduction ratio rr, which is a measure of the reduction degree. rr is defined as

1 .c b
r

d b

n nr
n n

,
< ,

,
(23)

rr ranges from 0 to 1; 0 indicates that the reduced and the detailed models are the same, whereas
1 represents complete reduction, as only the boundary nodes remain in the reduced model4.

To transform the system, a matrix A is built. A indicates the connection between nodes, taking
into account the conductive coupling K and the temperature difference between nodes ϴ.
Matrix A is treated as an adjacency matrix, on which the strongly5 connected components
(SCC) algorithm [62–64] is used. The resulting reduction scheme (represented by restriction
matrix P) is applied to the thermal problem, reducing the dimension of matrices KR, RR, QR.

4 In reality, as it will be shown in the chapter, this situation is not possible, since at least one diffusion
node has to remain in the condensed model. Nevertheless, ideally rr = 1 represents the upper limit of the
reduction ratio.
5 The thermal network is represented as an undirected graph. For such type of graph, it makes no sense to
use the word “strongly” to define the connected components, but still it has been chosen to keep it, as it is
used in the generic algorithm used for finding the condensed nodes [64].
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Then  this  system  is  solved,  and  the  calculated  temperatures RT̂  and  heat  fluxes RĤ  are
compared to those derived from the detailed thermal model, DT  and HD respectively. An
iteration loop could be set up to find the threshold values to fulfill the requirements imposed on
both temperature (δmax) and heat flux differences (qmax) between the reduced and the detailed
TMMs. If the correlation requirements δmax and qmax are too strict, it might be impossible to
achieved the required reduction ratio, rr,min.

Fig. 4-1. Reduction process flowchart.
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Fig. 4-2. Reduction process flowchart - detail.

All the steps described above have been programmed with Python 3.4 and the Python-based
scientific ecosystem SciPy6. Compressed Storage by Rows7 (CSR) sparse matrices have been
used in order to save memory and make the code more efficient.

6 https://www.scipy.org/about.html

https://www.scipy.org/about.html
http://www.scipy-lectures.org/advanced/scipy_sparse/csr_matrix.html
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4.2 Processing of conductive coupling matrix K
The conductive couplings between the different nodes in a thermal model are calculated based
on geometrical and physical properties, as an application of Fourier’s law in a lumped parameter
model [65–67]. Usually, the values generated in this way are within quite a wide range (eight
orders of magnitude, approx. 10−5 to 10+3 W/K ). One of the most important contributions of this
study is to realize that to compare and classify the different values as “strong” or “weak”
conductors, one has to take into account not only the values themselves, but also the geometrical
and physical properties which have produced such values. It should be considered that, when
constructing a thermal model, different spatial scales are frequently used for different parts of
the geometrical model, and they largely influence the values of the couplings. For instance,
anticipating that metallic parts, such as structural panels, will be quasi-isothermal, one can
produce a coarser mesh. On the other hand, modelling printed circuit boards, where it could be
important to distribute accurately the electric power sources, can lead to a finer mesh. This
situation can produce thermal models with a great disparity of node sizes, and therefore of
thermal coupling values. The diversity of bulk materials in the model construction, the
simulation of thermal contacts at the bolted or glued interfaces, and other effects, greatly
influence the inhomogeneity of the conductors values. If the nodes are going to be grouped
based on the values of the conductors involved, it will be necessary to assess the relationship
between the conductor actual value, and the conductor potential value –how big this conductor
could be– based on the available magnitudes. To help making this comparison, a dimensionless
conductive coupling matrix, K∃ , is built.

4.2.1 Building the dimensionless coupling matrix K∃

To obtain the dimensionless conductive coupling matrix K∃ , characteristic values of Kij are
needed to be used as a reference. These reference values are grouped inside the conductive
coupling sizing matrix, KS. As we want to identify which nodes should be condensed, we are
interested in having orders of magnitude for the conductive couplings in KS based on the size of
the contact and the materials involved. In LPM models, the thermal capacity is concentrated in
the nodal center, and this capacity represents somehow the geometry. The geometry is taken
into account also when calculating the conductive and radiative couplings.  KS defines  a
potential value for a typical coupling for each conductive coupling existing in the model. For
each non-zero ij element of matrix K, the conductive coupling between node i and j is defined
as follows:

1 ,S
ij

ji

i i j j

K LL
S Sκ κ

<
∗ (24)

7 http://www.scipy-lectures.org/advanced/scipy_sparse/csr_matrix.html
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where iκ  and jκ  are the thermal conductivities, ௜ andܮ ௝ܮ  the  distances  between  the  node

centers and the interface, and Si and Sj the cross section of nodes i an j for the conductive
coupling calculation. Assuming prismatic geometries, all the involved geometric magnitudes are
shown in Fig. 4-3.

Fig. 4-3. Conductive coupling calculation scheme.

The thermal conductivities iκ  are not explicitly included in the inputs mentioned in section 3,

so they are unknown. To estimate the sizing matrix KS, a reference value, say κ , is used for all
the conductors. This generic value itself does not matter and does not influence the results. It is
intended just to obtain values with thermal engineering meaning. Therefore:

.S
ij

ji

i j

K LL
S S

κ
<

∗ (25)

As Si, Sj are also unknown, they are estimated as follows. Let us consider the thermal capacities
for the nodes i and j:

2
,

2
i i i i i i i i i

j j j j j j j j j

C c v c w t L
C c v c w t L

θ θ
θ θ

< <
 < <

(26)

where, as for the thermal conductivities, ρ and c cannot be inferred from the input data. Again,
standard values are used for these magnitudes. Si and Sj can be defined as

; .i i i j j jS w t S w t< < (27)

Although w and t are unknown magnitudes, they can be obtained from (26) as follows

;   .
2 2

ji
i i j j

i j

CCwt w t
cL cLθ θ

< < (28)
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Substituting (27) and (28) into (25):

22

1    .
2

s
ij

ji ji

i i j j ji

K LL Lc L
w t w t C C

κ κ
θ

< <
∗ ∗ (29)

We can try to estimate the values for Li and Lj. From nodal spatial coordinates matrix, X, the
distance between nodal centers i and j, Dij, can be calculated. In X, the first column corresponds
to coordinate x, second column to y, and third to z. The distances are calculated as:

∋ ( ∋ ( ∋ (2 2 2
   .ij j i j i j iD x x y y z z< , ∗ , ∗ , (30)

It is assumed that the nodal geometries are of the same order of magnitude, and so will be the
distances Li and Lj. Then

.
2

ij
i j i j

D
L L L L↑ < <9 (31)

And consequently, using (29) and (31) we get

2 2

2 1 1 ,1 1
ijS
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where the parameter λ  is defined as

2    ,
c
κλ

θ
< (33)

and

1    .
1 1ij

i j

G

C C

<
∗ (34)

The sizing matrix KS is obtained from (29) by calculating the thermal capacity and distance
matrices, G and D, which are symmetric, together with the parameter λ .  The  choice  of  the

parameter λ  does not affect the construction of the dimensionless matrix K∃ , as the same value
is used for all the elements. However,  it  is  important  to  choose  a  realistic  value,  so  that  the
sizing conductive coupling matrix KS has realistic values as well. Assuming typical values, such
as κ  = 50 W/(m·K), ρ = 3000 kg/m3 and c = 1000 J/(kg·K), these would yield a value for
λ  = 3.33·10-5 m2/s.

Once the sizing matrix KS has been calculated, the dimensionless matrix K∃  is  obtained  by
dividing element-wise the matrix K by KS (only applies for non-zero elements)

, , : 0, .ij S
ij ijS

ij

K
K i j K i j

K
< ÷ ÷∃ (35)
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K∃  represents the comparison between the conductive couplings of the detailed model and their
estimated values obtained from the available data, such as geometry and thermal capacities.

Exception handling

The policy in the reduction process is to leave the nodes with insufficient information not
condensed in the reduced model. We will call these nodes “isolated nodes”. This is equivalent to
make all the related conductors equal to zero in K.

As a consequence of using ESATAN output, an specific procedure should be applied in some
cases. In this software, all the elements with no spatial coordinates defined in the modelling
process are located at the origin in the TMD output file (thus, showing the coordinates [0, 0, 0]).
For a node i, all the distances Dij are  set  to  zero,  in  the understanding that  the position of  the
node i is unknown, and therefore is impossible to assess the corresponding terms in KS and K∃ .

In the calculation of the thermal capacities matrix elements (34), if one of the capacities is zero,
then the capacity term in the matrix will  be the non-zero capacity.  If  both capacities  are  zero,
then this term is not determined, and the capacity term is set to zero. The zeros in matrices G
and D are propagated to KS and K∃  by using CSR data operations.

4.2.2 Boundary nodes processing

The boundary nodes have to be retained in the reduced model, and should not be condensed.
They should remain as isolated nodes (as only connected nodes are candidates for
condensation). To achieve this, they have to be artificially decoupled from the rest of the nodes
in the model in order to process the adjacency matrix A adequately. To do so, the boundary
nodes in the sizing matrix K∃  need to be marked8. Basically, this means that all the related
conductive couplings to the boundary nodes will be artificially set to zero, so that they are not
able to be condensed with any other node (the boundary nodes appear as if they were isolated).
It is important to underline that this is done only in the K∃  matrix (the resulting matrix is called

BK∃ ). It only affects the reduction scheme, but all the information regarding the conductive
couplings between the boundary nodes and rest of the model is still available, and will be
consequently considered in the reduced model.

Furthermore, in order to improve the processing of the conductive coupling matrix and the
outcome of the model reduction, it is useful to retain  the nodes (mark them as isolated in BK∃ )
that are directly conductively coupled to the boundary nodes. These nodes are called “internal
boundary nodes”. Regardless of the aim of the model reduction –intensive internal calculations,
delivery to an assembler of thermal models, etc.–, the retention (isolation) of these internal
nodes will generally allow for a better temperature correlation to be achieved in these nodes,
which ultimately will yield a better heat fluxes correlation, because the conductive couplings
between the boundary nodes and the internal boundary nodes are kept independent from the

8 Due to operations sequence, the boundary and the internal boundary nodes are actually processed in a
copy of the conductive couplings matrix K. The nonzero elements in the resulting matrix become 1, and

then this matrix is multiplied element-wise by K∃ , obtaining IK∃  (see paragraph 4.2.3).
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general reduction process. The process is applied in BK∃ , and the resulting matrix is called IK∃ .
An scheme of the “isolation” process is shown in Fig. 4-4.

Fig. 4-4. Boundary nodes and internal boundary nodes retention process. a) Shows nodes
interconnected, including boundary nodes, in orange. b) Internal boundary nodes are
identified, in blue. c) Isolation of boundary and internal boundary nodes, by removing
conductive couplings, in red. d) Final state of the nodes, once the nodes have been isolated.

It has to be pointed out that the only purpose of isolating the nodes is to prevent them from
participating in the condensation. The node or group of nodes is marked in K∃ or BK∃ –are
disconnected from its neighbors– in order to prevent them from being condensed with the nodes
from which they have been disconnected. Once the model is reduced, the conductive couplings
are recovered, and the nodes are not isolated anymore.

Regarding the boundary nodes that are connected to the rest of the model only by means of
radiative couplings, they are already conductively disconnected, as their conductive couplings
with the model are obviously zero.

4.2.3 Filtering of the dimensionless conductive coupling matrix

The matrix IK∃  is ready to be filtered by a value pf, which represents a dimensionless threshold
as follows

,
1

.
0

I
ij fI F

ij I
ij f

K p
K

K p

 =< 
′

∃

∃

∃
(36)

The resulting matrix I,FK∃  is “binarized”, a matrix with only ones and zeros, which contains the
information of the nodes that are to be merged. The number of reduced nodes depends on pf.

, 1I F
ijK <∃  means a good connection, and therefore the connected nodes have to be condensed in

the same reduced node. As the threshold value pf increases, the number of “good” connections
decreases, more nodes appear as isolated in the model, and consequently the number of nodes in
the reduced model is larger.
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4.3 Construction and process of temperature difference matrix
The representativeness of the reduced model is evaluated by comparing the temperatures of the
reduced model and of the detailed model. Therefore, if the nodes from the detailed model that
form a reduced node are isothermal (or nearly isothermal), the reduced model will behave more
similarly to the detailed one. Thus, it is reasonable to limit the temperature difference that two
nodes can have in order for them to be included in the same reduced node.

4.3.1 Building and filtering the temperature difference matrix

The temperature difference matrix ϴ is built with the nodal temperature vector T of the detailed
model,

.ij i jT Tπ < , (37)

The matrix ϴ is ready to be filtered by a maximum temperature difference, ΔTmax. The resulting
matrix is “binarized” in the same fashion as explained in section 4.2.3, as follows,

0
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ij maxF

ij
ij max

T
T

π
π

π

= Χ<  ′ Χ
(38)

Obviously, the greater the maximum allowed temperature difference ΔTmax, the lower the
number of nodes in the reduced model.

4.4 Model condensation

4.4.1 Definition of the adjacency matrix

With I,FK∃  and ϴF already  built,  it  is  necessary  to  merge  both  matrices  in  the  adjacency
matrix A. This is achieved by multiplying both matrices element-wise

, ,I F F
ij ij ijA K π< √∃ (39)

where essentially the filtered dimensionless matrix I,FK∃ is restricted with ϴF.  Because  of  the
definition of I,FK∃  and ϴF in equations (36) and (38), the adjacency matrix A will have only
zeros and ones. It represents the thermal network as a graph, the nodes being the graph vertices
and the conductive couplings the edges (see Fig. 4-5). The thermal network is an undirected
graph, and A is  a  sparse  adjacency  symmetrical  matrix.  As  mentioned  in  section  4.1,  the
programming has been carried out using sparse matrices in CSR format [68].
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Fig. 4-5. Example conductive couplings matrix (K) on the top left (integer values for the sake of
matrix compactness), the adjacency matrix A (after binarizing K) on the top right and the
corresponding graph on the bottom.

4.4.2 Connected components algorithm

The model is reduced by running the connected components algorithm9 [60, 62–64], so that the
nodes are condensed according to their connections (the algorithm finds the nodes which are
connected to each other). As a result, the algorithm returns the number of reduced nodes nc, and
the connected component labels array Scn, in which the nodes belonging to the same connected
component (thus, belonging to the same reduced node) have the same identifier.

9 The routine used belongs to the SciPy Compressed Sparse Graphs package and can be looked up in
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html
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4.4.3 Sorting the matrix entities

Sorting the original K and R matrices is not strictly necessary for the reduction process.
However, arranging the thermal coupling matrices by reduced nodes order can give visual
information about how the reduction process has grouped the nodes. To do this, a change of
basis matrix B is necessary, which is built making use of the label array Scn. Then, one can get
the sorted versions of K and R as the following matrix products

T
sort

T
sort

.
 <


<

K B K B

R B R B
(40)

(See example in Section 5.2.1).

4.4.4 Compacting the model

To reduce the dimension of the input matrices and vectors a transformation is required, which is
performed by using the so-called restriction matrix P. The dimensions of P are nd rows  × nc

columns. The node order of P is  the  same  as  in K, each row corresponds to a detailed node,
which will have a “1” in the column corresponding to the associated condensed node, and the
rest of the elements in the row will be “0”. With the restriction matrix, and the original inputs,
the matrix entities can be built for the reduced model

R T

R T
.

 <


<

K P K P
R P R P

(41)

Thus, for each condensed node, all of its conductive couplings with a neighbor are summed up.
Same methodology is used for the radiative couplings. Actually, these combinations are the
source of the deviation between the reduced nodes predicted temperatures (derived from the
detailed thermal model) and those calculated by solving the reduced thermal model. The errors
will  be small  as  far  as  the condensed nodes are isothermal.  Thus,  the threshold values (pf and
ΔTmax) determine the error obtained in the reduction, considering the rest of the elements
constant. An example of the formation of the reduced nodes and the condensation of the
couplings among the nodes is shown in Fig. 4-6.
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Fig. 4-6. Connected components and couplings reduction process. a) Strong conductive
couplings among the nodes (solid black lines) and weak connections (dashed black lines). b) The
connected components are found within the mesh, condensing the nodes in reduced nodes.
Strong couplings vanish among the condensed nodes. c) The weak couplings are summed up to
find the equivalent couplings between two reduced nodes. d) Final status of the reduced model.

The procedure of calculating the reduced model conductive couplings is shown in Fig. 4-6 c).
The conductive couplings between detailed model nodes belonging to reduced node #1 and
those belonging to reduced node #3 are summed up, in order to find the equivalent conductive
coupling for the reduced model. The procedure is repeated for the rest of the model.

Also for the loads and thermal capacities vectors

R T

R T
.

<
<

Q P Q
C P C

(42)

This operation assigns to each reduced node the sum of the thermal capacities of the nodes that
are condensed into that reduced node. The same occurs for the thermal loads. The reduced

system can be solved with the reduced matrices and vectors to obtain RT̂ .  However,  the
correctness or accuracy of the reduction process needs to be evaluated. Thus, this matrix need to
be compared with the target temperatures DT , derived directly from the detailed model. One
widely accepted standard in the industry is to calculate these temperatures as the thermal
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capacity-weighted mean temperature values [69] (it would be also possible to weight the
temperatures with nodal areas)

1

1 ,  1, ,    ,m
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j j
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j
j

T C
T i n
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<

<< < ≈




(43)

where m is the number of nodes that belong to reduced node i. It might happen that some
elements belonging to a reduced node have zero thermal capacity. These nodes are called
“arithmetic nodes”, corresponding to elements with a very small mass, and they respond
immediately to the changes in their environment [16, 70]. The arithmetic nodes are ignored in
the calculation of thermal capacity-weighted mean temperature values. If all the nodes
condensed into a reduced node have zero thermal capacity, then the corresponding value in DT
is calculated as an arithmetic mean (this general rule works well for the boundary nodes, since
they are the only element in their reduced nodes).  Once the reduced model is solved, the
temperatures derived from the detailed model, DT , are compared with those calculated with the

reduced model, RT̂ . The boundary nodes are directly assigned a temperature in the reduced
model, as they were isolated in the adjacency matrix (see section 4.2.2).

Regarding the heat fluxes, the calculated values for the reduced model, RĤ , are compared with
the target values, those corresponding to the detailed model, D

cbH  and D
rbH . D

cbH  accounts for

the conductive heat fluxes to boundary nodes, whereas the vector D
rbH  does so for the radiative

heat fluxes.

4.5 Validation of the reduced thermal model
With the reduced matrices and vectors, the reduced system can be solved. The derived
temperatures vector DT  is  used  to  set  up  the  boundary  conditions,  and  also  as  an  initial
condition if an iterative solver is employed. The thermal system is then solved in steady state
conditions, one energy balance equation per node

∋ ( ∋ (4 4
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ˆ ˆ ˆ ˆ 0, 1, , , .
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R R R R R R R
ij i j ij i j i c

j
K T T R T T Q i n i j

<

 , ∗ , ∗ < < ÷
  ϑ (44)

The model is solved with a steady state solver. For the linearization of the radiative terms, the
following algebraic identity is used (see [71])

∋ ( ∋ (∋ (∋ (4 4 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .R R R R R R R R
i j i j i j i jT T T T T T T T, < ∗ ∗ , (45)

Using eq. (45) in the nonlinear part of eq. (44), one gets

∋ ( ∋ (∋ (∋ ( ∋ (4 4 2 2 *ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,R R R R R R R R R R R R R
ij i j ij i j i j i j ij i jR T T R T T T T T T R T T, < ∗ ∗ , < , (46)

where

∋ (∋ (* 2 2ˆ ˆ ˆ ˆ .R R R R R
ij i j i jR T T T T< ∗ ∗ (47)
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The values for
*RK  are obtained with the temperatures calculated for the current step. Then, the

system is solved, and the latest temperatures are compared with those corresponding to the
previous step. Once the model has been solved, the results must be compared with those coming
from the detailed model. For the temperatures, the absolute difference will have to be less than a
predefined value, δmax. Hence, with the reduced model derived temperatures DT ,  and  the

reduced model calculated temperatures RT̂ ,  it can be checked that the difference is below the
maximum allowable value δmax.

ˆ , 1, , .D R
i i i max cT T i nχ χ< , ; < ϑ (48)

The difference between the temperature of each node in the detailed model and its
corresponding calculated temperature of the reduced node, to which the original node belongs,
can be calculated as

∋ (R R
d

ˆ ˆ .< , < ,τ T T T P T (49)

Regarding the heat fluxes exchanged with the boundary nodes, the heat fluxes vectors will have
as many components as the number of boundary nodes, nb. The difference can be expressed in
terms of percentage or in absolute numbers, depending on the heat flux value (the limit is
defined by qlim). For the conductive heat fluxes

ζ |
Ζ ∴

ˆ
, ,

ˆmin , 1, , ,

ˆ W , ,

i i

i i

i i

i i i i

D R
cb cb

cb max cb limD R
cb cb b

D R
cb cb cb max cb lim

H H
q q q q

H H i n

q H H q q q

 , < ; ″ <


< , ; ;

∃ ∃

ϑ (50)

and for the radiative heat fluxes

ζ |
Ζ ∴

ˆ
, ,

ˆmin , 1, , ,

ˆ W , .

i i

i i

i i

i i i i

D R
rb rb

rb max rb limD R
rb rb b

D R
rb rb rb max rb lim

H H
q q q q

H H i n

q H H q q q

 , < ; ″ <


< , ; ;

∃ ∃

ϑ (51)

The model reduction mathematical operations finish with the calculation of the correlation
errors. The reduced model obtained depends on the values of the thresholds chosen (pf and
ΔTmax). More iterations can be run using different values of pf and  ΔTmax. The problem of
implementing an automatic procedure to find a pair of threshold values that optimize a certain
objective function is beyond the scope of this work. For the time being, the final choice for the
thresholds relies on the thermal engineer judgement. A parametric sweep that explores many
different possible combinations of pf and ΔTmax is shown in section 5.2. This sweep can help the
engineer to study the problem and pick a suitable combination of thresholds for the thermal
model reduction.
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5 TESTING OF THE PROPOSED METHODOLOGY

Two models are used in order to test the methodology described in chapter 4. The first one, a
10-node model, will allow us to write down the matrices and vectors as the reduction process
develops. The second model represents real space hardware and will test quantitatively the
reduction algorithm.

5.1 10-node test model
The 10-node model used for reduction method illustration is shown in Fig. 5-1. This small
model represents a small housing, with some equipment inside. The equipment is conductively
coupled to the lateral faces of the housing (lateral wall 1, Lat1, is not shown in the figure). The
base is meshed forming two nodes, which are connected to the platform. Everything is
surrounded by a boundary node, the so-called environment, which is not represented in the
figure.

Fig. 5-1. 10-node model sketch (node 3 not shown).

The  housing  forms  a  rectangular  prism,  whose  size  is  5  ×  10  ×  10  cm3, and is made of
aluminum, with a thickness of 2 mm, painted black on both sides. The equipment is modelled as
a non-geometrical node, with a thermal capacity of 100 J/K. The conductive couplings are
shown in Fig. 5-2.
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Fig. 5-2. Sketch of 10-node model conductive couplings. There is no difference between solid
black and dashed grey lines in the figure. Grey dashed lines have been used solely for
visualization purposes.

The system is defined by the following matrices and vectors

0 0.26 0.06 0 0 0.05 0 0.06 0.20 0
0 0 0.06 0.05 0 0 0 0.06 0.20 0
0 0 0 0.35 0.05 0.35 0.35 0 0 0
0 0 0 0 0.05 0 0.13 0.35 0 0
0 0 0 0 0 0.05 0 0.05 0 0
0 0 0 0 0 0 0.13 0.35 0 0
0 0 0 0 0 0 0 0.35 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

W K

0 0 0

/

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K



5 Testing of the proposed methodology

35

0 0.01 0.64 0.15 0 0.51 0.25 0.65 0 2.25
0 0 0.64 0.50 0 0.15 0.25 0.65 0 2.25
0 0 0 1.30 0 1.28 1.29 3.52 0 9.00
0 0 0 0 0 0.51 0.66 1.29 0 4.50
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.65 1.29 0 4.50
0 0 0 0 0 0 0 1.30 0 4.50
0 0 0 0 0 0 0 0 0 9.00
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∑







< 








R 3 210 m,

⌡






≥







 
 



Although here dense representation of the matrices is shown, the program handles them
generally using sparse types. Regarding the thermal capacity and heat loads:

13.0 0
13.0 0
51.8 0
25.9 0

100.0 10.0
25.9 0
25.9 0
51.8 0

100

J/K; W

0.0 0
0 0

   
   
   
   
   
   
   

< <   
   
   
   
   
   
   
      

C Q

With the system defined as above, we can obtain the steady state solution solving equation (4),
using as boundary conditions the temperatures in the platform (+35 °C) and the radiative
environment (+50 °C)

D D
cb rb

49.73
49.73
65.64
66.61

116.13
66.61
65.27
65.64
35.00

5.89 0
C; W; W

0 4.

50.00

11

 
 
 
 
 
 
     

< ↓ < <     
    

 
 
 
 
 
  

T H H
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If  the  two  boundary  nodes  are  isolated  as  explained  in  section  4.2.2,  and  we  run  the  SCC
algorithm –no filtering is done, SCC routine is run directly on K once the boundary nodes have
been disconnected from the rest of the model– we obtain a model with three nodes, two out of
which are boundary type. We can calculate the maximum reduction ratio using eq. (23):
rr = 0.875. This number indicates the maximum reduction we could get with this methodology,
taking into account that the internal boundary nodes are not being isolated.

Let us now make the conductive couplings matrix K dimensionless. For that, we need to build
KS (24), and then divide element-wise K by KS, to obtain K∃ . Again, we choose
λ  = 3.33·10−5 m2/s. As detailed in equation (32), we calculate distance matrix D and thermal
capacity matrix G

0 0.05 0.06 0 0 0.06 0 0.06 0.04 0
0 0 0.06 0.06 0 0 0 0.06 0.04 0
0 0 0 0.06 0.02 0.06 0.06 0 0 0
0 0 0 0 0.05 0 0.07 0.06 0 0
0 0 0 0 0 0.05 0 0.02 0 0
0 0 0 0 0 0 0.07 0.06 0 0
0 0 0 0 0 0 0 0.06 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

m

0 0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

D

0 6.48 10.37 0 0 8.64 0 10.37 12.79 0
0 0 10.37 8.64 0 0 0 10.37 12.79 0
0 0 0 17.28 34.14 17.28 17.28 0 0 0
0 0 0 0 20.58 0 12.96 17.28 0 0
0 0 0 0 0 20.58 0 34.14 0 0
0 0 0 0 0 0 12.96 17.28 0 0
0 0 0 0 0 0 0 17.28 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∑ ⌡







< 









G J/K

















These matrices are masked with matrix K, so that no unnecessary elements are stored (this can
be relevant for larger models). Using expression (32), we get KS
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S

0 0.09 0.09 0 0 0.09 0 0.09 0.34 0
0 0 0.09 0.09 0 0 0 0.09 0.34 0
0 0 0 0.18 1.82 0.18 0.18 0 0 0
0 0 0 0 0.27 0 0.09 0.18 0 0
0 0 0 0 0 0.27 0 1.82 0 0
0 0 0 0 0 0 0.09 0.18 0 0
0 0 0 0 0 0 0 0.18 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

W/

0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K K

and dividing K by KS yields K∃

0 3.01 0.60 0 0 0.57 0 0.60 0.59 0
0 0 0.60 0.57 0 0 0 0.60 0.59 0
0 0 0 1.88 0.03 1.88 1.88 0 0 0
0 0 0 0 0.18 0 1.50 1.88 0 0
0 0 0 0 0 0.18 0 0.03 0 0
0 0 0 0 0 0 1.50 1.88 0 0
0 0 0 0 0 0 0 1.88 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K∃

Elements with a value greater than 1 are supposedly better conductors than the “assumed”
value, as explained in 4.2.1. For instance, the element 12K∃  represents the coupling between two
nodes belonging to the same plate. The bulk material of the plate (aluminum, with higher
conductivity than the κ  = 50 W/(m·K) used for calculating λ ) and the slightly different

density and specific heat (from those used for calculating λ ) make 12 1K =∃ . On the other hand,

23K∃  represents the coupling between two nodes belonging to the different plates. Although they
are made of aluminum, their conductive coupling is defined by a contact, which lowers the
resulting value in 12K .

The boundary nodes (nodes 9 and 10) can be isolated in the model (see 4.2.2), by making zero
the corresponding elements in matrix K∃ . Only node 9 has conductive couplings with the rest of
the model
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B

0 3.01 0.60 0 0 0.57 0 0.60 0
0 0 0.60 0.57 0 0 0 0.60 0
0 0 0 1.88 0.03 1.88 1.88 0 0
0 0 0 0 0.18 0 1.50 1.88 0
0 0 0 0 0 0.18 0 0

0
0
0
0
0
0
0
0

0 0 0 0 0 0 0 0 0 0

.03 0
0 0 0 0 0 0 1.50 1.88 0
0 0 0 0 0 0 0 1.88 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K∃

Then, the internal boundary nodes can be isolated as well. Only nodes 1 and 2 are conductively
coupled to a boundary node. Thus, these nodes are isolated from the rest of the model. Note that
the coupling between the two internal boundary nodes 1 and 2 does not vanish.

I

0 3.01 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1.88 0.03 1.88 1.88 0 0 0
0 0 0 0 0.18 0 1.50 1.88 0 0
0 0 0 0 0 0.18 0 0.03 0 0
0 0 0 0 0 0 1.50 1.88 0 0
0 0 0 0 0 0 0 1.88 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

0 0

0 0 0

0
0 0

0 0

0
∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K∃

Choosing pf as 0.2, we get the filtered dimensionless conductive coupling matrix I,FK∃  (see
(36))

–

–
–

– –
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I,F

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

0
0

0

0 0 0

0

0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K∃

With pf = 0.2, all the conductive couplings between node 5 (equipment) and the lateral panels of
the housing are filtered. As mentioned in section 4.2.3, once the matrix has been filtered, all the
nonzero elements are substituted by ones. Regarding temperature difference matrix ϴ

0 0 15.9 16.9 66.4 16.9 15.5 15.9 14.7 0.3
0 0 15.9 16.9 66.4 16.9 15.5 15.9 14.7 0.3
0 0 0 1.0 50.5 1.0 0.4 0 30.6 15.6
0 0 0 0 49.5 0 1.3 1.0 31.6 16.6
0 0 0 0 0 49.5 50.9 50.5 81.1 66.1
0 0 0 0 0 0 1.3 1.0 31.6 16.6
0 0 0 0 0 0 0 0.4 30.3 15.3
0 0 0 0 0 0 0 0 30.6 15.6
0 0 0 0 0

<θ

0 0 0 0 15.0
0 0 0 0 0 0 0 0 0 0

C

∑ ⌡
 
 
 
 
 
 

↓ 
 
 
 
 
 
 
 
 

Applying a temperature difference threshold of 10 °C, ϴ is filtered and we obtain ϴF. Again, all
the nonzero elements are substituted by ones

–

– –
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F

0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

θ

We can multiply element-wise matrices I,FK∃  and ϴF to get the adjacency matrix A

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

A

By running the SCC routine on adjacency matrix A, we can find the condensed nodes:

Ζ ∴cn 1 1 2 25 3 2 2 2 4 5;cn < <S

Vector Scn is one of the outputs of the connected components routine (see section 4.4.2). The
vector has one component per detailed model node, indicating the reduced thermal model node
number to which the detailed node belongs. The adjacency matrix A,  together  with  the
corresponding reduced model node numbers, is shown below:
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1 2 3 2 4 5

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
  
 

A

A =

The reduced model has 5 reduced nodes, so rr = 0.62. Looking at Scn,  we can see that the first
two nodes (base) belong to reduced node No.1. Then we have the housing laterals and lid
forming another reduced node (No.2), the equipment (No.3) and the two boundary nodes (No.4
and No.5). Fig. 5-3 shows the 10-node model with the reduced nodes.
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Fig. 5-3. Sketch of 10-node model with the condensed nodes.

In order to sort the conductive and radiative couplings matrices by the condensed nodes, it is
necessary to build a change-of-basis matrix B

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

B
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We can obtain Ksort using eq. (40)

sort

0 0.35 0.35 0.35 0
0 0 0 0.13 0.35
0 0 0 0.13 0.35
0 0 0 0 0

0.06 0 0.05 0 0.06 0 0.2 0
0.06 0.05 0 0 0.06 0 0.2 0

0 0 0.05 0 0
0 0 0.05 0 0
0 0 0.05 0 0
0 0 0 0

0

0
0 0 0.05 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0

0

0

0.26

.35
0 0 0 0 0

0 0

0

0

0 0 0

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

K

The grey zones indicate the couplings among the nodes belonging to the same reduced node.
When the system is condensed, these couplings will vanish, while the couplings outside the grey
zones are those between the nodes belonging to different reduced nodes. These couplings will
be summed up, to build the reduced conductive couplings matrix KR.  The same applies  to  the
radiative couplings matrix. To compact the model (reduce the dimension of all vector and
matrices defining the model), we need to construct the restriction matrix P (see 4.4.4)

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

∑ ⌡
 
 
 
 
 
 

<  
 
 
 
 
 
 
 
 

P

Restriction matrix P allows us to reduce matrices K and R

R R 3 2

0 0.327 0 0.4 0 0 4.4 0 0 4.5
0 0 0.2 0 0 0 0 0 0 31.5
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

W/K; 10 m
0 0 0

0 0 0 0 0 0 0 0 0 0

,

∑ ⌡ ∑ ⌡
   
   
   < < ≥
   
   
   
   

K R

–

–
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and C, Q and T

R R D

25.9 0 49.7
181.4 0 65.9
100.0 10.0 116.1

1000.0 0 35.0
0 0 50.0

J/K; W; C

     
     
     
     < < < ↓
     
     
          

C Q T

Note that the vector of temperatures DT  corresponds to those derived directly from the detailed
model, by calculating the thermal capacity-weighted mean temperatures. The reduced matrices
and vectors KR, RR, CR and QR, together with the boundary conditions, make up a system that

can be resolved –equation (4)–, to obtain the steady state solution  of the reduced problem, RT̂
and RĤ

R R R
cb rb

49.7
65.9

5.88 0
115.9

0 4.12
35.0
50.

ˆ ˆ ˆC; W;

0

W

 
 
     
 < ↓ < <   
     
 
  

T H H

These  temperatures  and  heat  fluxes  obtained  by  solving  the  reduced  thermal  model  can  be
compared to those derived from the detailed model, to evaluate how accurate is the model
condensation. The results of the correlation are shown in Table 5-1 and Table 5-2.

Table 5-1. 10-node model temperature results comparison.

i
(condensed node) 1 2 3 4 5

D
iT  (°C) 49.7 65.9 116.1 35.0 50.0

ˆ R
iT  (°C) 49.7 65.9 115.9 35.0 50.0

δi (°C) < 0.1 < 0.1 0.2 Boundary
node

Boundary
node

Table 5-2. 10-node model heat fluxes results comparison.

i
(condensed node) 4 i

(condensed node) 5

i

D
cbH  (W) 5.89

i

D
rbH  (W) 4.11

ˆ
i

R
cbH  (W) 5.88 ˆ

i

R
rbH  (W) 4.12

icbq∃ 0.17 %
irbq∃ 0.24 %

The  temperatures  and  heat  fluxes  correlation,  given  by δ, cbq∃  and rbq∃ , show that the model
reduction is very good.
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5.2 Solar Orbiter PHI Focal Plane Assembly test model
In order to analyze the application of the method to a real problem with a large number of
nodes, let us consider the thermal model of the Focal Plane Assembly (FPA) of the Polarimetric
and  Helioseismic  Imager  (PHI)  instrument.  PHI  will  be  on  board  of  the  ESA  mission  Solar
Orbiter, to be launched in 2020 [17, 72]. The FPA detailed thermal model consists of 1072
nodes and 457 geometric primitives, and has been entirely built with ESATAN-TMS [16]. The
FPA  is  a  camera  system,  with  a  detector,  front-end  electronics,  and  a  cold  finger,  which
connects the camera to the PHI Optics Unit cold element interface by means of a thermal strap.
It also has an aluminum housing and an aluminum tube with some lenses. A render of the CAD
model of the PHI FPA is shown in Fig. 5-4. The PHI FPA GMM is shown in Fig. 5-5. Fig. 5-6
shows the boundary nodes to which the model is conductively connected.

Fig. 5-4. PHI Optics Unit FPA CAD view.

Fig. 5-5. PHI Optics Unit FPA GMM.
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Fig. 5-6. PHI Optics Unit FPA boundary nodes (conductive).

5.2.1 Reduction of the thermal mathematical model

The conductive and radiative coupling matrices are shown in Fig. 5-7 as imported from the
ESATAN-TMS TMD file. Matrix K has 2367 conductive couplings, whereas R has 299 252.
The matrix R is very dense not only because it represents the radiative couplings, but also due to
the accuracy parameters used in the radiative calculations. The matrices are symmetric, so the
program only works with upper triangular matrices. All the graphics related to the reduction
process have been done with Matplotlib [73].

Fig. 5-7. Sparse graphical representation of (a) matrix K and (b) matrix R.
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The model has four boundary nodes. If they are isolated, and the strongly connected
components algorithm on the resulting matrix KB is run, the minimum number of condensed
nodes is found to be 6, including this number the 4 boundary nodes and 2 reduced diffusion
nodes, one of which is conductively decoupled from the rest of the model. The maximum ratio
rr,  that  can  be  obtained  according  to  eq.  (23),  is  0.998  (from 1072  to  6).  This  is  a  theoretical
limit, but in order to be able to correlate the models according to typical correlation criteria, this
value of rr will have to be lower. The final value of rr will depend on the final choice for pf and
ΔTmax.

To prepare the matrix K for filtering, λ  has been given the value calculated in section 4.2.1,
λ  = 3.33·10-5 m2/s. Then, with λ , together with the distance matrix D and the capacitance
matrix G, the sizing matrix KS can be obtained. The histogram of the conductive couplings
matrices K and KS are shown in Fig. 5-8.

Fig. 5-8. Conductive couplings histograms of (a) matrix K values and (b) matrix KS values.

In Fig. 5-8, it can be seen that most of the couplings for matrix K are concentrated in the range
10-1 - 100 W/K, whereas for matrix KS they are mostly concentrated in the range 101–102 W/K.
This means that, according to the value chosen for parameter λ  and the magnitudes used to
estimate KS, the model has a “poor” conductive behavior ( κ  has a generic value of
50 W/(m·K)).  This  appraisal  would  change  if λ  is  changed,  but  it  still  gives  an  idea  of  how
good (conductively) the model is, when compared with the estimator. If λ  changes,  the
horizontal axis will change, but the shape of the histogram will remain.

Once the dimensionless coupling IK∃ and temperature ϴ matrices have been created, it is
possible to set up the adjacency matrix A, filter the system and compact the model. Before that,
it was decided to do a preliminary study regarding how the reduction ratio rr varies with the
different filtering levels. Fig. 5-9 shows the variation of rr with pf and ΔTmax independently. This
figure confirms what was explained in sections 4.2.3 and 4.3.1 relative to the behavior of rr as a
function of pf and ΔTmax.
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Fig. 5-9. Variation of (a) reduction ratio rr vs. filtering threshold pf,  and  variation  of  (b)
reduction ratio  rr vs. temperature difference threshold ΔTmax. For (a), the SCC algorithm is run
with K̃I,F. For (b), the matrix K is multiplied element-wise by ϴF, and the SCC algorithm is run
with the resulting matrix.

As the reduction ratio rr is a function of both pf and ΔTmax, to analyze the influence of these two
parameters an appropriate method is to create a contour plot of the function rr = f (pf, ΔTmax), as
shown in Fig. 5-10. This way, a combination of pf and ΔTmax suitable to get the desired value of
rr can be selected. Furthermore, it is necessary to determine if the model correlation is good
enough. To do this, correlation criteria for the reduced model should be defined.

For the sake of simplicity, only one is used for all the parts: δmax = 3K. Regarding the heat flux
exchanged with the boundary nodes, the chosen criteria are:

a. For absolute heat flow less than qlim = 1 W, difference must be less than 0.1W.
b. For absolute heat flow more than qlim = 1 W, difference must be less than 10%.

Therefore, the value for qmax is  0.1  W  and q̃max is 10%. Fig. 5-10 shows the function
rr = f (pf, ΔTmax),  together  with  the  correlation  status  for  each  pair  of  values pf and  ΔTmax. The
successful correlation implies that the three conditions (temperature difference, conductive and
radiative heat fluxes differences) are satisfied. The values for pf and ΔTmax cover almost the full
range of both magnitudes, as they were shown in Fig. 5-9. The most extreme values have been
omitted, since they produce almost no change in the reduction ratio rr,  as  can  be  seen  in
Fig. 5-9.
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Fig. 5-10. Contour plot of the function rr = f (pf, ΔTmax). Black solid lines represent constant rr,
whose value is indicated inline. Grey zone indicates successful correlation for the resulting
reduced model. Orange colored zone indicates failed correlation for the resulting reduced
model. Red line indicates the separation between both zones, being effectively the limit for a
successful correlation.

Hence, it can be seen from the results shown in Fig. 5-10 that it is not possible to have a
reduction ratio rr of more than 0.75–0.80 that yields a successful correlation (with the current
correlation criteria). This limitation is due to the PHI FPA physical characteristics, the
correlation criteria and the reduction method itself. Other models could yield greater values of rr

that satisfy the correlation criteria. In order to study in detail this model reduction in particular,
let us plot the same Fig. 5-10 but zooming in on the range of rr = [0.50, 0.90]. This zooming in,
and the displays of temperature and heat flux difference maps, are shown in Fig. 5-11 to
Fig. 5-15.
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Fig. 5-11. Contour plot of the function rr = f (pf, ΔTmax), zoomed at the rr = [0.5, 0.9] zone.

Fig. 5-12. Contour plot of the function rr = f (pf,  ΔTmax),  zoomed  at  the rr = [0.5, 0.9] zone.
Orange line indicates the correlation limit line based on δ. Green line indicates the limit based
on qcb. Blue line is for qrb. Red line is the envelope of the previous three, and coincides with the
red line in Fig. 5-11.
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Fig. 5-13. Max{δ} = f (pf,  ΔTmax) over the zone rr =  [0.5,  0.9]  zone.  Black  line:  limit  of  the
successful correlation zone in terms of temperature difference.

Fig. 5-14. Max{qcb}  = f (pf,  ΔTmax) over the zone rr =  [0.5,  0.9]  zone.  Black  line:  limit  of  the
successful correlation zone in terms of conductive heat flux difference.
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Fig. 5-15. Max{qrb}  = f (pf,  ΔTmax) over the zone rr =  [0.5,  0.9]  zone.  Black  line:  limit  of  the
successful correlation zone in terms of radiative heat flux difference.

As shown in Fig. 5-9, the variation of rr with pf is steep, whereas the variation of rr with ΔTmax is
more gradual. This behavior can be observed in Fig. 5-10. We can also see that the most
restrictive criteria for the correlation are the heat flux differences (except for a small area where
pf ≈ 101 and ΔTmax ranges between 100 and 101 °C).

Let us select a combination of values for pf and ΔTmax: pf = 0.001 and ΔTmax = 0.16 °C.  After
applying the SCC algorithm, these values yield nc = 217 nodes. With nb = 4, eq. (23) gives
rr = 0.80. Other combinations of pf and ΔTmax could have been picked, in case one had different
criterion for convergence. The variation of rr, maximum temperature difference and conductive
and radiative heat flux differences through the boundaries are shown in Fig. 5-16, for a constant
value of ΔTmax.  This  figure also shows that ζ |max iχ  is not a monotonic decreasing function

of pf. The behavior of δ, qcb and qrb will depend of the particular structure of the model under
study.
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Fig. 5-16. (a) Variation of the reduction ratio rr as a function of filtering threshold pf, keeping
constant the temperature difference threshold ΔTmax. (b) is similar to (a), but showing max{δi}.
(c)  shows  the  variation  of  max{qcb} as a function of pf, again keeping constant ΔTmax. (d)
represents max{qrb}.

The outcome of the SCC algorithm allows the restriction matrix P to be built (Fig. 5-17), as well
as the sorted matrices Ksort and Rsort (Fig. 5-18). With the restriction matrix P the reduced
matrices KR and RR can be calculated (Fig. 5-19).
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Fig. 5-17. Sparse graphical representation of restriction matrix P.

Fig. 5-18. Sparse graphical representation of (a) matrix Ksort and (b) matrix Rsort. The matrices
are symmetric, so the program only works with upper triangular matrices.
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Fig. 5-19. Sparse graphical representation of (a) matrix KR and (b) matrix RR. Matrix KR has
395 conductive couplings, whereas RR has 18 244. The matrices are symmetric, so the program
only works with upper triangular matrices.

With the values of pf and  ΔTmax chosen, it is already known by looking at Fig. 5-11 that the
correlation of the reduced model with the detailed model will be within the limits. The reduced
system to find out the exact values for the temperature and heat fluxes differences can now be
solved. Fig. 5-20 shows the components for the temperature difference vector δ.  As  can  be
deduced from this figure, the maximum value is around 0.35 K, and the minimum is around
−0.25 K. Fig. 5-21 shows the histograms of the values of vector δ and vector τ (see eq. (49)).
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Fig. 5-20. Components of temperature differences vector δ. i: vector index.

Fig. 5-21. Temperature differences histograms of (a) vector δ and (b) τ.

Regarding the conductive heat flux differences, the values from the detailed model D
cbH  and

those calculated with the reduced model R
cbĤ  are shown in Table 5-3.
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Table 5-3. PHI FPA model conductive heat fluxes comparison.

i
(boundary node) 1 2 3 4

i

D
cbH  (W) 2.89 0.67 0.05 -

ˆ
i

R
cbH  (W) 2.89 0.76 0.04 -

/
i icb cbq q∃ < 0.1% < 0.1 W < 0.01 W -

If both vectors are compared, it can be seen that the maximum difference occurs for the second
boundary node. According to the definition given in eq. (50), together with our criteria about
heat flux differences, it can be seen that the goal value is smaller than 1 W, and consequently
the difference must be given in absolute values (and not in percentage),

ˆ 0.09 W 0.1 W .
2 2 2

D R
cb cb cb maxq H H q< , < ; <

The radiative heat fluxes are shown in Table 5-4, where the difference, according to eq. (51) has
been calculated as

ζ |
ˆ

6.8% 10% .ˆmin ,
4 4

4

4 4

D D
rb rb

rb maxD D
rb rb

H H
q q

H H

,
< < ; <∃

Table 5-4. PHI FPA model conductive heat fluxes comparison.

i
(boundary node) 1 2 3 4

i

D
rbH  (W) - - - -1.17

ˆ
i

R
rbH  (W) - - - -1.25

/
i irb rbq q∃ - - - < 6.8 %

The program takes 30 hours in a mid-2014 desktop computer to run 293 046 cases (reduced
models obtained with different combinations of pf and ΔTmax),  in  order  to  plot  Fig.  5-10  to
Fig. 5-15. This time can be reduced by modifying the sampling space; although the figures
would lose some resolution, it would be still enough for the sake of assessing the combination
of parameters.
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5.2.2 Reduction of the geometrical mathematical model

Based on the reduction scheme developed in section 5.2.1, it is necessary to reduce the GMM
accordingly. Although it would be possible to develop a kind of automatic algorithm to reduce
automatically the GMM [32], the manual reduction serves its purpose, and it is not as time
consuming as the TMM reduction. The program produces a text report with all the statistics of
the condensation (an extract of this report can be found in section 8.2). This information, in its
full extension, also includes what detailed model nodes belong to each single reduced node,
with their original temperatures, labels, etc. In addition to that, the code generates a TMD file
suitable for ESATAN-TMS. The TMD file allows the user to see the condensed nodes number
and temperatures overlaid on the GMM, the original detailed model nodes, and the temperature
difference between detailed and condensed nodes –components of vector τ, see eq. (49)–.
A couple of snapshots of the post-processed TMD file temperature differences are shown in
Fig. 5-22.

Fig. 5-22. Temperature differences (°C) between detailed and reduced nodes (τ) overlaid on the
GMM.

Regarding the geometrical arrangement, some of the nodes from the detailed model are
condensed in a very unpleasant way (in what respects the geometrical reduction). For instance,
the reduced nodes in the FPGA board are depicted in Fig. 5-23. The board was modelled in the
detailed GMM as a single shell, with a mesh of 7 x 7 nodes. In the reduced model, the board is
divided in 36 nodes. In order to represent accurately the reduced nodes in the reduced GMM,
one would have to create dedicated shells for each one of the reduced nodes, producing a kind
of “patchwork”. This could be very time consuming, but the geometry would adapt completely
to the mesh created by the reduction algorithm.
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Fig. 5-23. Condensed node number overlaid on the FPGA GMM (top left for node range 101-
112, top right for 113-124 and bottom for 125-136).

Overall, depending on the TMM reduction achieved, the reconstructed RGMM might pose no
significant saving in terms of radiative calculations time. Although the number of nodes is
reduced, it might be necessary to use many shells in the RGMM in order to adapt the geometry
to the reduced nodes, which increases the computation time for calculating the REFs.
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5.2.3 Transient analysis

The transient correlation is beyond the scope of this study, but a simple transient case has been
run in ESATAN-TMS in order to compare the results obtained with both detailed and reduced
models. The evolution of the temperatures has been calculated for a total time of 16 200 s. The
model is brought from hot to cold conditions, while the power dissipation values remain
constant. The variation of the boundary nodes temperatures with time used for the transient
analysis is shown in Fig. 5-24, and is given by
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Fig. 5-24. Evolution of the boundary nodes temperatures for transient analysis (horizontal axis
–time– only covers just up to 7200 s for more clarity).
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The ESATAN control constant values used in the analyses can be found in Table 5-5.

Table 5-5. ESATAN control constants values.

Control constant Value Definition

DTIMEI 0.025 s Input time step

OUTINT 60 s Output time step

RELXCA 10-4 °C Temperature convergence criterion

NLOOP 500 Maximum allowable number of iterations

The input time step DTIMEI value has been chosen following the guidelines given in [69].
These  guidelines  advise  the  use  of  a  DTIMEI  value  smaller  than  the  CSGMIN  value  for  the
model under analysis10. The term CSG stands for the ratio of a node thermal capacitance divided
by the sum of the conductances to the node. This number measures “the rate at which the node
temperature responds to a given heat impulse” [16], and CSGMIN is the minimum value of
CSG  for  a  given  model.  For  the  case  of  the  reduced  model  of  the  PHI  OPT  FPA,
CSGMIN = 0.293 s at node 182 (which represents a group of five nodes belonging to the cold
finger) and for the detailed model, CSGMIN = 0.03 s at node 13 520 (thermal baffle sealing).
Although  the  models  have  different  CSGMIN,  it  has  been  used  the  same  DTIMEI  value  (the
most restrictive one). The transient analysis has taken roughly 4.5 minutes for the reduced
model and 100 minutes for the detailed one, both run in a 2014 laptop (Intel® Core i5-4210U,
maximum frequency (turbo) of 2 × 2.7 GHz). This gives an idea of the computational time
saving that can be achieved by reducing the model and using it for transient calculations.

The temperatures obtained in the DTMM transient analysis have been  surface-weighted
averaged following the same approach indicated in eq. (43). Results show that most of the
elements are also well correlated11 in  the  transient  analysis.  The  maximum  temperature
differences occur for the condensed nodes no. 190 (TDTMM – TRTMM =  3.8  °C,  part  of  the  lens
tube) and no. 210 (TDTMM – TRTMM = −5.4 °C, one of the mounting legs). The nodes are shown in
Fig. 5-26. Both temperature differences evolution can be seen in Fig. 5-25. The temperature
differences evolution for other nodes are shown in Fig. 5-27, and their positions in the GMM are
shown in Fig. 5-28. Of course, the correlation depends strongly on the rate of change of the
boundary conditions (in the sense that diverging transient temperatures amplify the errors made
in the steady state reduction). For this analysis, the variation profiles of the boundary conditions
have been defined using a unique time basis, and the maximum rate of change of 2 °C/min

10 Other authors, such as [86], questioned the necessity of using such a small input time step.
11 The TMM correlation success criteria in transient conditions are not as standardized as those used for
steady state analysis. As [87] indicates in section 4.5.3.3, the transient modes correlation needs specific
success criteria to be defined. This statement is formulated for test-model correlation, but [69] suggests
that the test-model correlation criteria “can be used as inspiration to derive guidelines for model
reduction”.
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happens for the radiative environment. This value is the maximum rate of change expected
during  a  PHI  OPT  FPA  thermal  vacuum  test,  and  it  is  faster  than  the  variation  predicted  in
flight. If it were necessary to achieve a better level of temperatures correlation, it might help to
use more reduction snapshots along the transient trajectory, but this has not been tested. In
theory it would also be possible to slightly adjust the thermal capacitances in the reduced model,
always keeping the total sum identical in both detailed and reduced models, for instance, using
TAUMEL, an automated correlation tool developed by Frey, Trinoga et al [74, 75], or the
method proposed by Anglada and Garmendia [76], based on genetic algorithms. Theoretically,
this adjustment might have an impact in the steady state correlation, since changing the thermal
capacities would affect the way in which the model is reduced (32) and how the temperatures
are condensed from the detailed model (43) (in principle, it would not be necessary to
recalculate the detailed model condensed temperatures and to reduce again the model). In
addition, the conductive couplings could be slightly adjusted in order to improve the transient
correlation. Again, this process should be done carefully, although it is beyond the scope of this
study.

Fig. 5-25. Evolution of the temperatures of nodes 190 and 210 (corresponding to maximum
differences obtained in the transient analysis).
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Fig. 5-26. RTMM condensed node no. 190 (left) and node no. 210 (right).

Fig. 5-27. Evolution of the temperatures of nodes 4, 21, 58 and 185.
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Fig. 5-28. RTMM condensed node no. 4 – housing upper lid (top left), no. 21 – cold finger (top
right), no. 58 – sensor board (bottom left) and no. 185 – detector die (bottom right).

After 16 200 s, the system reached a quasi-steady state. For the RTMM, the maximum
temperature variation over the last two hours was 0.03 °C/h for the last hour and 0.30 °C/h for
the hour before. Regarding the DTMM, the maximum variations were 0.09 °C/h and 0.67 °C/h
respectively. These values are compliant with the stability requirements given in [77]12. In order
to compare the results obtained with the reduced and the detailed model at the end of the

12 This ECSS standard has been superseded by a newer standard (ECSS-E-ST-10-03C), which does not
specify any numbers for the stabilization criteria. In theory, typical values should be included in a new
handbook, but this has not been released at the time of writing this dissertation. As specified in Table 15
[77], the stability is reached when the temperatures have varied less than 1 °C/1 hour for at least a dwell
time of 2 hours. The results are also compatible with different steady state conditions given by other
authors, such as [88].
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transient analysis, one can repeat the same approach followed in section 5.2.1 to determine the
temperature and heat fluxes differences. Fig. 5-29 shows the components for the temperature
difference vector δ at  the  end  of  the  transient  analysis  (i.e. cold operational case). The
comparison between the heat fluxes obtained in both models can be found in Table 5-6 and
Table 5-7. The correlation results are worse than those shown in section 5.2.1 (for the hot
operational steady state case, Fig. 5-20, Table 5-3 and Table 5-4), but, with the exception of the
conductive heat flux from the FPA mounting interface (boundary node i =  2),  the  values  are
within the required range.

Fig. 5-29. Components of vector δ at the end of the transient analysis.
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Table 5-6. PHI FPA model conductive heat fluxes comparison at the end of the transient
analysis. Orange cell indicates an unfulfillment of the required heat flux difference.

i
(boundary node) 1 2 3 4

i

D
cbH  (W) 1.81 -0.85 -0.14 -

ˆ
i

R
cbH  (W) 1.81 -1.01 -0.14 -

/
i icb cbq q∃ < 0.1% < 18.9 % < 0.01 W -

Table 5-7. PHI FPA model conductive heat fluxes comparison at the end of the transient
analysis.

i
(boundary node) 1 2 3 4

i

D
rbH  (W) - - - 1.62

ˆ
i

R
rbH  (W) - - - 1.77

/
i irb rbq q∃ - - - < 9.3 %
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6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
A method for spacecraft thermal model reduction has been developed. It is focused on internally
mounted space scientific instrument LPM thermal mathematical models, although formally the
method could be used in any other type of equipment. The method uses the steady state
conditions (a model snapshot, in other words) for the reduction process, condensing the detailed
model nodes based on thermal conductance values and temperature level similarities. While
reducing the size of the detailed model, the technique presented here pursues the preservation of
the physical characteristics and the topology of the original model (thermo-optical properties,
thermal conductivities, global thermal capacity, symmetry of the matrices, conduction paths).
Although the intention from the beginning was to build up a reduction technique fully
automatic, a little intervention by the engineer is deemed necessary to choose at least values for
the reduction ratio and maximum allowable heat flux and temperature differences.

The analysis made of the detailed model for node condensation gives some valuable information
about the model structure. For instance, the numerical distribution of the conductors, how big
are they in relation to those calculated with a reference value λ , and where the meshing might
be excessively detailed with regard to temperature gradients –there might be other reasons for
using a detailed meshing, such as allowing ESATAN-TMS the automatic calculation of
conductive couplings, see [78].

The value of the maximum reduction ratio rr for which the correlation is successful depends on
the model characteristics and obviously the correlation criteria, but, according to the tests
carried out, it seems quite difficult to achieve reductions with a reduction ratio of 90% or more.
If it were necessary to reach higher levels of reduction, one possible option would be to tweak
some reduced conductive couplings manually (following the classical approach for spacecraft
thermal model reduction) or to use an automatic method for model correlation, in order to adjust
some conductors and therefore improve the correlation. For automatic correlation methods, see
for instance the software TAUMEL, based on an optimization algorithm and developed by Frey,
Trinoga et al for Airbus Defense and Space [74, 75, 79]. Other techniques are presented by
Torralbo et al [80], Jouffroy and Durand [81], Beck et al [82], Van Zijl et al [83], Anglada and
Garmendia [76] and Klement [84, 85]. In case an automatic technique is used for improving the
model correlation, it is important to keep the physical meaning of the model parameters. In our
experience, the violation of the correlation requirements occurs typically for the heat fluxes
through the boundaries. These violations might be corrected with minor changes in the reduced
model conductors.

Regarding the reduction of the GMM, the need of assembling a RGMM will depend on the
future use of the reduced thermal model. If the reduced thermal model is intended to be used in
a higher hierarchy model for further analyses, or if it is planned to vary the thermo-optical
properties on the RGMM, then of course it is necessary the RGMM building. However, if it
were just planned to use for stand-alone calculations, then it would be enough to use the reduced
radiative couplings matrix.
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The correlation errors (temperature differences, δ, and heat fluxes through the boundaries, q)
come from the range of the temperatures of the detailed nodes belonging to each reduced node.
Radiative terms amplify the effect of this temperature differences among the condensed nodes.
A  second  possible  source  of  errors  would  be  the  different  REFs  obtained  by  setting  up  the
RGMM, in comparison to those obtained by radiative couplings matrix reduction. The first
source could be limited by refining the condensation algorithm, as it will be shown in the next
sub-section Future work.

Regarding the filtering criteria for the processed conductive couplings matrix IK∃ , looking at
the results shown in section 5.2.1, it seems that pf is less effective than ΔTmax. However, it is
also possible that in the particular snapshot that is being used for the reduction, the temperatures
of adjacent nodes are very similar, whereas in other cases, due to different heat sources, these
very same nodes are farther from each other in terms of temperature levels. This effect could be
then captured by filtering IK∃ with dimensionless threshold pf.

Some of the limitations of the proposed methodology are:

- It is limited to LPM generated models.
- The software program is not able to deal with special thermal control technologies and

features, such as thermostats and PID controlled heaters, Peltier coolers, and in general,
any logic included in the thermal model. The program only parses the information
contained in the ESATAN TMD file (see section 3). The logic can be manually
implemented by the engineer, once the reduction is completed.

- One-way fluid conductors (GF conductors in ESATAN) are not parsed from the TMD
ESATAN file, and therefore are not included in the reduction.

- The temperature dependency of some entities (conductivities, conductances, etc.)
cannot be included as such in the reduction method.

- ESATAN sub-models are not supported by the program.
- The  reduction  of  solids  defined  in  ESATAN  is  tricky.  The  surface  nodes  in  a  solid

geometry are arithmetic type, used solely for radiative analysis. Due to the exception
handling, these nodes would be isolated in the reduction process.

- The way in which multi-layer insulation (MLI) is modelled could pose a limitation for
model reduction. First, due to its relatively low thermal capacity, sometimes the MLI
nodes can be modelled as arithmetic nodes, which would be isolated in the reduction
process. Second, even in the case of having a very low thermal capacity (but not null),
the shell thickness uses to be very small (typically around 0.1 mm). So the MLI lateral
conduction could be considered negligible, and not included in the computations. These
two situations imply that in general, the MLI nodes belonging to the same side will not
generally be condensed.
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6.2 Future work

The future work would be focused on improving the reduction process to achieve better results,
and extending its application to transient analysis. Of course, other reduction approaches shall
be investigated, but there is some space for enhancing the method presented in this text.

The temperature correlation errors calculated as presented in equation (48) check that all the
components of δ are smaller than δmax. Another possible (and complementary) approach, as
indicated in [44, 69], would be the standard deviation of the temperature differences. This could
be easily implemented in the algorithm.

Some nodes could be directly isolated by the user, prior to starting the model reduction. These
nodes would remain untouched in the reduction process. This could be interesting for some
particular nodes, whose individual temperatures are of particular interest (for instance, a camera
detector, electronics components, etc.). This would also ease the implementation of the logic
present in the DTMM again in the RTMM (PID, thermostats).

The reduction method limits the temperature difference between two adjacent nodes, but it does
not limit the temperature amplitude of the detailed model nodes as part of a reduced node. A
possible way to limit the errors produced by this temperature range could be the clustering of
the detailed nodes. This means, limiting the “size” of the reduced nodes according to the
temperature range of the detailed nodes. Even more, the detailed model could be divided in
different zones (for instance, depending on their relation with the radiative boundaries), and
based on that, apply different temperature amplitude, ΔTmax and pf thresholds for the reduction.

For the TMM reduction, the thermo-optical properties are not taken into account, but this
information is provided by ESATAN in the TMD file (only infrared emissivity and solar
absorptivity). The nodal association for the thermal model reduction could be limited to those
nodes that have the same values of infrared emissivity and solar absorptivity (this does not
guarantee that they have the same thermo-optical property, but it is very likely to be the case).
The bulk properties data (thermal conductivity, specific heat capacity and density) is not copied
to the TMD file by ESATAN. However, it could be possible to parse other model files in order
to get this information. With this data available, the reduction process could be improved, by
refining the calculation of KS. As it is defined now, λ  only provides qualitative information of
the conductors of the thermal model. However, if different values of λ  were  used  for  the
determination of KS, it would allow, for instance, to compare more effectively the conductors in
a zone. Thus, being able to identify which conductors corresponds to contacts and which to
solid material.

The reduction of  the MLI can be very tricky,  as  mentioned before.  One option to address  this
limitation would be to identify patterns in the couplings matrices, since the structure of the MLI
related couplings is very particular.

Finally, although the reduction method is mainly based on physical properties of the model, the
temperature differences among the nodes are driven also by the heat sources and the boundary
temperatures. Section 5.2.3 showed that the reduced model using hot conditions behaves fairly
well in cold conditions. However, if the cold conditions snapshot were also used in the
reduction, the obtained reduced model would be more consistent with broader set of scenarios.
Of course the RTMM resulted from both snapshots  should be the same.  Thus,  both adjacency
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matrices should be overlapped, preceding the zeros over the ones. In principle, any number of
snapshots could be used.

For the reduction algorithm presented in this dissertation, it has been used a single temperature
difference correlation criterion. Different zones of the detailed model could be reduced
following different correlation error criteria (external nodes, MLI nodes, etc.) as suggested for
instance in [69]. These zones could be identified by the program, again finding some patterns in
the matrices  (not  only “detecting” MLI nodes;  also with the REFs,  the areas and the radiative
environment node would be possible to identify the outer “shell” of the model). Node ranges
and labels could be used to this end as well (clustering the model), but in order to make the
method as universal as possible, this should be implemented carefully, as it would require some
previous work by the engineer.

As previously discussed, many aspects can be improved in the reduction process. This work
takes the first step, defining a methodology that has been tested in two models, showing a good
correlation level while saving a significant amount of computation time.
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8 ANNEX

8.1 Example of poor exception handling
As indicated in 4.2.1, the nodes that have a zero thermal capacity (arithmetic nodes) are treated
as isolated nodes. This might pose a problem, if a thermal model has a big number of them,
since the amount of these nodes will limit the reduction ratio that can be achieved. For instance,
the Solar Orbiter PHI Electronics Unit thermal model has 1571 arithmetic nodes (they
correspond to the electronic component cases). Fig. 8-1 shows the maximum reduction ratio
(rr = 0.75) reachable using the method as it is, which is a low value if compared to maximum
theoretical calculated for PHI FPA, see Fig. 5-9. Therefore, the exception handling should be
treated in a different way for the cases of high ratio of arithmetic nodes.

Fig. 8-1. SO/PHI Electronics Unit: variation of (a) rr vs.  pf, and variation of (b) rr vs. ΔTmax. For
(a), the SCC algorithm is run with K̃I,F. For (b), the matrix K is multiplied element-wise by ϴF,
and the SCC algorithm is run with the resulting matrix.
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8.2 Output of the PHI OPT FPA model reduction (extract)

Thermal model reduction report
------------------------------
Model ID: phi_opt_fpa_hot
Date: 08 Aug 2017 - 15:14:56
Host: Fernandez-S7M4 - Windows-7-6.1.7601-SP1
Python version: 3.3.5; NumPy version: 1.8.1

Detailed thermal model statistics
---------------------------------
Original number of nodes = 1071 (not including inactive node, if any)

Number of boundary nodes = 4
#  Node number         Label          Temp. (°C) Cond. HF (W)  Rad. HF (W)
1     90000            CE_IF            -25.0       +2.89         +0.00
2     91001      PHI_FPA_FB_cond_IF     +55.0       +0.67         +0.00
3     91002   Electrical conductive I/  +55.0       +0.05         +0.00
4     99999         ENVIRONMENT         +60.0       +0.00         -1.17

Power dissipation in the model =    2.44 W

Number of nodes with null thermal capacity = 3
#  Node number         Label
1     91001      PHI_FPA_FB_cond_IF
2     91002   Electrical conductive I/
3     99999         ENVIRONMENT

Number of conductive couplings =    2367
Number of radiative couplings  =  299252

Reduced thermal model statistics
---------------------------------
Minimum number of condensed nodes = 6
Maximum reduction ratio = 0.998

Selected DeltaT_max = 0.16 °C
Selected p_f threshold = 0.001
Number of condensed nodes = 217
Achieved reduction ratio = 0.80

Number of reduced conductive couplings =     395
Number of reduced radiative couplings  =   18244

Number of boundary nodes = 4
#           Label          Temp. (°C) Cond. HF (W)  Rad. HF (W)
1           CE_IF            -25.0       +2.89         +0.00
2     PHI_FPA_FB_cond_IF     +55.0       +0.76         +0.00
3  Electrical conductive I/  +55.0       +0.04         +0.00
4        ENVIRONMENT         +60.0       +0.00         -1.25

Heat flux differences between detailed and reduced model
#           Label          Cond. HF diff. (W, %)  Rad. HF diff. (W, %)
1           CE_IF                  0.06 %                  --
2     PHI_FPA_FB_cond_IF            0.08                   --
3  Electrical conductive I/         0.0                    --
4        ENVIRONMENT                 --                  6.59 %

Max. Temp. Difference between detailed and reduced model = 0.45 °C
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8.3 TMD files structure

For the Solar  Orbiter  PHI FPA test  case (see section 5.2),  a  TMD file  is  used as  input  (TMD
information is taken as reference, as shown in section 3). The program in which the reduction
method has been implemented produces in turn a TMD file that can be opened in ESATAN, in
order to visualize the reduced nodes and the temperature differences. Both TMD files structures
are shown below. The structure of a HDF file (such as the TMD abovementioned) can be seen
with a HDF viewer13.

8.3.1 ESATAN-TMS produced TMD file (as of release 7 service pack 2)

Name Kind Data type and description

 AnalysisSet1 HDF5 Group

 DataGroup1 HDF5 Group

 conductorDataGL HDF Dataset 8-byte floating point, conductive couplings matrix

 conductorDataGR HDF Dataset 8-byte floating point, radiative couplings matrix

 thermalNodesRealData HDF Dataset 8-byte floating point, numerical values for
categories defined by thermalNodesRealAttributes

 thermalNodesStringData HDF Dataset[text] String values for categories defined by
thermalStringRealAttributes

 times HDF Dataset 8-byte floating point, time vector (single zero value
for steady state case)

 conductorsGL HDF Dataset 4-byte signed integer, defines the node pairs for the
Dataset conductorDataGL

 conductorsGR HDF Dataset 4-byte signed integer, defines the node pairs for the
Dataset conductorDataGR

 models HDF Dataset Compound, indicates model id. and sub-model
structure

 thermalNodes HDF Dataset 4-byte signed integer, defines node numbers and
their assignation to the different sub-models

 thermalNodesRealAttributes HDF Dataset[text] Define the categories14 for the
thermalNodesRealData Dataset

 thermalNodesStringAttributes HDF Dataset[text] Define the categories for the
thermalNodesStringData Dataset (Type and Label)

13 The  HDF  Group  provides  an  open-source  multiplatform  HDF  files  viewer  in  their  web  page:
https://support.hdfgroup.org/projects/compass/download.html
14 These are Temperature, Capacitance, Total Albedo Heat Source, Total Earth Heat Source, Total
Internal Heat Source, Total Rest Heat Source, Total Solar Heat Source, Area, Solar Absorptivity, Infra-
Red Emissivity, Incident Albedo Heat Source, Incident Earth Heat Source, Incident Solar Heat Source, X
Coordinate, Y Coordinate, Z Coordinate.

https://support.hdfgroup.org/projects/compass/download.html
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8.3.2 TMD file output by the reduction software

Name Kind Data type and description

 AnalysisSet1 HDF5 Group

 DataGroup1 HDF5 Group

 thermalNodesRealData HDF Dataset 8-byte floating point, numerical values for
categories defined by thermalNodesRealAttributes

 thermalNodesStringData HDF Dataset[text] String values for categories defined by
thermalStringRealAttributes

 times HDF Dataset 8-byte floating point, time vector (single zero value
for steady state case)

 models HDF Dataset Compound, indicates model id. and sub-model
structure

 thermalNodes HDF Dataset 4-byte signed integer, defines node numbers and
their assignation to the different sub-models

 thermalNodesRealAttributes HDF Dataset[text] Define the categories15 for the
thermalNodesRealData Dataset

 thermalNodesStringAttributes HDF Dataset[text] Define the categories for the
thermalNodesStringData Dataset (Type and Label)

15 These are DTMM Temperature, Reduced node number, RTMM Temperature, DTMM-RTMM
Temperature difference (τ).
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