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Summary

The interaction of solar and terrestrial magnetic field and particle populations produces
various plasma processes in the magnetosphere of the Earth. The most popular of these
phenomena is the generation of polar lights in the auroral zones due to the collision of
magnetospheric protons and electrons with particles of the upper atmosphere. Other
processes, such as magnetic reconnection, are believed to be responsible for feeding energy
into the magnetospheric plasma environment. This energy can be released in terms of
wave activity generated by wave-wave or wave-particle interactions. Some of these waves
are regarded as fluctuations of magnetospheric field lines fixed at the ends in the northern
and southern ionosphere. In general these standing waves are divided into two wave types,
poloidal and toroidal mode, oscillating with different eigenfrequencies due to the influence
of field line curvature and external currents.

After decades of investigating ground based and in situ satellite observations some
properties of such standing field line oscillations are well understood, however, numerous
questions are still open concerning their spatial characteristics and temporal evolution. In
particular the wave topology radial outward from the Earth is of interest. Due to gradients
of plasma background parameters in this direction standing waves feature a complex
structure and are able exist only in certain regions opaque for radial wave propagation.
These so called Alfvén resonators are generated especially near the terrestrial plasmapause
at a sharp change of plasma density.

Theoretical works aiming for a description of the spatio-temporal structure of Alfvén
resonator waves need to account for the complex background conditions in the terrestrial
magnetosphere. The results of these theories are desired to be compared with in situ
observations, e.g. the Cluster mission that consists of four identical spacecraft. Its spatial
separation allows a detailed analysis of spatial wave field characteristics and to distinguish
them from temporal effects. As the perigees of the polar orbits are at around 4 RE the
satellites frequently cross the region near the inner or outer edge of the plasmapause and
wave activity can be detected regularly in this region of interest.

Comparing theoretical concepts describing Alfvén resonator waves with spacecraft
observations of standing field line oscillations can be considered as the primary concern of
the present thesis. In Chapter 1 the plasma background conditions of the magnetosphere
are described. Furthermore, origin and characteristic properties of toroidal and poloidal
field line oscillations are introduced and discussed. The basic equations necessary for
the determination of poloidal and toroidal eigenfrequencies are summarized in Chapter 2.
Based on this the theoretically expected spatial structure of Alfvén resonator waves is
described in Chapter 3 followed by discussing their temporal evolution in Chapter 4.

The Cluster mission is introduced in Chapter 5 explaining the advantages of the four
spacecraft configuration and its orbit as well as briefly summarizing the functionality of
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Summary

magnetic and electric field measurements.
Spatial and temporal characteristics of poloidal field line oscillations under investigation

become very complex under realistic background conditions. A large number of parameters
need to be considered, which has been done in this work. The evaluation of magnetospheric
plasma conditions, such as density, pressure and magnetic field, is introduced in Chapter 6
together with further methods necessary for the analysis of magnetospheric wave activity.
In particular, the numerical method used for the determination of toroidal and poloidal
field line eigenfrequencies is presented.

Two case studies are presented in Chapters 7 and 8 discussing field line oscillations de-
tected inside and outside the plasmapause boundary, respectively. Each study concentrates
on a detailed analysis of a standing poloidal field line oscillation observed in spacecraft
magnetic and electric field measurements. Energy flux and azimuthal wave numbers m
are determined. In the first case study one takes advantage of a large scale satellite con-
figuration with spacecraft separation up to 2.5 RE, while the second case is characterized
by a small tetrahedron with spacecraft distances of around 0.2 RE. Each configuration
allows the application of specific analysis techniques that are developed and applied for
the first time for the investigation of standing wave fields in the magnetosphere. In both
cases a field line related coordinate system enables the estimation of spatial extension
in the radial direction of the wave field as well as its temporal decay rate. In addition a
range-time-intensity data representation possible for the small spacecraft constellation
allows an accurate identification of a phase jump in the radial direction and indicates the
same field lines are excited to a standing wave oscillation twice.

In both case studies the determination of toroidal and poloidal eigenfrequencies reveals
that the conditions for the excitation of Alfvén resonator waves are not fully satisfied.
However, the plausibility of the resulting information about the spatio-temporal wave
topology is tested by modeling standing wave fields and comparing with the amplitude
modulation in the observed signals. The theoretically expected localizations and sizes
of the Alfvén resonators are determined for realistic plasma background conditions and
compared with the position finding of the observed wave fields. Spatial and temporal
properties of the analyzed wave fields are in good agreement with main features predicted
by the applied theoretical framework, which is capable to provide a deeper insight into the
properties of magnetospheric plasma waves.
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1 Introduction

1.1 The terrestrial magnetosphere

The terrestrial magnetic field originates from a dynamo process inside the molten iron
core of the Earth. The flow of conducting material through an existing weak magnetic
field induces electrical currents which in turn produce magnetic fields. This cumulative
interaction results in measurable magnetic field strengths and the formation of a magnetic
field that is described in first approximation by a dipole field, currently inclined by 11.5◦

compared to the Earth’s rotation axis. The shape of the terrestrial magnetosphere is
illustrated in Fig. 1.1. Its outer boundary, called the magnetopause, is determined by the
balance of the dynamic pressure of the super-alfvénic solar wind flow and the magnetic
pressure at the outer edge of the magnetosphere. Due to the presence of the Earth’s
magnetic field the charged polar wind particles cannot enter the magnetosphere directly
and flow along the magnetopause with sub-alfvénic speed decelerated by the bow shock
wave (see Fig. 1.1). At the dayside the solar wind compresses the geomagnetic field, while
at the nightside the field lines are deformed to a magnetic tail.

The magnetosphere consists of several spacious currents systems and different plasma
populations (Fig. 1.1), where in the following the regions of interest for this thesis are briefly
described. The innermost part of the magnetosphere is the plasmasphere, first discovered by
Carpenter (1963), constituting the extension of the ionosphere in magnetospheric regions.
The sunlit ionosphere leaks up into space along magnetic field lines, slowly filling dayside
flux tubes with ionospheric plasma (Goldstein 2006). Due to the Earth’s eastward rotation
the dayside filling produces a torus of cold plasma with particle energies of approximately
1 eV that is composed of H+ ions (up to 80%) and significant rates of heavier ions such as
He+, O+, and O2+ (e.g. Berube et al. 2005).

The configuration of the plasmaspheric particles depends on the electric field that
is formed by the interplay of the co-rotation and the convection electric field. Due to
reconnection processes at the dayside magnetopause magnetic flux tubes and plasma
convects with the solar wind velocity VS W over the polar caps to the magnetotail (Dungey
1961). According to the Lorentz transformation a electric field emerges in the Earth’s fixed
frame of reference given by Econ = −VS W × Bz, where Bz the z-component of the magnetic
field. This convection electric field is directed from dawn to dusk and can be assumed
as homogeneous. It causes a sunward convection of plasma in the inner magnetosphere
(e.g. Baumjohann and Treumann 1996). The co-rotation electric field results from the
viscous coupling of the ionospheric plasma with the planetary rotation, which induces
an electric field in the ionosphere given by Ecor = −Vrot × B, where Vrot is the rotation
speed. As magnetic field lines are equipotential lines, this electric field is transported in
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Figure 1.1: Sketch of terrestrial magnetosphere

the plasmasphere and forces the plasma contained therein to co-rotation. The equipotential
lines of the radially symmetric co-rotation and the homogeneous convective electric fields
are illustrated in Fig. 1.2, as well as the resulting combination of both fields. In this
picture the outer surface of the plasmasphere, called the plasmapause, coincides with the
last closed equipotential surface of the electric field. Inside the plasmasphere co-rotation
dominates and the plasma density is high. Outside this region the equipotential lines are
open, so that flux tubes end at the magnetopause and loose their plasma, which explains
the strong density gradient at the plasmapause (e.g. Baumjohann 1991).

However, the above explanation of the plasmapause origin requires a stable magne-
tospheric electric field for an ideal plasmapause frontier to form. But the variations of
geomagnetic activity are too fast and the condition of stationary Econ is never achieved. An
alternative explanation for plasmapause formation has been proposed by Lemaire (1974).
The outer boundary of the plasmasphere is determined by the “Zero Parallel Force Surface”
(ZPFS) where the gravitational force is overtaken by the centrifugal force. The pressure
gradient will force the particles to move outwards across the equipotential surfaces where
they finally are lost at the magnetopause. Accordingly, convective instabilities at the ZPFS
in the post midnight sector, where the convection velocity is maximum, determines the
plasmapause location in this region, which is then carried by the planetary rotation. During
periods of increasing solar activity the plasmapause is peeled off in the post-midnight
sector and moves closer to the Earth due to the depletion of the outer flux tubes. In the
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Figure 1.2: Equipotential lines of the magnetospheric electric field. The total field as
displayed in panel C is composed of the co-rotation field (panel A) and the convection
field (panel B).

opposite case the plasmapause shifts to larger radial distances. Consequently, the equato-
rial position of the plasmapause varies from 2.5 RE to 7.0 RE depending on the level of
geomagnetic activity (e.g. Carpenter and Anderson 1992, Moldwin et al. 2002). According
to this mechanism the plasmapause is not circular, but can exhibit complex structures,
such as shoulders, caused by a sudden increase of geomagnetic activity, or plumes in
the afternoon section due to differential rotation (e.g. Goldstein et al. 2002, Pierrard and
Lemaire 2004, Pierrard and Cabrera 2005).

Next to the plasmasphere the radiation belts, or “Van Allen” belts, are regions of
trapped particle populations in the inner magnetosphere containing high-energy ions and
relativistic electrons. These particles are believed to be generated by the collision of cosmic
rays with atomic nuclei of the atmospheric gas leading to the diffusion of neutrons released
in this way into the magnetosphere. The neutrons resolve into high energetic protons and
electrons stored in the local magnetic field. Depending on their energy the particles are
separated into two belts, an inner belt below L ≈ 2 and an outer belt above L ≈ 3 (e.g.
Goldstein 2006). Protons with energies larger than 20 MeV are stored in the inner belt,
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1 Introduction

which is quite stable, affected only by strongest geomagnetic storms. The outer belt is
populated mainly by relativistic electrons with energies of around 20 MeV and can move
inward to penetrate the region between the belts during times of intense storms (Baker
et al. 1994). On average the the outer extent of the plasmasphere coincide with the inner
boundary of the radiation belt, as the electrons are scattered by broad-band whistler mode
waves commonly observed in the plasmasphere (e.g. Goldstein et al. 2005).

In general all trapped particles in the inner magnetosphere execute three basic motions:
a gyration around magnetic field lines, a bounce motion between magnetic mirror points
above northern and southern ionospheres and drift motions according to the gradient
of magnetic magnitude perpendicular to the field lines and due to the curvature of the
magnetic field lines (e.g. Baumjohann and Treumann 1996). The total effect of the latter
motion is a collective azimuthal drift oppositely directed for ions moving westward and
electrons moving eastward. The resulting current associated with this charge transport
is the ring current (Daglis et al. 1999). Significant current densities are produced by a
population H+ and O+ ions in the medium-energy range of 1 - 100 keV that originates
from the ionosphere and the solar wind (Williams 1981). During undisturbed periods the
ring current is distributed between L = 2 and L = 9 and is mainly composed of protons
(e.g. Lui and Hamilton 1992). The storm time ring current is characterized by increasing
current density over its whole radial extend and rising density of O+ ions (Lui et al. 1987).

1.2 Observation of magnetospheric ULF pulsations

A wide variety of magnetohydrodynamic waves occurs in magnetospheric regions of the
Earth excited by different processes inside the magnetosphere and the solar wind. Waves
in the ultra low frequency (ULF) range below 1Hz are classified with respect to their
waveform and frequency, where quasi-sinusoidal oscillations are called “Pc” (French:
pulsation continue) and oscillations with irregular waveforms are called “Pi” (French:
pulsation impulsive) (Jacobs et al. 1964). Each major type is subdivided into frequency
bands roughly corresponding to distinct phenomena. Although the limits of these bands
are not precise in consideration of present knowledge, standing field line oscillations are
in general associated with Pc3 to Pc5 waves corresponding to a frequency range between
1 mHz and 100 mHz. Contrary, oscillations classified as Pc1-2 are traveling waves with
frequencies up to 5 Hz, such as ion-cyclotron waves, and Pi1-2 oscillations are excited by
geomagnetic substorms (e.g. Heacock 1967).

A standing wave in the magnetosphere implies that a bunch of magnetic field lines with
a length of several Earth radii is excited to an oscillation comparable to a guitar string. Such
oscillations exhibits the largest wave amplitude compared to other waves in the ULF range.
Accordingly, at first this type of magnetospheric wave has been detected with ground based
measurements. The first published record of a giant pulsation appears to be that of Balfour
Stewart during the great magnetic storm on September 1, 1859. A reproduction of Stewart’s
observation can be found in Glassmeier (1995). The magnetic storm, which is presumed
to be one of the strongest in history, is comprehended by Tsurutani et al. (2003). At the
beginning of the twentieth century it has been noticed that the recurrence of geomagnetic
disturbances coincide with the rotation period of the sun. A possible explanation for this
phenomenon was given by J. Bartels in 1932 who suggested that the so-called M-regions
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1.2 Observation of magnetospheric ULF pulsations

on the sun are a source of solar corpuscular streams. These regions are now identified as
coronal holes. Finally, the connection of solar activity and geomagnetic disturbances has
been explained by Chapman and Ferraro (1931, 1932, 1933) who proposed that magnetic
storms occurs when clouds of solar plasma collide with the Earth’s magnetic field.

Since that time the interest on exploring magnetospheric activity increases steadily.
Several large-area magnetometer arrays, such as CARISMA1 or the Scandinavian IMAGE2

network, have been build and equipped with up to date senors that allow for accurate
detection and analysis of magnetospheric pulsations. Furthermore, ULF wave activity
can be observed by radar measurements, e.g. the STARE3 system at the northern and the
SuperDarn4 at the southern hemisphere. In general ground based measurements allow
long duration observations of field lines excited by ULF waves (e.g. Samson et al. 1971,
Walker et al. 1979, Fenrich et al. 1995). However, amplitude and polarization of these
waves observed at the ground are modified by the ionosphere (Hughes 1974, Hughes
and Southwood 1976, Glassmeier 1984) and consequently, modeling of the ionospheric
screening effect is necessary for an accurate understanding of the ground based observations
(e.g. Glassmeier 1988, Sciffer et al. 2004, 2005).

Finally, evidence of the existence of magnetospheric ULF waves has been supplied by
spacecraft measurements, which in contrast to ground based observations provide direct
insight into the wave structure. Especially results obtained from the double spacecraft
mission ISEE5 by e.g. Singer and Kivelson (1979) and Singer et al. (1982), as well as
from the single spacecraft mission AMPTE6 by e.g. Engebretson and Cahill (1981) and
Engebretson et al. (1986) have increased the knowledge about the spatial structure of
standing field line oscillations. However, single and double spacecraft observations have a
limitation as they exhibit an ambiguity between spatial and temporal variations. A multi-
spacecraft mission is not affected by this limitation and hence the four Cluster spacecraft
(Escoubet et al. 1997) are suitable to investigate both, the spatial and temporal structure
of ULF pulsations as shown in this thesis and in recent studies (e.g. Eriksson et al. 2005a,
Schäfer et al. 2007, 2008).

Investigating magnetospheric ULF waves allows to study plasma waves under back-
ground conditions that cannot be achieved by conventional laboratory experiments. It
conduces to raise the understanding of the interaction of solar wind plasma and the terres-
trial magnetosphere. A detailed theoretical knowledge of general ULF wave properties
allows in turn the monitoring of magnetospheric plasma conditions (e.g. Menk et al. 1999,
Denton et al. 2001, Takahashi et al. 2004). In this context standing field line oscillations
are wave phenomena of particular interest as they are frequently detected by ground and
satellite observations. In general two different types of standing waves exist in the mag-
netosphere, toroidal and poloidal oscillations. Their generation processes as well as their
theoretically expected and observed wave characteristics are introduced in the following
sections 1.3 and 1.4, respectively.

1Canadian Array for Realtime Investigations of Magnetic Activity
2International Monitor for Auroral Geomagnetic Effects
3Scandinavian Twin Auroral Radar Experiment
4Super Dual Aurora Radar Network
5International Sun Earth Explorer
6Active Magnetospheric Particle Tracer Explorer
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1 Introduction

Figure 1.3: Left: Field aligned structure of a first harmonic (top) and a second harmonic
(bottom) toroidal oscillation, where Er is the radial component of the electric field, ξ the
displacement vector and bφ the azimuthal component of the magnetic field disturbance.
Right: Sketch of the azimuthal field line oscillation, where the red line marks the disturbed
field line.

1.3 Toroidal field line oscillations

Toroidal oscillations are believed to be driven by sources external of the magnetosphere,
such as solar wind impulses (Allan et al. 1986) and Kelvin-Helmholtz instabilities at the
magnetopause (Fujita et al. 1996, Engebretson et al. 1998) generating a compressional
wave which propagates across magnetic field lines. Due to the process known as field line
resonance (Tamao 1965, Southwood 1974), the compressional wave can be transformed
to an Alfvén wave propagating parallel to the magnetic field. Wave reflection at the
ionosphere can lead to the formation of a standing wave at a specific field line. Mode
coupling of an incoming fast magnetosonic wave to an Alfvén wave occurs at magnetic field
lines where the field parallel component of the phase velocity of the compressional wave
matches the local Alfvén velocity VA = B0/

√
µ0ρ0 that is influenced by local magnetic

field strength B0 and plasma mass density ρ0. When the length of the field line is an integer
multiple of the half Alfvén wavelength, the coupling between both wave modes becomes
resonant. Initially, this field line resonance process was described in a box model of the
magnetosphere with straight magnetic field lines (Tamao 1965, Southwood 1974, Kivelson
and Southwood 1986), however, it appears also in dipolar magnetic field configuration (e.g.
Chen and Cowley 1989).

The physical resonant mode coupling can be understood considering electric current
continuity. From Maxwell’s equations the following wave equation is derived for low-
frequency waves:

∇ × ∇ × E + µ0
∂ j
∂t

= 0. (1.1)
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1.3 Toroidal field line oscillations

Here E denotes the wave electric field, and j is the electric current density driving the wave.
A magnetohydrodynamic wave in a homogeneous plasma carries polarization currents

jp =
1

µ0V2
A

dE
dt
. (1.2)

For an Alfvén mode this polarization current is curl-free in a plane whose normal is the
background magnetic field B0. The fast mode carries a source-free polarization current.
Considering a fast mode type perturbation with its source-free current in an inhomogeneous
medium with spatially changing Alfvén velocity, current continuity requires the fast
mode carried current to be partially closed via field-aligned currents driving Alfvénic
perturbations carried by a curl-free polarization current system. If the phase velocity
component of the fast mode parallel to the background magnetic field is equal to the local
Alfvén velocity, both waves have ample opportunity to exchange their energy; resonance
takes place.

Toroidally oscillating field lines generated by such a resonance process are standing
Alfvén waves, which implies that their magnetic field is perturbed in the azimuthal direction
and the electric field in the radial direction. That means a toroidal wave mode can be
understood as an oscillation of magnetic shells. The corresponding field aligned structure
is illustrated in Fig. 1.3. Due to the high ionospheric conductivity electric field and
displacement are zero at the ends of the field line, while the magnetic field exhibits an
amplitude maximum (e.g. McPherron 2005). Consequently, for the fundamental and
higher odd modes the magnetic field have a node in the magnetic equatorial plane and the
electric field an anti-node. For the second and higher even harmonics this characteristic
is reversed. The azimuthal directed perturbation of the toroidal mode is most efficient
at magnetospheric flanks, where the solar wind flows perpendicular to the magnetic
field lines (e.g. Allan and Poulter 1992). The resulting elliptical polarized wave feature
opposite directed wave polarizations on the morning and evening sector (Samson et al.
1971, Samson 1972, Samson and Rostoker 1972). The radial structure of the toroidal
Alfvén wave is expected to show an almost Gaussian amplitude variation across magnetic
L shells accompanied with a 180◦ change in the wave phase around the resonant magnetic
field line (Southwood 1974). Both spatial features were detected in ULF pulsations by
ground magnetometer and ionospheric observations, respectively (e.g. Glassmeier et al.
1984a, Walker et al. 1979). The observed lifetime of resonant field line oscillations is
between several minutes and more than one hour limited due to wave damping at the
ionosphere, where the wave energy dissipates due to Joule heating (e.g. Glassmeier et al.
1984b).

An important parameter of field line oscillations is the azimuthal wave number m,
which is defined as the number of wavelengths fitting into a shell of oscillating field lines.
The field line resonance process is most efficient for small azimuthal wave numbers m ∼ 1
(e.g. Kivelson and Southwood 1986, Lee and Lysak 1990), i.e. the toroidal wave field is
expected to exhibit a large spatial structure in the azimuthal direction. The left plot in Fig.
1.4 illustrates the azimuthal displacement of a toroidal mode with m = 0. Strictly speaking,
only this mode describes a toroidal wave, as magnetic field magnitude and plasma density
are not changed by the wave. Oscillations with higher m-values are compressed in the
azimuthal direction and are coupled with a poloidal mode that features a non-zero radial
component. However, the azimuthal structure of low-m waves is much larger than the
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toroidal
m = 0

poloidal

 

m = 100

Figure 1.4: View on the displacement of a magnetic shell in the equatorial plane for the
toroidal (left) the and poloidal (right) wave mode. The arrow illustrates the perturbation
of the toroidal mode in the azimuthal direction. The exemplary poloidal mode has an
azimuthal wave number of m = 100.

radial structure and waves with m ≤ 10 are denoted as toroidal Alfvén waves.

1.4 Poloidal field line oscillations

Poloidal oscillations are characterized by a displacement of the field lines in the radial
causing a compression of the magnetic field. In case the compressive perturbation of the
magnetic field is small compared to the radial one, poloidal oscillations are usually referred
as poloidal Alfvén waves. Its field aligned structure is similar to toroidal waves, however,
the radial displacement of magnetic field lines lead to a “breathing” oscillation (Fig. 1.5).

Contrary to the toroidal mode poloidal field line oscillations are considered to derive
their energy by processes inside the magnetosphere. Possible candidates for the generation
of poloidal ULF wave activity are drift mirror (Hasegawa 1969) and bounce instabili-
ties (Southwood et al. 1969, Southwood and Kivelson 1982, Glassmeier et al. 1999). In
particular the azimuthal flow of ring current particles is suitable for the generation of
resonant wave particle interaction. Details of this resonance process are given in Sec. 4.4.
In this way excited poloidal waves should preferentially adopt an electric field node at the
magnetic equator, as exists for even harmonic standing waves, and rapid phase variations
perpendicular to magnetic field lines (Southwood 1983). This expectation is supported by
the observation of second harmonic poloidal waves prevalently at the dayside near mag-
netic noon and afternoon (e.g. Cummings et al. 1969, Engebretson et al. 1988, Anderson
et al. 1990, Takahashi and Anderson 1992). Also third harmonic poloidal oscillations have
been detected around magnetic noon in the vicinity of the plasmapause (e.g. Takahashi
and Anderson 1992). These odd harmonic waves are supposed to be excited by drift wave
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Figure 1.5: Left: Field aligned structure of a first harmonic (top) and a second harmonic
(bottom) poloidal oscillation, where Eφ is the azimuthal component of the electric field,
ξ the displacement vector and br the radial component of the magnetic field disturbance.
Right: Sketch of the azimuthal field line oscillation, where the red line marks the disturbed
field line.

instabilities in the ring current region (e.g. Hasegawa 1971, Chen and Hasegawa 1991b,
Cheng and Qian 1994).

A main characteristic of poloidal field line oscillation is the large azimuthal wave
number m � 1 (e.g. Allan et al. 1983) corresponding to a small azimuthal wave structure
(right plot in Fig. 1.4). Wave numbers up to m ≈ 30 have been detected using ground
based observations (e.g. Glassmeier 1980), while poloidal waves with m > 100 have been
observed in spacecraft measurements (e.g. Eriksson et al. 2005a, Schäfer et al. 2008). A
suitable theoretical framework to interpret the spatial structure of poloidal oscillations
with large m-values has been presented by e.g. Leonovich and Mazur (1990). Some of
their results can be understood again considering the different currents associated with the
restoring forces influencing the wave. For example, the influence of a finite plasma β can
be incorporated in Eq. 1.1 by a diamagnetic current

jβ =
∇P × B0

B2
0

. (1.3)

Magnetic field line curvature introduces curvature currents jc. If the background plasma
carries a significant electric current J as observed in the ring current region a further
current,

jJ =
(J × b) × B0

B2
0

, (1.4)

needs to be considered when solving Eq. 1.1; here b denotes the magnetic field perturbation
vector. This current describes forces associated with work done by the perturbed plasma
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against the current-carrying background. Each of these additional currents influences
wave dispersion and propagation velocity of ULF waves observed in the magnetosphere.
Based on this Leonovich and Mazur (1990, 1993, 1995) and Klimushkin (1998a) have
derived a rather general theoretical framework to describe the dispersion characteristics
of ULF waves in more complex background plasma situations. Especially the curvature
currents are important as they introduce transverse dispersion causing large-m waves to
propagate in radial direction. Wave propagation inwards is hampered by the increasing
plasma mass density and magnetic field strength; the inner magnetosphere/plasmasphere
becomes opaque and a poloidal turning point exists.

Wave propagation outwards, however, is possible. As the local eigenfrequencies of
toroidal and poloidal modes are different any outward propagating large-m poloidal wave
may couple to a toroidal oscillation. Poloidal perturbations are related to toroidal transverse
currents carrying the wave. As the azimuthal wave number m is large this toroidal current
changes sign rapidly also in azimuthal direction. Current continuity requires the transverse
divergence of this current to be closed via field-aligned and poloidal currents. This
causes coupling between the primary poloidal magnetic field perturbation and a secondary
toroidal magnetic field oscillation. If the local eigenfrequencies of the poloidal and toroidal
oscillations match a local toroidal field line resonance occurs. Wave propagation is thus
restricted to a region bounded by the poloidal turning point and the toroidal resonance
point.

The radial structure of the wave field changes in time from a Gaussian-like distribu-
tion at the beginning to a complex and small-scaled structure at the end of the lifetime.
Simultaneously, the wave polarization changes from poloidal to toroidal. An explanation
for this spatio-temporal behavior can also be given by considering phase mixing effects
on field lines excited independently and oscillating with their own eigenfrequencies (e.g.
Mann and Wright 1995). This region thus defines a magnetospheric resonator or wave
guide (Leonovich and Mazur 1995), which can be generated when poloidal and toroidal
eigenfrequencies vary monotonic across magnetic L shells.

The outer boundary of the resonator can be another poloidal turning point, not a toroidal
resonance, depending on plasma background properties (e.g. Vetoulis and Chen 1994, 1996,
Leonovich and Mazur 1995, Denton and Vetoulis 1998, Klimushkin 1998a). The existence
of two radially arranged turning points suggests that a poloidal wave trapped in this kind
of resonator can propagate in both directions, inward as well as outward. This particular
condition is satisfied at the inner and outer edge of the plasmapause, where the radial
distribution of plasma density reaches a minimum and maximum, respectively. Mager
and Klimushkin (2006) have modeled the spatio-temporal structure of a standing Alfvén
wave in such an wave resonator assuming an impulse wave source. For a fundamental
harmonic structure along the field line (N = 1) they predict a radial structure of the wave
field comparable to a Gaussian and a constant poloidal wave polarization. By contrast,
the radial structure of the second longitudinal harmonic (N = 2) develops soon after the
impulse from a Gaussian distribution across L shells to smaller radial scales, similar to the
radially propagating wave discussed above. Observations of poloidal Alfvén waves usually
reveal a second harmonic structure of the oscillation along the field line (e.g. Takahashi and
Anderson 1992). Furthermore the radial localization of the wave field requires a change in
the wave phase by 180◦ across L shells (Klimushkin et al. 2004).

Many ULF pulsation observations, though interpreted as toroidal field line resonances
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as described in Sec. 1.3, lag a definite proof of their resonant character as single spacecraft
observations do not allow to demonstrate the spatial localization of the wave amplitude
and the typical 180◦ phase change of the toroidal component in radial direction. What
is observed is usually a spatial localization in the radial or poloidal component, not the
toroidal component (e.g. Singer et al. 1979, 1982, Singer 1982, Cramm et al. 2000). As
such poloidally localized waves exhibit large azimuthal wave numbers m ≈ 50 − 150
the field line resonance mechanism cannot be used as an explanation to understand these
poloidal resonances. Leonovich and Mazur (1990) give a simple reason for this: In the
limit m→ 0 the azimuthal component of the wave vector kφ is equal to infinity. But also
the radial component kr tends to infinity in case of an ideal resonance. Because of ∇·B = 0
the direction of the transverse magnetic field component is not defined.

Accordingly, the spatio-temporal structure of large-m poloidal waves is rather complex
compared to that of a classical field line resonance due to the radial confinement within
two possible magnetospheric resonator regions and their change of wave polarization
from poloidal to toroidal in time, as discussed in Sec. 1.4. Detailed studies of the spatial
variations and the temporal evolution of the ULF wave field in such regions are thus
desirable and will allow a deeper insight into the plasma physical processes there.
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2.1 Basic equations
The theoretical treatment of magnetospheric ULF waves needs a formulation of MHD
waves under realistic background conditions, such as a inhomogeneous plasma with curved
field lines and a small but finite plasma β. Based on these requirements in this section
the derivation of a system of equations is summarized describing hydromagnetic waves.
Initially the method used was developed by Leonovich and Mazur (1990, 1993) and later
applied by e.g. Klimushkin et al. (1995) and Klimushkin (1997) investigating the influence
of various background conditions on magnetospheric Alfvén waves. A detailed review of
this method can be found in Klimushkin et al. (2004) containing the main features of the
theoretical framework necessary for the analysis of ULF pulsations (Sec. 7 and 8).

To account for the field line curvature a curvilinear and orthogonal coordinate system
{x1, x2, x3} is introduced, in which x1 = const coincide with a magnetic shell, i.e. it
represents the radial direction comparable to the known McIlwain parameter L (McIlwain
1966). The coordinate x2 resembles the azimuthal direction, i.e. it gives the magnetic local
time (MLT) of a field line on a specific L shell. The coordinate x3 completes the system
by representing a point on a specific field line for constant coordinates x1 and x2. In this
coordinate system, which is shown in Fig. 2.1, a length element is specified by

ds2 = g1(dx1)2 + g2(dx2)2 + g3(dx3)2. (2.1)

Here gi = gii(x1, x3) are the diagonal components of the metric tensor, whose non-diagonal
components are zero. The determinant of the metric tensor is g = g1g2g3.

If the radial coordinate is x1 = L, the azimuthal angel x2 = φ and the field parallel
coordinate given by the geomagnetic latitude θ, the the components of the metric tensor
have the form g1 = cos6 θ(1 + 3 sin2 θ)−1 and g2 = L2 cos6 θ. According to Eq. 2.1 a field
parallel length element is given by

dl =
√

g3dx3 = hθdθ (2.2)

with

hθ = L cos θ
√

1 + 3 sin2 θ.

This coordinate system is orthogonal provided that J · B = 0 (Salat and Tataronis 2000),
which is fulfilled in the magnetosphere, as the magnetospheric ring current is perpendicular
to the background magnetic field:

J =
1
µ0
∇ × B = J⊥. (2.3)
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Figure 2.1: Curvilinear orthogonal coordinate system, adapted from Leonovich et al.
(2006).

In the following, small amplitude oscillations are considered, that permit the wave field
to be represented as plane waves. The equilibrium plasma quantities such as magnetic
field, current density, plasma pressure and density are designated as B0, J0, P0 and ρ0,
while the corresponding perturbed quantities are b, j, δp and ρ. The magnetosphere is
considered within the axial symmetry approximation and the equilibrium parameters are
independent of the azimuthal coordinate x2. All perturbed quantities, including the plasma
displacement ξ and the electric field E, will be assumed to have the form

ξ(L, φ, θ) ∝ ξ(L, θ) exp(−iωt + imφ), (2.4)

where m is the azimuthal wave number and ω the frequency of the oscillation.
Within the inner magnetosphere the plasma pressure P is isotropic in good approxima-

tion (e.g. Lemon et al. 2003) and the plasma equilibrium must adhere to the condition

∇P = J × B =
(B · ∇) B

µ0
− ∇B2

2µ0
. (2.5)

The equilibrium requires a compensation of the pressure gradient by the magnetic force
due to the magnetic field configuration. The first term of the right side of Eq. 2.5 includes
the influence of the curvature of magnetic field lines. This term is often neglected in order
to simplify the magnetospheric configuration to a box model with straight field lines (e.g.
Southwood 1974, Klimushkin 1997). However, as field line curvature in particular triggers
the main differences between poloidal and toroidal field line oscillations (see details in
Sec. 2.2), it is incorporated in the theoretical description of the present work.

The linearized MHD equation of motion for an oscillation in a hot plasma is given by
(e.g. Goossens 1991)

−ρω2ξ + ∇δp =
1
µ0

J0 × ∇ × (ξ × B0) − 1
µ0

B0 × ∇ × ∇ × (ξ × B0), (2.6)
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where the pressure perturbation p is given by the adiabaticity condition in its linearized
form:

δp = −ξ · ∇P0 − γP0∇ · ξ. (2.7)

The equation of motion (Eq. 2.6) provides three equations of the displacement vector
ξ, which in principle contain all information about the wave field. A convenient way to
obtain the structure of the wave field is the transformation of Eq. 2.6 to three functions
describing the wave modes of an inhomogeneous hot plasma, the Alfvén mode, the fast
and the slow magnetosonic mode, respectively (e.g. Klimushkin 1998b).

For that purpose one uses the two dimensional nature of the wave electric field E =

(E1, E2, 0) caused by the perfect plasma conductivity. In this case the frozen-in theorem is
valid given in its linearized form by

E = −iωξ × B0 or ξ = − i
ω

B0 × E
B2

0

, (2.8)

i.e. the electric field is always perpendicular to the background magnetic field B0. This
property of E allows the application of the Helmholtz theorem (e.g. Arfken and Weber
1995), which implies the decomposition of a vector field into a irrotational and a solenoidal
component (Glassmeier 1995). According to this, the electric field can be expressed in
terms of a scalar potential Φ and a vector potential Ψ. The former can be understood as the
potential corresponding to the electric field of an Alfvén wave in a homogeneous plasma,
while both the fast and the slow magnetosonic mode are represented by Ψ. Thus, in the
case of an inhomogeneous plasma the electric field is given by (e.g. Leonovich and Mazur
1993)

E = −∇⊥Φ + ∇⊥ ×Ψ, Ψ = (0, 0,Ψθ), (2.9)

where the transverse Nabla-operator is defined as ∇⊥ = (∂/∂L, ∂/∂φ, 0). Similar to the ho-
mogeneous case the functions Φ and Ψ = Ψθ describe Alfvén mode and the magnetosonic
mode, respectively. Using Eqs. 2.8 and 2.9 the momentum equation 2.6 can be rewritten in
two equations in terms of the functions Φ and Ψ (e.g. Klimushkin 1998a, Klimushkin et al.
2004):

L̂AΦ + L̂CΨ = 0 (2.10)

and
L̂FΨ + L̂+

CΦ = 0, (2.11)

where L̂+
C is the Hermitian conjugate to L̂C. The so called Alfvén operator L̂A is related

to magnetospheric Alfvén waves including the polarization splitting of these waves into
toroidal and poloidal modes:

L̂A = m2L̂P(ω) − ∂

∂L
L̂T (ω)

∂

∂L
. (2.12)

The operator L̂T represents the toroidal mode by

L̂T (ω) =
∂

∂l
p
∂

∂l
+ p

ω2

V2
A

(2.13)
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and the operator L̂P is related to the poloidal mode by

L̂P(ω) =
∂

∂l
1
p
∂

∂l
+

1
p

(
ω2

V2
A

+ η

)
(2.14)

with

η = − 2
R

(
µ0

J0

B0
+

2
R

V2
S

V2
A

)
. (2.15)

Here the local parameter are VA = B0/
√
µ0ρ0 the Alfvén velocity, VS =

√
γP0/ρ0 the

plasma sound velocity and R the curvature radius of a field line. Both operators L̂T and L̂P

exhibit the same mathematical structure. In Eq. 2.14 the additionally occurring parameter η
provides for the difference between the toroidal and the poloidal mode, which is explained
in more detail in Sec. 2.2. Furthermore, the quantity p is defined as

p =

√
g2

g1
= L

√
1 + 3 sin2 θ, (2.16)

that is related to a geometric property of magnetic field lines. Assuming the cross section
of a thin magnetic flux tube have the physical size

√
g1dx1 · √g2dx2. The function p

describes the variation of the ratio
√

g2dx2/
√

g1dx1 along the flux tube, i.e. the ratio of the
azimuthal size to the radial size of the tube that is only able to vary in a magnetic field
with curved field lines (Leonovich and Mazur 1990). Similar to the curvature radius R the
function p is largest at the end of the field line and lowest in the equatorial plane θ = 0.

The operator L̂C in Eq. 2.10 describes the coupling between the fast magnetosonic
mode and the Alfvén mode in an inhomogeneous plasma:

L̂C = im
(
∂

∂L
ω2

V2
A

+
∂

∂L
∂

∂l
p
∂

∂l
1
p
− ∂

∂l
1
p
∂

∂l
p
∂

∂L
− η ∂

∂L
−
√

g3√
g2

Rη
2

∆⊥

)
(2.17)

with the transverse Laplacian

∆⊥ =
∂

∂L
p
∂

∂L
− m2 1

p
.

The operator L̂F in Eq. 2.11 describes the structure of the fast magnetosonic wave
in the magnetosphere and L̂+

C gives the back influence of an Alfvén wave on the fast
magnetosonic mode (Klimushkin et al. 2004). Further investigations on the propagation
region of this wave type are done by e.g. Lee (1996) and Leonovich and Mazur (2001).
They have discovered that for low frequencies and high azimuthal wave lengths the fast
magnetosonic waves are narrowly localized near the magnetopause. As the main concern
of this work is on magnetospheric Alfvén waves, we can concentrate on Eq. 2.10 that
includes the fast magnetosonic wave as a source. In case of a azimuthally small scaled
Alfvén wave (m � 1) in a plasma with a finite but small plasma pressure (β � 1) a relation
between the functions Φ and Ψ is obtained comparing Eqs. 2.10 and 2.17:

∆⊥Ψ = im
Rη
2

Φ. (2.18)

Hence, investigating poloidal Alfvén waves in the magnetosphere permits to neglect the
function Ψ compared to Φ, as it follows from Eq. 2.18 that Ψ ∼ βm−1Φ � Φ (Klimushkin
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1998b). The physical interpretation of this relation is the well accepted fact that poloidal
field line oscillations are not excited by the coupling with a fast magnetosonic mode, i.e. by
the process of field line resonance. On these conditions Eq. 2.10 reduces to the differential
equation

m2L̂P(ω)Φ − ∂

∂L
L̂T (ω)

∂

∂L
Φ = 0. (2.19)

The solution Φ of this homogeneous differential equation giving the spatial structure of
the Alfvén wave field was described extensively by Leonovich and Mazur (1993) for a
cold plasma. Their method presented is in principle also applicable with respect to a warm
plasma (Klimushkin 1997, 1998a,b). However, in both cases the homogeneous character
of the differential equation avoids implementing a source of the oscillation (Leonovich
and Mazur 1997). This deficit can be removed by changing Eq. 2.19 to an inhomogeneous
differential equation, where a source term q is introduced:

m2L̂P(ω)Φ − ∂

∂L
L̂T (ω)

∂

∂L
Φ = q. (2.20)

This equation will be used to explore in detail the spatial structure of magnetospheric field
line oscillations in Sec. 3 and possible sources of these waves will be discussed in Sec. 4.

2.2 Difference between poloidal and toroidal modes
Both types of standing field line oscillation in the magnetosphere feature perturbations
transverse to the magnetic field. Due to the radial dependencies of the plasma background
parameters, such as magnetic field strength B0, plasma pressure P0 and density ρ0, the
toroidal and poloidal mode exhibit different characteristics regarding their oscillation
behaviour. Mathematically these difference between both wave modes emerge from the
term η of the poloidal operator L̂P (Eq. 2.14) comparing with the toroidal operator L̂T

(Eq. 2.13). The definition of η in Eq. 2.15 implies that the poloidal mode is in particular
effected by field line curvature and plasma pressure.

In general the plasma pressure influences both the toroidal and the poloidal mode,
because L̂T as well as L̂P include the coefficients of the metric tensor that are affected by
the equilibrium condition J0 · B0 = 0, i.e. the coefficients depend on the derivative the
of pressure along the radial coordinate (Klimushkin et al. 2004). However, the poloidal
mode is expected to be stronger affected by a radial gradient in the plasma pressure, as
its magnetic field is perturbed in the radial direction. In this case the poloidal oscillation
causes a pressure perturbation, which in fact does not interact with the poloidal Alfvén
wave (e.g. Walker and Pekrides 1996). From this it follows that even in a non-cold plasma
with β � 1 the poloidal mode has the character of an Alfvén wave when the field parallel
component of the magnetic field oscillation b‖ is much smaller than the radial component
br. The magnetic field of the toroidal mode oscillates in azimuthal direction, in which the
equilibrium parameters are assumed to be constant, and is exempt from perturbation of
the plasma pressure. Consequently, due to the existence of a radial gradient in the plasma
pressure each type of wave mode receives a different strength of the restoring force, so that
toroidal and poloidal Alfvén waves oscillate with different frequencies. This phenomena is
referred to as polarization splitting of Alfvén waves, that occurs even in a straight field line
configuration (e.g. Klimushkin 1997).
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ξ

dV
b

dVa

Figure 2.2: Effect of a poloidal wave in curved magnetic field on flux tube volume, adapted
from Southwood and Saunders (1985). The arrows denote the displacement vectors ξ, the
continuous lines are magnetic field lines. The colored areas are flux tube elements. The
dashed lines cross in the center of curvature.

A more realistic treatment of toroidal and poloidal Alfvén waves requires considering
the curvature of the magnetospheric field lines. Qualitatively, field line curvature influences
a poloidal Alfvén wave via coupling with a slow magnetosonic wave (e.g. Southwood and
Saunders 1985, Walker 1987). This slow mode exhibits a compressible perturbation of the
magnetic field as its plasma displacement ξS M has a component parallel to B0. Contrary,
the plasma displacement ξA of an Alfvén wave is perpendicular to B0. This implies that in a
straight field line configuration the coupling between Alfvén and slow mode is impossible,
because the Alfvén wave does not cause any field parallel pressure perturbations (e.g.
Walker 1987). The situation is different in a curved magnetic field configuration, such
as the terrestrial dipole field. Also in this case the condition ξA ⊥ B0 holds, but if field
lines are bent the poloidal perturbation leads to a change in the volume occupied by the
plasma on a flux tube (Southwood 1972), which is illustrated in Fig. 2.2. As consequence
the plasma displacement due to the Alfvén mode, which in fact does not change the total
magnetic field B0, modifies the plasma pressure and vice versa, i.e. coupling between a
poloidal Alfvén wave and a compressible slow mode occurs (Southwood and Saunders
1985). It is obvious that the interaction of these wave modes becomes stronger with
increasing curvature. Furthermore the presence of a finite plasma pressure amplifies
this effect, because coupling efficiency of a poloidal Alfvén mode with a slow mode is
proportional to the ratio VS M/VA, where VS M is the slow mode velocity (e.g. Walker and
Pekrides 1996). In summary the coupling efficiency of a poloidal Alfvén with a slow mode,

26



2.3 Field line eigenfrequencies

and thus the difference between poloidal and toroidal mode, is proportional to β/R.

2.3 Field line eigenfrequencies
Magnetospheric pulsations investigated in the present work are standing field line oscilla-
tions caused by oppositely propagating Alfvén waves. The eigenfrequencies ωA of these
standing waves depend primarily on the length of the field lines l in the region of excitation
and the Alfvén wave velocity VA. Magnetic field and plasma density, and thus also the
Alfvén velocity, depend on the coordinate along the field line, so that the Alfvénic travel
time approximation is required to estimate ωA (e.g. Warner and Orr 1979):

ωA =
2πN
TA

, TA = 2
∫ N

S

dl
VA
, (2.21)

where N is the latitudinal harmonic number, TA the eigenperiod and dl an increment of
length. The integration limits are the northern and the southern ionospheres.

The values of ωA determined by Eq. 2.21 approximate the real eigenfrequencies,
because this expression for ωA is valid for an “ideal” Alfvén wave, which is, strictly
speaking, only given by a toroidal mode in a cold plasma with straight magnetic field
lines. As exposed in the previous section, plasma β and field line curvature effect both the
poloidal and the toroidal mode significantly, where the influence on the poloidal mode is
stronger. Accordingly, under realistic conditions for magnetospheric oscillations the field
line eigenfrequencies, firstly, differ from ωA of Eq. 2.21 and, secondly, are different for the
toroidal and poloidal mode, respectively.

In general the field line eigenfrequencies are the solutions of an eigenvalue problem
given by the linearized differential equation describing the perturbations e.g. of the wave
electric field (e.g. Cummings et al. 1969, Southwood and Hughes 1983, Walker 1987). In
doing so one aims for the solution of Eq. 2.19 representing an Alfvén wave modified by
the influence of the plasma inhomogeneity (Klimushkin 1998b). This equation is, in view
of a poloidal mode represented by m � 1, dominated by the term m2L̂pΦ, whereas for the
toroidal mode with m � 1, Eq. 2.19 is dominated by −(∂/∂L)L̂T (∂/∂L)Φ. That means the
wave equation is decoupled in poloidal and toroidal mode (e.g. Dungey 1967, Radoski
1967). Within these two limiting cases the eigenvalue problem is simplified to

L̂P(ω)Φ = 0 (2.22)

for the poloidal mode and
L̂T (ω)Φ = 0 (2.23)

for the toroidal mode (Mager and Klimushkin 2002). As the wave electric field E vanishes
at the footprints of the oscillating field lines at the ionosphere, a boundary condition for
Eq. 2.22 and 2.23 can be formulated as

Φ(θ = θN) = Φ(θ = θS ) = 0, (2.24)

where θN and θS denote the position of intersection of field line and ionosphere (e.g.
Leonovich and Mazur 1993). By changing the variable l to θ in Eqs. 2.13 and 2.14 the
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toroidal and poloidal equations can be rewritten in the following form:

V2
A

h2
θ

∂2Φ

∂θ2 +
V2

A

phθ

∂

∂θ

(
p
hθ

)
∂Φ

∂θ
= −ω2Φ (2.25)

and
V2

A

h2
θ

∂2Φ

∂θ2 +
V2

A p
hθ

∂

∂θ

(
1

phθ

)
∂Φ

∂θ
+ V2

AηΦ = −ω2Φ. (2.26)

The eigenvalues ω of the above differential equations are the desired field line eigenfre-
quencies. In the following the toroidal eigenfrequencies are denoted as ΩT and the poloidal
eigenfrequencies ΩP. Details about the method applied to solve Eqs. 2.25 and 2.26 in order
to determine the radial distribution of ΩT (L) and ΩP(L) are given in Sec. 6.1.

As evident from the discussion in Sec. 2.2 the response of the poloidal mode to field
line curvature and plasma pressure is distinct from the response of the toroidal mode. This
implies also differences between the corresponding poloidal and toroidal eigenfrequencies
due to the different restoring forces acting on each mode. A parameter defining this
difference is the radial distance between the L shells, where ΩP and ΩT , respectively, are
equal to the wave frequency ω, as illustrated in Fig. 2.3. These L shells are called poloidal
surface LP and toroidal surface LT (Leonovich and Mazur 1993). The radial distance is
then given by ∆N = LT − LP, where the index N specifies the dependency of the distance
on the longitudinal harmonic number N of the field line oscillation. Assuming that ∆N is
much smaller that a typical scale size a of the magnetosphere the distance between poloidal
and toroidal surface is approximately (Klimushkin et al. 2004)

∆N ∼ a
Ω2

T −Ω2
P

Ω2
T

. (2.27)

It will be shown in Sec. 3 that the area of wave activity in the radial direction is confined
by the surfaces LT and LP. This region of the width ∆N is transparent for the radially
propagating Alfvén mode and is, thus, referred to as wave transparency region.

The numerical solution of Eqs. 2.25 and 2.26 yield to the precise values of the eigen-
frequencies ΩT and ΩP. However, more descriptive information about the difference
between both oscillations can be obtained by the application of the WKB approximation
in the longitudinal direction on the electric field perturbation (Klimushkin 1998a). The
longitudinal WKB approximation is, strictly speaking, only valid, if the field parallel scale
of the wave is very small or, in other words, the harmonic number of the wave is N � 1.
Appropriate results, correct by the order of magnitude, are nevertheless expected also
for N ≥ 1. Within this limitation the toroidal eigenfrequency is given by Eq. 2.21, i.e.
ΩT = ωA, and the poloidal eigenfrequency is expressed by (Klimushkin 1998a)

ΩP = ΩT − 1
N

∫ N

S
VA

∂2

∂l2 (ln p) dl − 1
N

∫ N

S
VAη dl. (2.28)

The second term of Eq. 2.28 depends mainly on the geometry of the field line represented
by the parameter p(l) =

√
g2(l)/g1(l), while the parameter η of the third term is proportional

to the plasma β (Eq. 2.15). Apparently, in a cold plasma with η = β = 0 the field line
curvature causes a reduction of the poloidal eigenfrequency compared to the toroidal one
leading to ∆N > 0.
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Figure 2.3: Positions of the poloidal and toroidal surfaces, after Klimushkin et al. (2004).

Note that in a straight field line configuration both types of eigenfrequencies coincide
even when the plasma is warm, because in this case the parameter η is zero due to the
infinite curvature radius R. This fact is reflected in the WKB approximation (see Eq. 2.28)
as well as in the poloidal eigenvalue problem Eq. 2.26, where the latter is equal to the
toroidal eigenvalue problem Eq. 2.25 when η = 0 and p = 1.

The appearance of finite plasma pressure in a curved magnetic field makes both
ΩT > ΩP and ΩT < ΩP possible depending on the sign of the parameter η. Bearing in
mind the definition of η in Eq. 2.15 three different scenarios may occur:

1. The magnetospheric ring current flows westward, i.e. J0 < 0, and additionally
|µ0J0/B0| > 2V2

S /(RV2
A) holds. That means η is dominated by the ring current. In this

case one has η > 0.

2. When J0 < 0 but the plasma β has a greater impact than the ring current, i.e.
|µ0J0/B0| < 2V2

S /(RV2
A), one also has η < 0.

3. An eastward flowing ring current, i.e. J0 > 0, always leads to η < 0.

In the first case the reduction of ΩP compared to ΩT is further enhanced leading to increased
values of ∆N . Contrary, in the scenarios 2 and 3 the poloidal eigenfrequency ΩP can exceed
ΩT , if the third term of Eq. 2.28 becomes larger than the second one, which results in
∆N < 0. This requirement is fulfilled easily under the discussed background conditions,
curved field lines and warm plasma, as η also depends on the curvature (1/R).

Under quiet solar activity conditions the three scenarios emerge in different magneto-
spheric regions. The first one may occur in outer regions of the magnetosphere beyond the

29
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Figure 2.4: Radial distributions of the toroidal eigenfrequencies (black lines), the poloidal
eigenfrequencies in a cold plasma (blue lines) and in a warm plasma (red lines) in the
region of the plasmasphere for the first three longitudinal harmonics (left). The resulting
widths of the wave transparency region ∆N , displayed on the right, are calculated using Eq.
2.27 with a magnetospheric scale size of a = 10 RE.

plasmapause, where the ring current density reaches its maximum (e.g. Cheng 1992). The
second case is expected to be found where the ring current density is low and the plasma β
increases. As this configuration can appear near the plasmapause, this scenario is of main
interest for this work and will be discussed in more detail in Sec. 3. A schematic picture of
ΩT , ΩP in a cold plasma and ΩP influenced by a finite plasma β in this region is shown
in Fig. 2.4. An eastward directed ring current is expected deep inside the plasmasphere,
but in this region the plasma β is close to zero when the solar activity is low (e.g. Cheng
1992). Consequently, in this case the parameter η is too small and the third term in Eq. 2.28
cannot compensate the second one and the ΩP remains smaller than ΩT . Further possible
configurations, especially considering strong solar activity, are discussed in Klimushkin
et al. (2004).

As evident from Eq. 2.28 the difference ΩT −ΩP decrease with increasing longitudinal
harmonic number N. Consequently, following Eq. 2.27 the higher N is the smaller is the
distance ∆N between the poloidal and toroidal surfaces. As a first approximation for the
first harmonic N = 1 the distance ∆N is about 0.5 RE, whereas for N = 2 the distance is
∆N ≈ 0.05 RE (Klimushkin et al. 2004).

It should be emphasized that considerations made in this section are appropriate only
when considering a plasma with β � 1. A simple relation was found by Klimushkin
(1998b) allowing to verify if the finiteness of the plasma pressure has a major impact on
the poloidal eigenfrequency ΩP:

β >
∆N

L
. (2.29)

Using a typical radial distance of L = 5 RE and the above mentioned values for ∆N one
find that a plasma β value of approximately 0.1 must be taken into account for N = 1 and
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2.3 Field line eigenfrequencies

all higher harmonics. Even if β ≈ 0.01 the finite pressure becomes important for N = 2
and higher harmonics (e.g. Leonovich and Mazur 1993, Klimushkin et al. 2004).
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3 Radial structure of magnetospheric
Alfvén waves

In the previous section it was elaborated that the difference between toroidal and poloidal
eigenfrequencies is caused by field line curvature and amplified by finite plasma pressure.
In the assumed axisymmetric magnetosphere this polarization splitting takes place in the
radial direction. For this reason differences in the radial profiles of ΩT and ΩP lead to
several characteristic spatial structures of magnetospheric Alfvén waves, which will be
investigated in this section.

In general the radial and field aligned structure of an Alfvén wave field is represented
by the Alfvén potential Φ = Φ(L, θ, ω) representing the solution of the inhomogeneous
differential equation 2.20. Following a general approach of perturbation theory the Alfvén
potential Φ can be written as (Leonovich and Mazur 1997)

Φ = RN(L, ω)TN(L, θ, ω) + δΦN . (3.1)

The function δΦN is a small perturbation of the Alfvén potential considering small differ-
ences between toroidal and poloidal mode in their field aligned structure. The function
RN(L) represents the small scale changes of the radial structure, as the Alfvén wave is
narrowly localized across magnetic shells. Contrary, TN(L, θ) gives the large scale structure
of the solution, coinciding by order of magnitude with the length of magnetospheric field
lines. Its dependency on the radial coordinate L is assumed to be much weaker than
the function RN changes with L (Leonovich and Mazur 1993). This construction of Φ

reproduces properties of standing Alfvén waves, namely that the characteristic field aligned
scale size is much larger than the radial scale size.

Substituting the ansatz Eq. 3.1 into Eq. 2.20 results in the following differential equation
for the wave radial structure described by the function RN(L, ω) (Leonovich and Mazur
1997, Klimushkin et al. 2004):

∂

∂L
(ω2 −Ω2

T N)
∂

∂L
RN − k2

φ(ω
2 −ΩPN)RN = qN (3.2)

with

qN =

∫ N

S
TNq dl.

The variable kφ corresponds to the azimuthal component of the wave vector in the equatorial
plane kφ = m/L (Leonovich and Mazur 1993). Solving Eq. 3.2 is possible in two limiting
cases depending on the ratio of radial and azimuthal scale size of the wave field. An
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3 Radial structure of magnetospheric Alfvén waves

appropriate parameter describing this ratio is the number of azimuthal wavelengths νN

fitting into the radial scale size given by the distance ∆N between the poloidal and the
toroidal surface (Leonovich and Mazur 1997):

νN ≡ kφ∆N . (3.3)

With the approximation of ∆N in Eq. 2.27 and assuming the magnetospheric scale size a is
by the order of magnitude comparable with the distance L of the wave field from the Earth,
the the parameter νN can be written as:

νN ∼ m
Ω2

T N −Ω2
PN

Ω2
T N

. (3.4)

If νN � 1 the radial wavelength of the Alfvén wave is much smaller that the azimuthal
wavelength indicating a toroidal oscillation, whereas if νN � 1 the azimuthal wavelength
is larger than the radial one indicating a poloidal oscillation. It is remarkable that according
to Eq. 3.4 a toroidal wave polarization can also be realized for large values of m in case the
difference Ω2

P − Ω2
T is sufficiently small. In other words, the poloidality of an oscillation is

assured only if the polarization splitting is significant. Obviously, the parameter νN is a
more rigorous criteria than the azimuthal wave number m to distinguish between toroidal
and poloidal Alfvén waves (Mager and Klimushkin 2002).

3.1 Localization of toroidal mode
In the case νN � 1 the difference between poloidal and toroidal eigenfrequencies must be
very small (see Eq. 3.4). In other words the difference between the poloidal and toroidal
surface can be neglected (LT ≈ LP) and field line curvature becomes unimportant. In this
case the wave structure coincides with the well known wave field of a toroidal Alfvén wave
excited by a field line resonance. Assuming that ΩT and ΩP are monotonically decreasing
one can use Eq. 2.27, so that Eq. 2.20 becomes (Klimushkin et al. 2004):

∂

∂L
(L − LT )

∂

∂L
RN − k2

φ(L − LT )RN = qN
a
ω2 . (3.5)

The solution of Eq. 3.5 can be written in terms of modified Bessel functions and is shown
in Fig. 3.1. It is characterized by a logarithmic singularity at LT , so that

RN ∝ ln(ω2 −Ω2
T ). (3.6)

This singularity is a distinctive property of Alfvén resonance. Consequently, Eq. 3.5
describes the process of field line resonance.

3.2 Wave structure near boundaries of the transparency
region

The condition νN � 1 can be achieved by the presence of field line curvature resulting in a
significantly large distance between the poloidal and the toroidal surface. Leonovich and
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3.2 Wave structure near boundaries of the transparency region
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Figure 3.1: Radial structure of the localized toroidal mode. The dotted line marks the
toroidal surface LT , where resonance occurs and the wave amplitude is characterized by a
singularity.

Mazur (1993) has demonstrated that when ∆N > 0 the radial structure RN of the wave field
is divided in three regions, near each of the surfaces LP and LT and between these surfaces.
Their calculations are valid only, if the radial profile of the eigenfrequencies ΩT (L) and
ΩP(L) is monotonically decreasing or increasing. Without loss of generality it is here
assumed that the eigenfrequencies are decreasing and that ΩT > ΩP, which is tantamount
to that the toroidal surface is located at a higher radial distance than the poloidal surface.
This situation is reflected by Fig. 2.3.

At first we concentrate on the wave radial structure in the vicinity of the toroidal surface.
In this region a solution of Eq. 3.2 has to be found under the condition |L − LT | � ∆N .
Using the substitution

zT =
L − LT

λT
(3.7)

Eq. 3.2 is transformed to a zero-order Bessel equation, whose solution has the form
(Leonovich and Mazur 1993)

RN ∝ K0

(
2
√

zT

)
. (3.8)

The function K0 is the zero-order modified Bessel function and λT = ∆Nν
−2
N is the charac-

teristic wavelength near the toroidal surface.
Similar to the localized toroidal mode discussed in Sec. 3.1 at L = LT the wave struc-

ture is characterized by a logarithmic singularity, which in both cases prohibit a physical
description of the complete wave structure. In general such an infinite behaviour of reso-
nance can be avoided by considering a small sink of energy. Concerning magnetospheric
ULF pulsations this role is played by the dissipation of wave energy at the ionosphere due
to its finite conductivity (e.g. Southwood 1974). Introducing a complex wave frequency
ω∗ = ω + iγ the radial structure near the resonance surface is given by

RN ∝ ln
[
(ω + iγ)2 −Ω2

T

]
. (3.9)
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3 Radial structure of magnetospheric Alfvén waves

The damping decrement γ is assumed to be small compared to the frequency ω indicating
a high ionospheric conductivity (see details in Sec. 4.3). Now the function RN has a finite
value at L = LT and the radial wave structure is characterized by a sharp maximum around
the resonant field line, where the characteristic scale size produced by the ionospheric
damping is defined by (e.g. Southwood and Hughes 1983)

σres =

∣∣∣∣∣dΩT

dL

∣∣∣∣∣−1

. (3.10)

Such a small scaled pattern is associated with a large radial component of the wave vector
kr. Leonovich and Mazur (1993) have determined that kr behaves as

k2
r ∝

k2
φ

ω2 −Ω2
T

, (3.11)

if L ≈ LT . In view of the singularity arising in Eq. 3.8 the expression Eq. 3.11 shows
mathematically that kr → ∞ at the resonance. On that account this surface LT is denoted
as resonance surface.

Near the poloidal surface, i.e. |L − LP| � ∆N , the substitution

zP =
L − LT

λP
(3.12)

with the characteristic poloidal wavelength λP = ∆Nν
−2/3
N turns Eq. 3.2 to an inhomogeneous

Airy equation (Leonovich and Mazur 1993). The solution is given by

RN(zP) = iqNk2
Φ∆N

∫ ∞

0
exp

(
itzP − it3

3

)
dt. (3.13)

A comparable form of such an Airy function is also known from the concept of the field
line resonance process, where it describes a radially inward propagating fast mode that
is reflected at a wave turning point (e.g. Southwood 1974). In this picture the energy of
the compressional wave can tunnel beyond the turning point towards a resonance shell,
where mode coupling to an Alfvén wave takes place. In a similar manner Eq. 3.13 is
associated with a propagating wave reflected at the poloidal surface LP, where the wave
vector component kr is described by (Leonovich and Mazur 1993)

k2
r ∝ k2

φ

(
ω2 −Ω2

P

)
. (3.14)

Because kr is zero at the poloidal surface LP and becomes imaginary, if ΩP > ω or LP > L,
respectively, the poloidal surface L = LP is denoted as wave turning point.

3.3 Global wave structure
In the previous section the profile of the function RN(L, ω) was investigated in the vicinity
of both the poloidal turning point and the toroidal resonance surface. A complete view on
the radial structure of the wave field requires the knowledge of RN sufficiently distant from
these surfaces. If the width of the transparency region ∆N is wide enough, so that a large
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3.4 Alfvén resonator

number of radial wavelengths fits into it, it is allowed to apply the WKB approximation
to Eq. 3.2 in the radial coordinate L that yields to the following expression for the wave
radial structure (Leonovich and Mazur 1993):

RN(L, ω) = CT

[
k2

Φ(L − LP)(LT − L)
]−1/4

exp
{

i
∫ L

LP

kr(L′)dL′
}
. (3.15)

Combining the expression for the radial component of the wave vector kr near LT (Eq.
3.11) and LP (Eq. 3.14), respectively, leads to a model expression that approximates kr

between the boundaries of the transparency region (Leonovich and Mazur 1993):

k2
r = k2

φ

ω2 −Ω2
P

Ω2
T − ω2

. (3.16)

Fig. 3.2 displays the radial distribution of kr and the entire profile of the radial function
RN(L, ω) composed of Eq. 3.8 valid near the resonance surface LT , Eq. 3.13 valid near the
turning point LP and Eq. 3.15, which holds in the region LP < L < LP. The radial wave
vector changes from kr = 0 to kr = ∞ within a region of the size ∆N .

This behaviour of kr results in a characteristic wave energy transport occurring in the
transparency region, which can be obtained by investigating the wave group velocity given
by

Vg,L =

(
∂kr

∂ω

)−1

=

√
ω2 −Ω2

P
3
√

Ω2
T − ω2

2ωkΦ(Ω2
T −Ω2

P)
. (3.17)

As it was initially assumed that ΩP < ΩP, the group velocity is positive indicating the wave
energy directed from the turning point towards the resonance surface. This direction of
energy transport remains in the opposite case. If ΩP > ΩP, the group velocity Vg,L becomes
negative. However, LP is then located radially farther out compared to LT and the wave
energy transport from the poloidal surface towards the toroidal surface can be accepted as
the general situation (e.g. Klimushkin et al. 2004).

Comparing radial and azimuthal scale sizes of the Alfén wave field represented by
the transverse components of the wave vector, kr and kφ, explains their relation to the
wave polarization in the transparency region. In contrast to kr the azimuthal component
kφ = m/L remains nearly constant, as ∆N is assumed to be much smaller than the scale
size of the magnetosphere. Consequently, at L ≈ LP the wave is poloidal polarized and
kφ � kr ≈ 0. At L ≈ LT the wave polarization is toroidal and kφ � kr ≈ ∞. Furthermore
both situations are possible for large azimuthal wave numbers m implying that toroidal
wave polarization is also possible for a wave with a large azimuthal wave number m, as
mentioned above.

In summary, if a poloidal wave is generated at the poloidal surface LP, its energy
propagates towards the toroidal surface LP due to the radial dispersion caused by the
increasing radial wave number, but the azimuthal wave number does not change.

3.4 Alfvén resonator
The picture of the global radial structure drawn in the previous section is valid only under
the limitation of monotonically decreasing or increasing eigenfrequencies ΩT (L) and ΩP(L).
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R
N

 

 

 
Radial coordinate L

k r

 

 

LP WKB LT

0

Figure 3.2: Upper panel: Radial structure RN in wave transparency region (black line).
Within the green shaded area the WKB approximation is valid, whereas it is not applicable
in the vicinity of the surfaces LT and LT (red lines). Lower panel: Radial distribution of
the wave vector component kr approximated by Eq. 3.16.

This assumption is inappropriate in the vicinity of the terrestrial plasmapause, where the
eigenfrequencies exhibit a maximum at the inner and a minimum at the outer edge of this
boundary. According to this the radial structure of the wave field in this are is expected
to differ clearly compared to the wave transparency region. Near extreme values of ΩP

the Alfvén wave field is confined by two poloidal turning points LP1 and LP2 and is called
Alfvén resonator (see Fig. 3.3).

For the first time the possible existence of ULF pulsations in such a configuration
was theoretically described by Vetoulis and Chen (1994) and Vetoulis and Chen (1996).
However, in both publications an incompressible plasma is assumed neglecting in particular
the interaction between the slow and the Alfvén mode (see Sec. 2.2). That means the effect
of field line curvature was not incorporated and a finite plasma β was considered to be the
only reason for a possible appearance of an Alfvén resonator. A more general approach
was adopted by Leonovich and Mazur (1995), who discovered that poloidal turning points
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3.4 Alfvén resonator

may also emerges in a cold plasma due to the curvature induced polarization splitting
between poloidal and toroidal mode.

At first view, one could assume that the radial structure in this configuration is rep-
resented by a double resonance due to the superposition of the solutions RN close to the
poloidal surfaces, which is assumed to be similar to RN near LP described by Eq. 3.13.
However, at each turning point a wave would be generated with a group velocity directed
radially towards the other poloidal surface. Such a wave traveling at the same time towards
two oppositely located points cannot exist (e.g. Leonovich and Mazur 1995).

It was shown by Leonovich and Mazur (1995) and Klimushkin (1998a) that the radial
structure inside the Alfvén resonator can be obtained from the solution RN of the following
differential equation:

d2RN

dξ2 +

(
σ2

λ2
P

ω2 −Ω2
0

ω2 − ξ2
)

RN = 0 (3.18)

with

λ2
R = σ

L0

m

√
Ω2

0 −Ω2
T

Ω2
0

, (3.19)

where σ is a typical width of the resonator. This expression can be derived from Eq.
3.2 considering a parabolic distribution of ΩP(L), as shown in Fig. 3.3, where Ω0 is the
minimum or maximum eigenfrequency depending on whether the resonator is located
at the minimum or the maximum of ΩP. With the characteristic radial wavelength λR of
the poloidal wave the new coordinate ξ = (L − L0)/λR is introduced, where the extreme
value of the eigenfrequency located at L = L0. Furthermore the term qN representing the
wave source is assumed to be zero, so that Eq. 3.18 has the same form as the well known
Schrödinger equation for the harmonic oscillator. Consequently, the wave frequency in the
cavity close to the extremum of ΩP is quantized as (Leonovich and Mazur 1995)

ω2
n ≡ Ω2

0 ∓Ω2
0

λ2
R

σ2
(2n + 1) , n = 0, 1, 2, . . . . (3.20)

The splitting of the eigenfrequencies depends on the ratio λ2
r/σ

2 that in turn, considering Eq.
3.19, depends on the difference between the maximum poloidal eigenfrequency Ω0 and the
toroidal eigenfrequency ΩT . As this difference decreases with the longitudinal harmonic
number N (see Sec. 2.4), the eigenfrequency splitting is largest for the fundamental field
line oscillation. Similar to the harmonic oscillator in quantum mechanics the required
solution RN is the product of a Hermitian polynomial Hn(ξ) and a Gauss function:

RN(ξ, ω) ∝ Hn(ξ) exp
(
−ξ

2

2

)
(3.21)

with the definition

Hn(ξ) = (−1)nex2 dnex−2

dξn . (3.22)

The resulting possible radial structure inside an Alfvén resonator is displayed in Fig. 3.3
for H0, H1 and H2.

Considering ionospheric dissipation and a wave source qn yields to an inhomoge-
neous differential equation and the radial structure is represented by a superposition of
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Figure 3.3: Upper panel: Radial structure RN of Alfvén wave field inside resonator between
two poloidal turning points LP1 and LP2 for n = 1, 2, 3. Lower panel: Modeled poloidal
eigenfrequency ΩP at outer (solid line) and inner edge of the plasmapause (dotted line).

eigenmodes ωn of the Alfvén resonator, which is expressed by (Leonovich and Mazur
1995)

QN(ξ, ω) =

∞∑
n=0

cn

(ω + iγ)2 − ω2
n
RN(ξ) (3.23)

with

cn =

∫ ∞

−∞
RN(ξ)qN(LP + λPξ)dξ. (3.24)

Thus, Eq. 3.23 describes a continuous spectrum of frequencies for the Alfén resonator. But
its summand withω ≈ ωn obviously dominates all other terms, if additionally the difference
ω − ωn and the damping decrement γ are smaller than the splitting of the eigenfrequencies
∆ωn. In other words, in case the wave frequency ω is close to an eigenfrequency ωn, the
radial structure of the wave amplitude is well approximated by the function RN(ξ, ω) given
in Eq. 3.21 (e.g. Klimushkin et al. 2004).
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Figure 3.4: Possible locations of Alfvén resonator (green vertical lines) at plasmapause for
cold plasma (left panel) and warm plasma (right panel). The vertical red lines mark areas
bounded by two turning points, where the resonator cannot be excited.

In Fig. 3.4 poloidal and toroidal eigenfrequencies are displayed schematically for both
the cold and the warm plasma in the vicinity of the plasmapause exhibiting the regions
limited by two poloidal turning points LP. As evident from this picture a further condition
is required for the existence of a resonator, namely that the wave frequency ω must be
situated between ΩT and ΩP. Otherwise, assuming that the wave is excited at a turning
point where ω = ΩP holds, the wave energy would be transported towards the resonance
surface ω = ΩT , as described in Sec. 3.3. This behaviour is reflected by the the model
expression Eq. 3.16 for the radial wave vector kr that is valid obviously not only in the
transparency region, but also inside the Alfvén resonator. Consequently, in a cold plasma
when ΩP < ΩT , kr becomes imaginary if ω < ΩP, i.e. the Alfvén resonator cannot exist
near the maximum of the field line eigenfrequencies. Considering a warm plasma with
ΩP > ΩT the resonator is not possible when ω > ΩP, i.e. near the minimum of the
eigenfrequencies. In these scenarios a wave cannot be radially trapped although the region
is bounded by two turning points. In contrast to that Alfvén resonators are possible in a
cold plasma near the minimum of eigenfrequencies and near the maximum when finite
pressure has to be taken into account (e.g. Klimushkin 1998b).

3.5 Localization of wave phase jump

Next to its radial distribution of the amplitude modulation an Alfvén wave field additionally
exhibits a characteristic profile of the wave phase. For instance, a well known feature of
the field line resonance process is the jump in the wave phase across the resonance shell
LT . It was shown by Southwood (1974) that the wave polarization, i.e. the ratio of the
radial (toroidal) component Er of the electric field to the azimuthal (poloidal) component
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Figure 3.5: Radial profile of amplitude of the Alfvén wave field (solid line) inside a
resonator for the eigenfrequency ω = ω1 and its corresponding wave phase structure
(dotted line).

Eφ, is given by
Er

Eφ

= − i
mEφ

∂Eφ

∂L
. (3.25)

Due to the sharp amplitude maximum located at LT , the sign of the term ∂Eφ/∂r changes
at the resonance shell corresponding to a narrowly localized change of the wave phase by
180◦. The existence of this property of an Alfvén resonance was approved in ground based
observations (e.g. Samson et al. 1971).

However, describing the wave polarization using Eq. 3.25 is not limited to the Alfvén
resonance process. In general the electric field of an Alfvén wave can be expressed in
terms of the potential Φ, so that Er = ∂Φ/∂L and Eφ = ∂Φ/∂φ = −imΦ (see Sec. 2.1)
yielding to the expression

Er

Eφ

= − i
mΦ

∂Φ

∂L
. (3.26)

Assuming a Gaussian distribution of the wave radial structure RN(L, ω), e.g. as displayed
in Fig. 3.3, signifies that the radial distribution of the potential Φ given by Eq. 3.1 have a
Gaussian character. Consequently, at the maximum of wave amplitude the term ∂Φ/∂L
has a change of sign which complies with a jump in the wave phase, similar to what is
expected in a field line resonance (Klimushkin et al. 2004). Fig. 3.5 shows schematically
the Gaussian character of RN and the corresponding phase jump located at the amplitude
maximum, which can be described by an arctan-function. Generally speaking, following
Eq. 3.26, at each field line shell, where the radial amplitude distribution of an Alfvén wave
field exhibits an extreme value, its phase is expected to change by 180◦.
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4 Temporal evolution of
magnetospheric Alfvén waves

4.1 Temporal evolution inside the Alfvén transparency
region

Using the simultaneous observation of four spatially separated satellites detecting a mag-
netospheric ULF pulsation allows under certain conditions the separation of spatial and
temporal effects in the observed signal. Consequently, knowing details about the temporal
evolution of an Alfvén wave field are essential for the interpretation of the observed data.

A simple approach to investigate the lifetime of a poloidal wave is the concept of
field line phase mixing, where initially field line curvature, wave sources and sinks are
ignored (e.g. Mann et al. 1995, Rickard and Wright 1995). In doing so the splitting of
poloidal and toroidal eigenfrequency can be neglected. However, the wave frequency ωA,
e.g. determined by Eq. 2.21, still depend on the radial coordinate L and the radial (poloidal)
component of the magnetic field disturbance may be expressed by

br(L, t) = A(L) exp[−iΩT (L)t], (4.1)

where A(L) represents the radial dependency of the wave amplitude. Defining the wave
phase as Φ = −ΩT (L)t reveals that two neighboring field lines run out of phase in time as
they oscillate with a slightly different frequency. At a certain time t′ the radial structure of
the wave field could be described by br ∝ exp(ikrL) with the slowly varying radial wave
vector kr(L) (e.g. Wright et al. 1999a). From this follows by taking into account Eq. 4.1

ikr =
1
br

∂br

∂L
= i

∂ΩT

∂L
t +

1
A(L)

∂A(L)
∂L

. (4.2)

Assuming that the function A(L) is, similar to kr, almost constant in L, the radial component
of the wave vector is given by

kr ≈ ∂ΩT

∂L
t. (4.3)

Accordingly, due to phase mixing the radial wave length λr = 2π/kr decreases in time,
i.e. the radial structure of the wave field evolves to smaller scale sizes. Considering
the solenoidal constraint ∇ · b = krbr + kφbφ + k‖b‖ = 0 reveals the temporal evolution
of wave polarization, i.e. the ratio of radial and azimuthal wave amplitude br/bφ. For
magnetospheric standing waves the field parallel wavelength, which corresponds by the
order of magnitude with the length of a field line, is much larger than the transverse
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4 Temporal evolution of magnetospheric Alfvén waves

wavelengths, so that k‖b‖ � krbr, kφbφ holds even for nonzero b‖. Hence with kr given by
Eq. 4.3 one can write

br

bφ
≈ −kφ

kr
= −m

L

(
∂ΩT

∂L
t
)−1

. (4.4)

As the azimuthal wave vector kΦ = m/L is constant in time, phase mixing entails the
transformation of an initially poloidal polarized wave with br � bφ and kr � kφ to a
toroidal wave due to the increasing radial wave vector kr. With Eq. 4.4 the lifetime τ of the
poloidal wave can be defined as the time when the toroidal amplitude exceeds the poloidal
one, i.e. br = bφ (Mann and Wright 1995):

τ ≡ m
L

(
∂ΩT

∂L
t
)−1

. (4.5)

Apparently, the stronger the radial gradient of the field line eigenfrequency ωA the faster
the radial scale size of the wave field reduces and the transformation process occurs from
poloidal to toroidal polarization, respectively. After the onset of the field line oscillation
at t = 0 the poloidal amplitude of the wave decreases immediately while the toroidal
amplitude starts growing. When t > τ the toroidal amplitude dominates (Mann et al.
1997a,b).

Next to phase mixing the development of ULF pulsations in time is mainly triggered by
the interplay of sources and sinks of the wave energy. Thereby magnetospheric instabilities
are believed to be the origin of the waves, while finite ionospheric conductivity leads
to wave damping. Details about these mechanism are described in Secs. 4.3 and 4.4.
In general wave damping and growing are considered by introducing a complex wave
frequency with the damping decrement γ and the growth rate δ. Then perturbed quantities
are in general represented by

b, E ∝ exp
[
(−iω + γ − δ)t] . (4.6)

Furthermore, field line curvature and the resulting polarization splitting have to be taken
into account. In this section we are restricted to monotonically decreasing eigenfrequencies
ΩP and ΩT , so that in the attendance of field line curvature the wave transparency region is
bounded by a poloidal turning point LP and a toroidal resonance point LT (see Sec. 3.3). In
this case wave damping and growing are incorporated into Eq. 3.2 leading to the following
differential equation (e.g. Leonovich and Mazur 1999, Klimushkin and Mager 2004)

∂

∂L
[
L − LT + iσres (γ − δ)] ∂RN

∂L
− k2

φ

[
L − LT + iσres (γ − δ)] RN = q. (4.7)

Here the scale size σres is defined by Eq. 3.10. Considering the conditions σresδ/∆N � 1
and σresγ/∆1 � 1, which coincides with the assumption that damping decrement and
growth rate are small compared with the wave frequency. The source function q in Eq. 4.7
may be represented by a δ-function in time, i.e. the wave source is considered as a sudden
impulse that is activated at the time t = 0 and immediately turns off. Furthermore the
functions γ and δ are assumed to be frequency independent (Leonovich and Mazur 1999).
Applying the Fourier-transformation on the solution of Eq. 4.7, which is the function
RN = RN(L, ω), results in (Klimushkin and Mager 2004)

RN = − 2π

k2
Φ

√
1 + (t/τ)2

exp
[
iΩT t + ikΦ∆N arctan

t
τ
− σreskφγ

t
τ

+ σreskφδ arctan
t
τ

]
(4.8)
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4.2 Temporal evolution inside an Alfvén resonator

for t > 0, where now RN = RN(L, t). This equation reflects the temporal evolution of a
high-m Alfvén wave generated at the poloidal turning point LP by a beam of particles,
which is considered as a sudden impulse wave source. The characteristic time scale τ
is on the order of magnitude given by Eq. 4.5. At times t ≤ τ the wave amplitude is
enhanced by the factor σreskφδ arctan(t/τ). After that when t > τ the wave transforms from
poloidal to toroidal due to phase mixing, which appears as the term iΩT (L)t, as well as
radial wave propagation caused by field line curvature represented by the second term
of the exponential function in Eq. 4.8. Furthermore, the presence of a energy sink, e.g.
ionospheric dissipation, induces the decrease of the total wave amplitude after the onset
of the wave, which is expressed by the term containing the damping rate γ in Eq. 4.8. If
the growth rate δ is smaller than the damping rate γ, the amplitude enhancement after the
onset of the wave can be neglected and energy dissipation is dominant during the temporal
evolution. In the opposite case the attendance of a wave source leads to an increasing
wave amplitude as long as the wave polarization is mainly poloidal. After the time τ wave
dissipation predominates wave growth and the wave field attenuates.

4.2 Temporal evolution inside an Alfvén resonator

Near local extrema of the field line eigenfrequency the gradient dΩT/dL is comparatively
small. Thus, following Eq. 4.5 in such a region the effect of field line phase mixing is weak
as the time τ becomes very large and the wave field possibly remains poloidal polarized in
time. The temporal evolution of an Alfvén wave field inside a resonator region bounded by
two poloidal turning points (see Sec. 3.4) has been investigated by Mager and Klimushkin
(2006) for a monochromatic wave field, i.e. wave growth and damping have been neglected.
Therefore, the Fourier transformation of the corresponding function QN(L, ω) (see Eq.
3.23) has to be determined, which defines the radial wave structure:

RN(L, t) =
1√
2π

∫ ∞

−∞
QN(L, ω)e−iωtdω (4.9)

=

∞∑
n=0

cnHn(ξ)e−
ξ2
2

∫ ∞

−∞

e−iωt

ω2 − ω2
n
dω

with ξ = (L−L0)/σ (see Sec. 3.4). The Fourier-integral in the equation above can be solved
by applying a Laplace-transformation on the function f = 1/(ω2 − ω2

N), which results in
L( f ) = sin(ωnt)/ωn (e.g. Bronstein et al. 1996). Furthermore, the wave source is again
assumed to be described by a δ-function in time. In doing so one obtains an expression
for the spatio-temporal structure of a wave excited inside an Alfvén resonator (Mager and
Klimushkin 2006):

RN(L, t) = 2
∞∑
j=0

c j

ω2 j
sin(ω2 jt)RN2 j(L, ω) (4.10)

with

c j =
√

2πqNπ
−1/42− j

√
(2 j)!
j!

.
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4 Temporal evolution of magnetospheric Alfvén waves

The eigenfrequencies ωn of the resonator are defined by Eq. 3.20. The difference between
the eigenfrequencies ∆ωn, which is triggered by the factor λ2

R/σ
2, has a major impact

on the development of the wave field inside the Alfvén resonator in time. For values of
λ2

R/σ
2 being sufficiently large the first summand of Eq. 4.10 with ωn=0 exhibits the highest

amplitude and thus dominates the other terms. In other words large frequency splitting
prevents higher radial harmonics influencing the oscillation with the frequency ω0. This
fact inevitably results in the stability of the Gaussian radial amplitude distribution assumed
for n = 0 (see Sec. 3.4) during the lifetime of the oscillation.

On the other hand smaller differences ∆ωn lead to similar eigenfrequencies of sum-
mands in a certain range of n values in Eq. 4.10. Consequently, the amplitudes of the
corresponding radial structures Hn exp(−ξ2/2) are of the same order of magnitude and their
interaction cannot be neglected. The temporal evolution of such a wave field is shown in
Fig. 4.1 for λ2

R/σ
2 = 0.001, which is a realistic value for a second longitudinal harmonic

oscillation. After the onset of the poloidal pulsation its radial structure is a Gaussian of
the width σ which is still evident at t = 10 T , where T is the wave period. Due to the
interaction of radial harmonics the amplitude distribution changes to smaller radial scales
in the course of time. When the radial wavelength becomes smaller than the temporally
constant azimuthal wavelength, the polarization of the wave field is transformed from
poloidal to toroidal. This situation is comparable to the process of field line phase mixing
discussed in Sec. 4.1, where the temporal evolution of wave field is influenced by the
interaction of separate waves oscillating with slightly different frequencies. Accordingly,
the change of wave polarization after the elapse of a typical time τ also occurs for pulsation
excited inside an Alfvén resonator, when the longitudinal harmonic number is at least
N = 2 (Mager and Klimushkin 2006).

The temporal evolution of the wave amplitude can be implemented in Eq. 4.9 by
considering wave growth rate δ and damping decrement γ. Consequently, the modified
Fourier-integral is solved by the Laplace-transformation

L( f ) = L
[

1
(ω − iδ + iγ)2 − ω2

N

]
=

1
ωn

sin(ωnt)e(δ−γ)t. (4.11)

The resulting spatio-temporal structure can be expressed by

RN(L, t) = 2
∞∑
j=0

c j

ω2 j
sin(ω2 jt)RN2 j(L, ω)e(δ−γ)t. (4.12)

This is the expression of Eq. 4.10 multiplied with an exponential function describing the
interplay of wave growth and damping. As long as δ > γ the wave amplitude growth, while
strong wave damping lead to decreasing wave amplitude (see Sec. 4.1).

4.3 Influence of the ionosphere
The terrestrial ionosphere presents the ionized part of the upper atmosphere and is a
conducting interface between the lower neutral atmosphere and the magnetosphere. The
response of standing field line oscillations on the ionosphere is influenced by the interaction
of the current system carried with a standing Alfvén wave with the ionospheric currents. In
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Figure 4.1: Temporal evolution of the wave radial structure. The amplitude remains a
Gaussian distribution for several wave periods T . Small scaled stuctures appear later due
to phase mixing of different resonator eigenoscillations.

this process immediately above the ionosphere the field aligned currents of the Alfvén wave
are closed by ionospheric Pedersen currents, which are transverse to the magnetic field
perturbation and parallel to the electric field (e.g. Glassmeier 1995). In this region magnetic
and electric field of the wave are related by (Hughes 1974, Hughes and Southwood 1976)

b = ±µ0ΣPE, (4.13)

where ΣP is the height integrated Pedersen conductivity. As the vertical scale size of the
conducting layer, which is around 200 km, is much smaller than the wavelength of a field
line oscillation of several Earth radii, it is sufficient using the height integrated values of
the conductivity. When ΣP is uniform one can derive the following relation between the
electric field of the incident wave EI and the reflected wave ER (Scholer 1970):

ER =
1 − µ0VAΣP

1 + µ0VAΣP
EI = REI . (4.14)

Typical values of ΣP are between 0.1 S at the nightside and around 10 S at the dayside.
The Alfvén wave velocity is by the order of magnitude VA = 105 km/s (e.g. Fedorov
et al. 2006) leading to a reflection coefficients between R ≈ −0.85 and R ≈ −0.99. Thus,
under realistic conditions the assumption of a ideal conducting ionosphere is justified.
Furthermore, a reflection coefficient of R = −1 implies a zero electric field, which is
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4 Temporal evolution of magnetospheric Alfvén waves

related via Eq. 2.8 with a slow plasma motion, so that the magnetic field line is tied in the
ionosphere. However, not the complete energy of an incident Alfvén wave is reflected as
under realistic conditions an ideal reflection coefficient cannot be realized. By multiplying
Eq. 4.13 with the complex electric field E∗ one obtains the expression

E∗b
µ0

= ΣP|E|2. (4.15)

This equation describes the mechanism how standing field line oscillations looses energy at
their ionospheric footprint. On the left hand side of Eq. 4.15 emerges a downward Poynting
flux in an Alfvén wave, which is balanced by the term ΣP|E|2. Thus, an Alfvén wave
propagating along a magnetic field line towards the ionosphere is almost ideally reflected,
but a small portion of the wave energy dissipates in the ionosphere due to Joule heating
caused by the finite ionospheric Pedersen conductivity (e.g. Southwood and Hughes 1983).

The wave damping is considered by introducing a complex frequency with the imagi-
nary part γ, so that the oscillation behaves as exp(−iωt + γt). A quantitative information
about the wave damping is provided by the damping decrement γ/ω. Numerical calcu-
lations of Newton et al. (1978) have suggested that the damping constant γ is inversely
proportional to ΣP and is given by the approximation

γ ≈ 1
10 · ΣP · L . (4.16)

Assuming an ULF pulsation located at the L shell L = 4 oscillating with f = 0.01 Hz
results in typical damping decrements in the range γ/ω = 0.05, . . . , 0.4 (e.g. Glassmeier
et al. 1984b, Allan et al. 1986, Ozeke and Mann 2004). Accordingly, magnetospheric
Alfvén waves can occur in wave packets of up to 20 cycles, which is confirmed by ground
based observations.

The general role of the ionosphere as a sink of wave energy is widely accepted.
Nevertheless Leonovich and Mazur (1993) have proposed the possibility of extraneous
field aligned currents jext in the ionosphere acting as source of ULF wave activity. In this
case Ohm’s law should be written as

j = σ̂E + jext (4.17)

with the conductivity tensor σ̂. These external currents are suggested to be excited by
internal gravity waves or local perturbations of the electric field. Both ionospheric damping
and source mechanism entrain the theoretical description of the wave spatial structure in
Chapter 2 by modifying the boundary condition Eq. 2.24 to

Φ|N,S = ∓ 1
ε0ωΣP

∂Φ

∂θ

∣∣∣∣∣∣
N,S

− ΣP∆⊥J‖
∣∣∣∣
N,S

(4.18)

with ∆⊥J‖|N,S = jext,‖|N,S (Leonovich and Mazur 1993). The first term on the right hand
side of Eq. 4.18 describes the dissipation of the wave in the ionosphere and the second
term represents its possible generation by external currents.
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4.4 Magnetospheric plasma instabilities

4.4 Magnetospheric plasma instabilities
A mechanism describing an effective interaction between standing Alfvén waves and
magnetospheric particles is the drift-bounce resonance, which is capable to feed energy
to an Alfvén wave field as well as to provide wave damping. Initially this process was
suggested by Southwood et al. (1969), who derived the resonance condition

ωwave − mwaveωdri f t = Nωbounce (4.19)

for the integer number N representing the harmonic number of the field line oscillation. The
frequency ωbounce is related to the bounce motion of charged particles in dipolar magnetic
field lines trapped between the mirror points above the northern and southern ionosphere.
This motion is superposed by a azimuthal directed current of the particles due to curvature
and gradient drift, which is represented by the frequency ωdri f t. If the condition Eq. 4.19
is satisfied, a magnetospheric particle is exposed to a constant electric field due to the
presence of the wave with the frequency ωwave and thus will be steadily accelerated or
decelerated. In a collisionless plasma this resonance process may take a long time, until the
particle moves out of synchronism with the wave. In the electric field of the fundamental
standing field line oscillation the net acceleration over a bounce period is zero independent
of the relative phasing between the wave and the particle. Contrary, for any even mode
structure, such as the second harmonic waves which are often observed for poloidal Alfvén
waves, particles in resonance may exchange energy with the wave over many bouncing
periods (Southwood and Kivelson 1982).

As a wave resonates with a distribution of particles, the wave looses energy when
more particles are accelerated than decelerated. This mechanism is also known as Landau
damping in a collisionless plasma. In the opposite case the wave gains energy at the
expense of the particle energy leading to unstable plasma, which is a possible source of
ULF pulsations. The condition for such an instability leading to wave growth is

d fres

dW
> 0, (4.20)

where fres is the part the particle distribution approximately fulfilling Eq. 4.19 and W the
particle energy (Southwood et al. 1969, Southwood and Hughes 1983). Eq. 4.20 describes
a bump on the particle distribution that is believed to origin from a substorm injection of
energetic particles. Due to differences in energy these protons drift with different velocities
from the nightside in westward direction, so that the velocity distribution can be far from
the Maxwellian (Southwood 1977).

Another excitation mechanisms for magnetospheric ULF waves are plasma instabilities
driven by the free energy associated with pressure anisotropies that can be transported
into wave energy. In case the plasma pressure transverse to the ambient magnetic field P⊥
exceeds the parallel pressure P‖, a mirror magnetic field geometry can occur, which in turn
increases the pressure anisotropy (Hasegawa 1969). This mirror instability growth, if the
condition

β⊥
β‖

> 1 +
1
β‖

(4.21)

is fulfilled. This mirror mode is a purely growing compressional structure. Due to gradients
in plasma density, magnetic field or plasma pressure, e.g. in the ring current region, this
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4 Temporal evolution of magnetospheric Alfvén waves

mirror mode couples to drift waves and the resulting instability is called drift mirror
instability. The resulting growing mode is polarized like the slow magnetosonic mode
and propagates azimuthally at the drift velocity (Hasegawa 1969, Pokhotelov et al. 1985).
However, the classical drift mirror mechanism fails to explain poloidal waves, as these
oscillations have transverse magnetic field components larger than the compressional
one, which is not the case for the magnetosonic mode (e.g. Glassmeier 1995). Thus,
the excitation of poloidal waves requires coupling of the compressional slow mode to
shear Alfvén perturbations, which occurs in particular due to the presence of field line
curvature, because of the small compressional component of the poloidal Alfvén wave
(e.g. Pokhotelov et al. 1986, Woch et al. 1988, Chen and Hasegawa 1991a, Glassmeier et al.
1999, Klimushkin and Mager 2008).
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5 The Cluster mission

5.1 Spacecraft configuration

A substantial progress in the in situ observations of magnetospheric plasma processes
and its interaction with the solar wind has been achieved by the realization of the Cluster
mission consisting of four identical build spacecraft (Escoubet et al. 1997, 2001). On July
16 and August 9, 2000, respectively, the satellites were delivered in pairs from the Russian
cosmodrome in Baikonour into their designated orbit. After the commissioning of the
instruments on board the mission was declared operational on February 1, 2001. Since
that time 11 different experiments on each spacecraft provide measurements of magnetic
and electric field as well as plasma particles and its distribution functions, most of them
working in high time resolution. A mechanical drawing of a Cluster satellite is shown in
Fig. 5.1.

The investigation of the interaction between solar activity and the terrestrial magne-
tosphere has been declared as the main goal of the Cluster mission, that is intended to
be achieved by the investigation of small-scaled plasma structures in space and time in

Figure 5.1: Image of Cluster satellite and instrumentation (Escoubet et al. 1997).
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Figure 5.2: Cluster orbit in GSE coordinates and magnetic field lines determined from
Tsy96 modell. The thick field lines represent possible locations of the plasmapause.

the following key plasma regions: Solar wind and bow shock, magnetopause, polar cusp,
magnetotail and auroral zone (Escoubet et al. 2001). In order to study these specific regions
the Cluster spacecraft are placed in a polar orbit with the perigee about 4 and the apogee
about 20 Earth radii and a 57 hours period. The plane of the orbit is fixed with respect
to inertial space allowing for a complete 360◦ scan of the magnetosphere every year. A
typical Cluster orbit with dayside perigee is displayed in Fig. 5.2 in GSE (Geocentric
Solar Ecliptic) coordinates, where XGS E is directed from the Earth towards the sun, YGS E

is chosen to be in the ecliptic plane opposing the planetary motion and ZGS E is parallel
to the ecliptic pole (Russell 1971). The orbit is compared with possible locations of the
terrestrial plasmapause that is between 3 and 6 RE depending on the solar activity level.
Obviously, during the perigee passage the Cluster satellites approach the plasmapause or
even transit this boundary. As elucidated in Sec. 3.4 this specific region exhibits suitable
conditions for the excitations of radially trapped ULF waves inside the Alfvén resonator.
Thus, the design of the Cluster orbit implicates suitable conditions for the detection of this
particular type of standing field line oscillations.

The main advance of the Cluster mission compared to earlier one or two spacecraft
missions, which are restricted to one-dimensional or under certain circumstances two-
dimensional data processing, is the possibility of building a tetrahedron constellation by
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the four satellites. Such a configuration best suites to study three-dimensional plasma
structures and to derive vector quantities (e.g. Dunlop et al. 1990). In order to ensure
the coverage of different scale sizes on which the plasma processes of interest take place
the spacecraft separation varies from 100 km to 20, 000 km during the mission. Due to
orbital dynamics a fixed constellation cannot be maintained throughout a complete orbit, so
that the spacecraft configuration changes continuously during the mission. For analyzing
ULF pulsations in the inner magnetosphere that means one is obliged to deal with various
spacecraft configurations, such as the extreme cases the perfect tetrahedron and satellites
following each other on the same trajectory, like a string of pearls. The latter configuration
is not necessarily a handicap for investigating field line oscillations, as it gives a good
insight in the temporal evolution of a detected pulsation. On the other hand the analysis
of the spatial structure is improved by slightly different orbits, in particular for the radial
coordinate when the satellites cover a certain range of magnetic L-shells at the same time.
Furthermore, the spacecraft separation in the azimuthal direction allows for determination
of the wave azimuthal wavelength.

5.2 Measurement of FGM sensors
The observation of the magnetic field is of particular interest for this work. It is measured
by two triaxial fluxgate magnetometer (FGM) onboard each satellite (Balogh et al. 2001),
one inboard sensor another one fixed at the end of the 5 m long experimental boom. A
fluxgate magnetometer is composed of a ring core of a highly magnetically permeable
alloy and two coil windings (Fig. 5.3). The drive winding is wrapped around the core
and generates an alternating magnetic field of constant frequency that moves the core
periodically into saturation. Due to the presence of a external magnetic field a voltage is
induced in a sensor coil oscillating in multiples of the driver frequency. The amplitude
of this voltage, usually its second harmonic is considered only, is proportional to the
amplitude of the external magnetic field to be measured. Combining three interleaved
crossed fluxgate magnetometers allows the detection of the magnetic field vector. The
normal operational mode of the FGM sensors provides a sampling rate of 15.519 Hz, while
during the burst mode the sampling rate is increased up to 67.249 Hz. Furthermore the
magnetometers operate in four measuring ranges with resolutions of 10−2 nT in the lowest
and up to 0.5 nT in the highest range. The maximum detectable magnetic field strength
is B = 4096 nT. Sampling rate and resolution of the fluxgate magnetometers assure high
quality magnetic field measurements. FGM data transformed routinely from spacecraft to
GSE coordinates and interpolated to a resolution of 4 s are used, as a Nyquist frequency
of f = 125 mHz is sufficient for the basic analysis of standing field line oscillations with
frequencies below 100 mHz. For deeper investigations of the signals, such as for the
determination of the wave azimuthal wavelength m (Secs. 7.3 and 8.4), higher resolved
data are produced.

5.3 Measurement of EFW sensors
The Electric Field and Wave (EFW) instrument onboard each Cluster satellite consists
of two double-probes installed at the end of long wire booms in the spin plane with a
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Figure 5.3: Construction of a fluxgate magnetometer. The drive winding (red coil) gen-
erates an oscillating magnetic field (red line) in the ring core (grey ring core). The black
lines represent the external magnetic field. The blue and green windings are the sensor
coils (with kind permission of Bernd Chares, MPS).

probe-to-probe separation of 88 m (Gustafsson et al. 1997, 2001). Two opposite spherical
sensors are fed with constant and identical bias currents Ib (Fig. 5.4). If the resistances
Rp over the sheath surrounding the probes are equal, the voltage U measured on board
the spacecraft will be equal to the potential difference Φ in the plasma between the probe
locations (Pedersen et al. 1998). The potential differences measured with the orthogonal
double-probes provide the electric field in two directions in the spacecraft system, Ex,spin

and Ey,spin, that is a close approximation to GSE coordinates but with the z-axis along
the spacecraft spin axis. For Cluster both z-axes differ only by a few degree, so that
Ex,GS E ≈ Ex,spin and Ey,GS E ≈ Ey,spin (Eriksson et al. 2006). In this thesis the electric field
vector E is used together with the magnetic field B for the determination of the Poynting
vector (see Sec. 6.4). Thus, measurements of magnetic and electric field of Cluster provide
an insight into the direction of energy transport of the Alfvén waves under investigation.

In addition to the current mode for measuring the electric field, the spherical sensors
can be operated as current-collecting Langmuir probes (e.g. Gustafsson et al. 2001). For
this mode the probe is given a bias voltage that is referred to as the satellite ground, though
the variations in the spacecraft potential can be detected by another probe pair operating
in electric field mode, which then have a potential close to that of the ambient plasma
and serve as a reference for the spacecraft potential. The difference between spacecraft
and probe potentials received in this way is proportional to the ambient electron density
assuming that the electron temperature is constant (Eriksson et al. 2006). Consequently, the
potential difference is capable e.g. for the identification of the plasmapause location, which
is characterized by a steep change in the plasma density, in order to proof the reliability of
the used model of the magnetospheric electron density distribution described in Sec. 6.2.3.
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Figure 5.4: Sketch of a Cluster satellite with wire boom and spherical probes of EFW
instrument (after Eriksson et al. (2006)). The illustration is not to scale.
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6 Analysis of magnetospheric ULF
pulsations

6.1 Determination of field line eigenfrequencies
The difference between toroidal and poloidal eigenfrequencies and their distribution within
the magnetosphere mainly define the spatio-temporal structure of field line oscillations
under investigation in the present work. Both the toroidal and poloidal eigenfrequency
problems available by the differential equations Eqs. 2.25 and 2.26 are of the form

f1(x)
d2y
dx2 + f2(x)

dy
dx

+ f3(x)y = −ω2y (6.1)

with the boundary condition y(xa) = y(xb) = 0 and the eigenvalue ω. An appropriate
procedure to solve such differential equations is the finite difference method that allows to
transform Eq. 6.1 to the eigenvalue problem

Ay = λy. (6.2)

In order to determine the derivations of y using finite differences the interval confined by
xa and xb is separated into n subintervals each of the length h, so that xa = x0 < x1 < x2 <
. . . < xn = xb. Thus, in Eq. 6.2 the eigenvalue is given by λ = −h2ω2 and the eigenvector y
is of the dimension (n − 1). The corresponding (n − 1) × (n − 1) matrix A is tridiagonal:

A =



b1 c1 0 · · · 0 0 0
a2 b2 c2 · · · 0 0 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

0 0 0 · · · an−2 bn−2 cn−2

0 0 0 · · · 0 an−1 bn−1


. (6.3)

The three diagonals of the matrix A are given by

ai = f1(xi) (6.4)
bi = h2 f3(xi) − h f2(xi) − 2 f1(xi) (6.5)
ci = h f2(xi) + f1(xi) (6.6)
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with i = 1, . . . , n − 1. Comparing Eq. 6.1 with Eqs. 2.25 and 2.26 exhibits that the variable
x corresponds to the field aligned coordinate θ, so that the eigenvector y describes the
function Φ along a magnetic field line. Also the functions f1, f2 and f3 depend on θ. For
both toroidal and poloidal equation f1(θ) = V2

Ah−2
θ holds, while

f2(θ) =
V2

A

ph2
θ

∂

∂θ

(
p
hθ

)
(6.7)

f3(θ) = 0 (6.8)

is valid for the toroidal equation and

f2(θ) =
pV2

A

h2
θ

∂

∂θ

(
1

phθ

)
(6.9)

f3(θ) = ηV2
A (6.10)

for the poloidal equation. Finding the field line eigenfrequencies for a given L shell requires
the solution of the eigenvalue problem Eq. 6.2 which is done by applying a standard precast
code implemented in the used IDL (Interactive Data Language) programming packet used.

For a specific field line the functions f2,3(θ) are determined by the field aligned dis-
tributions of Alfvén velocity, plasma β and current density, where the latter two terms
influence the function η defined by Eq. 2.15. The Alfvén velocity requires the knowledge
of magnetic field strength and plasma mass density. Furthermore, the geometry of the field
line has to be considered, which is incorporated by the parameters p and hθ (see Sec. 2.1).
In the next section 6.2 the models are introduced that are used for the calculation of the
previous mentioned terms. The radial profiles of poloidal and toroidal eigenfrequencies are
determined by solving the eigenvalue problem of Eq. 6.2 for a range of L shells including
the region of interest, i.e. the terrestrial plasmapause.

6.2 Modeling magnetospheric properties
Magnetospheric ULF pulsations are phenomena affecting a localized region of terrestrial
field lines and the area of interest is extended several Earth radii. Certainly, observations
with satellites or at the ground are not suitable to cover plasma parameters along a complete
bunch of field lines. But the knowledge about the plasma properties along oscillating
field lines is mandatory to determine resonance frequency, spatial and temporal structure
of observed ULF pulsations. Thus, models of plasma parameters, such as magnetic
field and plasma density, are used to infer the distribution of the Alfvén velocity in the
magnetosphere which defines the toroidal field line eigenfrequency. Additionally models
of plasma pressure and ring current density are necessary for the determination of the
poloidal eigenfrequency that depends on the parameter η as defined in Eq. 2.15.

6.2.1 Magnetospheric field lines
The terrestrial magnetic field is composed of internal parts generated by the dynamo of
the Earth, and external influences such as ionospheric and magnetospheric currents and
the solar activity. Within distances of several Earth radii the inner magnetosphere is well
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represented by the IGRF (International Geomagnetic Reference Field) magnetic field model
and its field lines are dipole-like as a first approximation (e.g. Langel 1987). At larger
distances from the Earth the activity level of the solar wind influences the shape and strength
of magnetospheric field lines. During periods of high solar activity the magnetopause is
moved towards the Earth at the dayside due to the increased solar wind dynamic pressure
pdyn, while at the nightside the field lines are stretched to a magnetospheric tail region.
However, the solar activity also impacts the near Earth magnetospheric region, as the larger
pdyn the smaller is the radial distance of the terrestrial ring current and the larger is its
current density, i.e. the back influence on the magnetic field strength becomes larger.

An appropriate model considering the influence of solar wind activity on the IGRF
magnetic field was developed by Tsyganenko (1987) and Tsyganenko (1989). It is a
semi-empirical best fit representation for the magnetic field by comparing sub-models of
ring and current systems as well as Chapman-Ferraro and field-aligned currents with a
large number of satellite observations. In a later version of this model the effect of the ring
current variation was improved in particular (Tsyganenko 1995, Tsyganenko and Stern
1996), in the following referred as Tsy96. Knowing the correct change of magnetic field
strength due to the existence of the ring current is evident for the case studies presented in
Chapters 7 and 8 as the Cluster satellites pass magnetic field lines influenced by the ring
current.

Information about the solar wind activity are inserted in the Tsy96 model by the solar
wind dynamic pressure pdyn and the magnetic field components bsw

y and bsw
z which describe

the orientation of the of the solar magnetic field with respect to the terrestrial field lines.
Furthermore, the storm time index Dst is considered indicating the level of substorm distur-
bances (Sugiura 1964). Fig. 6.1 displays a comparison of the magnetic field measurements
by spacecraft C1 with the results of the Tsy96 model for both days of the case studies under
investigation in this work, August 7, 2003 and September 15, 2002, respectively. For the
first event the model input parameters are pdyn = 2.6 nPa, Dst = −7 nT, bsw

y = 6.0 nT and
bsw

z = 5.0 nT. For the second event we found pdyn = 0.85 nPa, Dst = −19 nT, bsw
y = 0.9 nT

and bsw
z = −0.3 nT. In both cases observation and modeled magnetic field coincide fairly

good in all three components. A derivation of around 3% appears in the magnitude of
the magnetic field. Accordingly, the accuracy of the model is sufficient for the estimation
of realistic values of magnetic field strength along a field line and its length between the
ionospheric boundary.

6.2.2 Current density and plasma pressure
As evident from observations quiet time the dayside ring current is axisymmetric in the
inner magnetosphere (Lui and Hamilton 1992). Its intensity J⊥ can be derived from the
current model implemented in the Tsy96 model by assuming axially symmetric azimuthal
currents confined to the equatorial plane (Tsyganenko and Peredo 1994). Based on these
limitations the current density is given by the expression (Connerney et al. 1981)

Jtsy,⊥(L) =
2
µ0

∂A
∂z

∣∣∣∣∣∣
z=0

. (6.11)

The vector potential A has a a nonzero azimuthal component A = Aφ and satisfies
∇ × ∇ × A = 0. Eq. 6.11 is written in cylindrical coordinates, where L is the radial distance
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Figure 6.1: Comparison of Cluster measurement (black lines) and Tsy96 model (red lines)
for August 7, 2003 (left) and September 15, 2002 (right) in GSM coordinates.

and z = 0 corresponds to the equatorial plane. The vector potential A is modeled using
formula 11 in Tsyganenko and Peredo (1994) and a set of parameters for the ring current
given in tabular 1 therein.

The radial distribution of the total magnetospheric plasma pressure in the noon sector
can be approximated by the expression (Klimushkin et al. 2004)

P(L) = P0

[
1 − tanh2

(L0 − L
W

)]
. (6.12)

The pressure distribution reaches its maximum P0 at the L-shell L0 and exhibits a width
controlled by the parameter W. As evident from AMPTE satellite observations the pressure
maximum is located at L0 ≈ 3 RE independent from the magnetospheric activity level (Lui
and Hamilton 1992). Contrary, at higher level of disturbance the localization of P(L) is
narrower with larger values of P0 than in quiet times (e.g. Lui et al. 1987, De Michelis et al.
1997). Furthermore, the proton pressure components generally dominates over pressure of
heavier ions and electrons (Lui and Hamilton 1992) and there is no jump of pressure on
the plasmapause (e.g. Sugiura 1972).
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Current density and plasma pressure are connected by the relation valid in the equatorial
plane (Lui et al. 1987)

J⊥(L) ≈ − 1
B
∂P
∂L
. (6.13)

Inserting Eq. 6.12 leads to

J⊥(L) =
β0B2

0

µ0WB

tanh
(

L0−L
W

)
cosh2

(
L0−L

W

) , (6.14)

where β0 and B0 are plasma β and magnitude of magnetic field at the L shell L0. The current
density can be obtained from the Tsy96 model by minimizing the function |Jtsy,⊥ − J⊥|
using the Powell method (e.g. Press et al. 2007), where the free parameters β0, L0 and W
are varied.

6.2.3 Plasma density distribution
Next to the magnitude of the magnetic field B the plasma mass density along magnetic
field lines and in the radial coordinate are required in order to infer a global axisymmetric
distribution of the Alfvén velocity VA. In principle the CIS (Cluster Ion Spectrometry)
analyzer (Gustafsson et al. 2001) onboard each Cluster satellite provides information of the
ion number density of cold ions (CIS-CODIF). The instruments are capable to distinguish
between different sorts of ions, such as H+, He+, He++ and O+, which can be used to
determine the total plasma mass density via ρtotal = mpnp + mHe+nHe+ + mHe2+nHe2+ +

mO+nO+ , where m represents the atomic mass and n the measured number density of the
corresponding ions. At first view CIS data are appropriate to determine the mass density at
positions of the spacecraft. As an example Fig. 6.2 shows the measurements of number
densities of protons and heavier ions made by spacecraft C4 on August 7, 2003. Between
07:20 and 08:50 UT the ion analyzer registers density of the oxygen ion up to 15 times
higher than the proton density and the helium ion density similar to np. These values are
not expected in plasmaspheric regions, where the concentration of O+-ions can reach at
the most 50% during storm time events (e.g. Goldstein 2006). A realistic ion composition
in the plasmasphere during a low level of magnetospheric activity is 55% H+, 40% He+

and 5% O+ (Berube et al. 2005) leading to a mass correction of mcorr ≈ 3. In the vicinity
of the plasmapause and further out the concentration of heavier ions decreases and one can
assume mcorr ≈ 2.

The reason for the obviously deficient measurement of the CIS-CODIF instrument is
that the ion sensor is not designed to accomplish the ion densities and energies prevalent in
this region of the magnetosphere as the Cluster mission was primarily not intended for the
investigation of the plasmasphere. As a consequence disturbances of the CIS sensors are
caused: The energy of a single proton can be large enough to excite the detection of heavier
ions. For this reason measured densities of He+, He++ and O+ ions and the resulting total
plasma mass density are larger than in reality.

In order to elude the problems with incorrect measured ion densities an empirical model
of the electron number density ne of the terrestrial magnetosphere is used in this work that
has been developed by Carpenter and Anderson (1992) and is based on radio measurements
of the ISEE 1 satellite and whistler wave observations. It considers diurnal, annual and

61



6 Analysis of magnetospheric ULF pulsations

 

 
 

0.01

0.10

1.00

10.00

n
 [

cm
-3
]

n(H+)
n(He+)
n(He2+)
m(O+)
ntotal

CIS  C4 August 7, 2003

 

 

06:30 07:00 07:30 08:00 08:30 09:00 09:30
Time [UT]

1

10

m
co

rr

mcorr = ntotal  / n(H+)

Figure 6.2: Number densities of protons and heavy ions (He+, He++ and O+) observed
by the CIS instrument onboard Cluster C4 for August 7, 2003 (top panel). The ratio of
total number density ntotal compared with the proton number density n(H+) is shown in the
lower panel.

solar cycle effects and, thus, realistic results are expected for given background conditions.
The electron density is modeled on a piecewise basis for plasmasphere, plasmapause and
magnetosphere, respectively, for the magnetic equatorial plane.

At first the location and profile of the plasmapause must be known to establish a radial
profile of the electron density. In Carpenter and Anderson (1992) a simple expression
was derived that gives the plasmapause position in terms of the level of solar activity via
Lpp = 5.6 − 0.46Kp,max. Here Lpp is the inner boundary of the plasmapause and KP,max the
maximum Kp index of the preceding 24 hours. This relation reflects that during high solar
activity the plasmapause is pressed to smaller L-shells. However, the generation process
of the boundary implies a dependency of Lpp on the magnetic local time (Sec. 1.1), so
that an accurate identification of the plasmapause location at the magnetic local time of
the Cluster satellite orbit requires a more complex model. Therefore, the plasmapause
is determined using the dynamical simulations of plasmapause formation developed by
Pierrard and Lemaire (2004) and Pierrard and Cabrera (2005). This simulation uses the
magnetospheric electric field model E5D determined from dynamical proton and electron
spectra measured on board the geostationary satellites ATS5 and 6 (McIlwain 1986). As

62



6.2 Modeling magnetospheric properties

the electric field model depends only on the Kp index the simulation of the plasmapause
formation is fully determined by this activity index.

Inside the plasmasphere corresponding to region up to the position of the inner boundary
of the plasmapause,i.e. L ≤ Lpp, the radial profile of the electron density is given by the
expression Carpenter and Anderson (1992)

log10 ne = (−0.3145L + 3.9043) + A exp
(
−L − 2

1.5

)
(6.15)

with

A =

{
0.15

[
cos

(
2π(d + 9)

365

)
− 0.5 cos

(
4π(d + 9)

365

)]
+ 0.00127NR − 0.0635

}
. (6.16)

The parameter d is the day of year number. The first summand of the function A in Eq.
6.15 refers to the observed annual variation of ne inside the plasmasphere (e.g. Park et al.
1978, Clilverd et al. 1991). The global electron density is highest in December and lowest
in June, because the tilt of the magnetic dipole axis from the rotation axis causes that the
field line footprints at the southern ionosphere are longer exposed to sunlight in December
leading to a higher rate of ionospheric ions filling the plasmasphere (e.g. Guiter et al. 1995,
Clilverd et al. 2007). The parameter NR is the 13-month average sunspot number reflecting
the influence of the solar activity, as during periods of high sunspot numbers the electron
density is larger than to that at solar minimum (e.g. Carpenter 1962, Park et al. 1978).

For magnetic L shells L > Lpp the electron density inside the plasmapause is given by

log10ne = log10ne(Lpp) − L − Lpp

0.1 + 0.011(MLT − 6)
, (6.17)

where MLT is the magnetic local time defining the azimuthal coordinate (see Sec. 6.3.2).
Eq. 6.17 is valid for the dayside sector between 06 and 15 MLT (Carpenter and Anderson
1992), which is sufficient for the present work as in both case studies the Cluster satellites
are located near magnetic noon. In the same azimuthal range the electron density in the
plasma trough outside the plasmapause can be expressed by

ne = (−800 + 1400d)L−4.5 +

[
1 − exp

(
−L − 2

10

)]
. (6.18)

The distributions of ne for plasmapause and plasma trough are both calculated for L-shells
L > Lpp, so that the outer boundary of the plasmapause is determined by the intersection
of the resulting density profiles. An example of a complete radial distribution of ne(L) is
displayed in Fig. 6.3 composed of the model expressions Eqs. 6.15, 6.17 and 6.18. Thus,
the model applied gives realistic values of the electron number density in the magnetic
equatorial plane and allows the determination of the plasmapause location as well as its
thickness ∆pp.

The plasma mass density ρ(L) can be estimated from the modeled electron number
density ne(L). This requires a mass correction factor mcoor to calculate the plasma mass
density ρeq(L) = ne(L)mcorrmp, where mp is the proton mass and mcorr is related to the
influence of heavier ions by taking into account the ion compositions of plasmasphere and
plasmapause mentioned above. Consequently, realistic values are between mcorr = 2 − 3
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Figure 6.3: Example of electron number density distribution inside magnetosphere.

for the plasmasphere and mcorr = 1 − 2 for the plasmapause. Knowing the distribution ρeq

in the magnetic equatorial plane the plasma density along a magnetic field line ρ f l can be
adopted from the power law (e.g. Cummings et al. 1969, Takahashi and Anderson 1992,
Schulz 1996)

ρ f l = ρeq

(L
r

)α
, (6.19)

where L is the McIlwain parameter of the field line and r the radial distance from the center
of the Earth to a position at the field line. The power law index α determines the field
aligned density distribution. For α = 0 the density and for α = 6 the Alfvén velocity VA is
constant along the field line. In the latter case the frequencies of higher harmonic field line
oscillations are integer multiple of the fundamental mode, i.e. fN = N f1 (e.g. Takahashi
et al. 2004). Inside the high density plasmasphere, where the hydrostatic approximation
is valid, the field line dependence of the density is consistent with diffuse equilibrium
and α = 0 − 1 has been theoretically predicted by Angerami and Carpenter (1966) and
experimentally confirmed by e.g. Goldstein et al. (2001) and Denton et al. (2004). Outside
the plasmasphere, where the density is small, power law indices of α = 1.7 − 3.0 have
been found representing an intermediate consistent between that consistent with diffusive
equilibrium and collisionless models (e.g. Goldstein et al. 2001).

In summary, although the real plasma mass density is unknown estimations of the
Alfvén velocity distributions in the equatorial plane as well as along magnetic field lines
are possible that are necessary for the determination of field line eigenfrequencies (see Sec.
6.1). One can act on the assumption that the uncertainties of the eigenfrequencies are more
influenced by the error of mcorr than by the error of α: As seen by the integral in Eq. 2.28
the greatest contributions to the eigenfrequencies are made by the Alfvén velocities near
the magnetic equator, where B and hence VA are smallest. Consequently, the value of the
eigenfrequency is more influenced by the equatorial Alfvén wave than by its field aligned
distribution.
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6.3 Coordinate systems

6.3.1 Mean-field aligned coordinate system
Observations used are 4s averaged magnetic and electric field measurements. The data
are transformed into a Mean-Field-Aligned (MFA) coordinate system (er, eφ, e‖), where
e‖ denotes the unit vector in the direction of the background magnetic field, eφ the unit
vector perpendicular to the plane spanned by e‖ and the spacecraft position vector rsc. The
unit vector er completes the right hand (er, eφ, e‖) triad. The coordinate system used is thus
defined as follows:

er = eφ × e‖ (6.20)

eφ =
〈B〉 × rsc

|〈B〉 × rsc| (6.21)

e‖ =
〈B〉
|B| . (6.22)

The mean magnetic field 〈B〉 is defined as a 512 second running average magnetic field
vector. In the MFA-system (br, bφ, b‖) denote the magnetic disturbance field vectors. As we
are only interested in field perturbations the mean value of the field-aligned component has
been subtracted. The MFA-system allows to inspect also the polarization of the analyzed
oscillations with (br, bφ, b‖) approximately describing poloidal, toroidal, and field-aligned
components, respectively.

To describe the electric field perturbations we furthermore assume that E · B = 0,
i.e. no field-aligned electric field exists. This allows to determine the third electric field
component from the two spacecraft spin-plane electric field components provided by the
EFW instrument onboard CLUSTER. The vector (Er, Eφ, 0) denotes the electric field in
the MFA-system.

6.3.2 LDM Coordinate System
The main aim of the case studies presented in Sec.7 and Sec.8 is to investigate spatial and
temporal structures of poloidal Alfvén waves. In principle, this requires a 4D-representation
of the measurements made. To approach this requirement a special coordinate system, the
LDM coordinate system, is introduced which is schematically shown in Fig. 6.4. The radial
coordinate is resembled by the McIlwain Parameter (McIlwain 1966) L that describes
the distance of the vertex of a specific field line with respect to the center of the Earth
in units of RE. This coordinate agrees with the radial coordinate defined in Sec. 2.1. To
identify the field line for a given point in space the Tsyganenko 96 model (Tsyganenko
1995, Tsyganenko and Stern 1996) is used. The second coordinate D describes the position
of the spacecraft on the specified field line and is defined as the distance between the
spacecraft and the field line vertex along the field line. Positive D values correspond to a
spacecraft location in the northern magnetic hemisphere. This coordinate is related to the
magnetic latitude θ introduced for the theoretical description of field line oscillations. As
the units of both coordinates L and D are Earth radii RE it appears to be more appropriate
to use the D values for a more descriptive comparison of field aligned and radial spatial
scales of the analyzed ULF pulsations.
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Figure 6.4: Schematic illustrating the L-D-M coordinate system. The spacecraft positions
are marked by rectangles, the dotted lines represent magnetic field lines.

The third coordinate, M, describes the magnetic local time (MLT) at which the mea-
surements are taken, which is related to the azimuthal coordinate φ used in Sec. 2.1. The
value of M emanates from the geomagnetic coordinate system MAG, which is often used
for defining the positions of magnetic ground based and spacecraft observations concerning
magnetospheric field lines. Its z-axis is parallel to the magnetospheric dipole axis and its
y-axis is perpendicular to the geographic poles such that YMAG is the intersection between
the geographic equator and the geographic meridian 90◦ East of the meridian containing
the dipole axis (e.g. Hapgood 1992). The x-axis completes the right-handed orthogonal
system. In MAG coordinates the plane YMAG = 0 defines the magnetic equatorial plane
and the magnetic local time is defined as the magnetic longitude of the observer minus
the magnetic longitude of the sun expressed in ours plus 12h. In the MAG system the
magnetic longitude is λ = tan(YMAG/XMAG) (e.g. Russell 1971). Consequently, the dayside
sector is from 06h to 18h MLT and magnetic noon is at M = 12h MLT.

6.4 Poynting vector
The magnetospheric Alfvén waves theoretically described in Sec. 2 are accounted as
standing waves along the magnetic field lines. Accordingly, it is of particular importance
to proof the standing wave character of an observed ULF pulsation by investigating its
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energy transport. In general direction and intensity of the energy flux density of a plasma
wave, which corresponds to the direction of wave propagation, is given by the Poynting
vector defined by

Sp =
1
µ0

E × b, (6.23)

where E is the electric field and b the perturbation of the magnetic field caused of the
plasma wave. Assuming a standing magnetospheric field line oscillation with either a
toroidal or a poloidal polarization, the wave fluctuates in the Er and bφ components or in
the Eφ and br components, respectively (see Sec.1.2). In both cases, taking into account
Eq. 6.23 the transverse components of the Poynting vector Sp,r and Sp,φ are expected to be
zero. Contrary, the field parallel component S p,‖ consists of an oscillation of double the
wave frequency ω (Chi and Russell 1998).

The flux of energy density integrated over an integer number of wave periods, nT , is
defined by

〈Sp〉 =
1
T

∫ nT

0
SP dt (6.24)

and provides further information about the observed signal. The energy flow of a standing
field line oscillation must be directed into both the northern and southern ionospheres,
because energy is being dissipated there. On that account a point along the field line must
exists where northern and southern energy flow compensates and 〈Sp,‖〉 = 0. This position
is called the field line null point (Allan et al. 1982, Ozeke et al. 2005). Assuming that the
ionospheric conductivity is similar at northern and southern footprint of the field line the
null point corresponds to the point where the field line intersects the magnetic equatorial
plane. Significant differences between both conductivities lead to a shift of the null point
into the northern or southern magnetic hemisphere (Ozeke and Mann 2004, Ozeke et al.
2005). Consequently, analyzing the energy flux of an observed signal and taking into
account the ionospheric conductivity allows to ascertain its standing wave character and its
location compared to the field line null point.

The ionospheric conductivities at northern and southern field line footprints are esti-
mated using the latest empirical standard model of the ionosphere IRI2007 of International
Reference Ionosphere (IRI) project (Bilitza 1990, Bilitza and Reinisch 2008). It provides
monthly averages of characteristic ionospheric parameters, such as electron density and
ion composition, in the altitude range from about 50 km to about 2000 km. It delivers
reliable results for the non-auroral ionosphere for magnetically quiet conditions. For
given footprint coordinates, time and date the height integrated Pedersen conductivity ΣP

can be obtained from public accessible web interfaces (e.g. http://swdcwww.kugi.kyoto-
u.ac.jp/ionocond/sigcal/index.html).

6.5 Wave frequency and amplitude analysis
Spatial structure and temporal evolution of ULF wave activity appears in the time series of
magnetic and electric field fluctuations as modulation of their instantaneous amplitude. A
method to infer the information about this amplitude A(t) from a monochromatic time series
x(t) is the so-called Carson-Gabor method or analytical signal developed by Carson and
Fry (1937) and Gabor (1946). Basically, this method can be understand as a transformation
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of x(t) from the amplitude-time domain to the amplitude-phase domain. This means that
the time series is assumed to be represented by

x(t) = A(t) cos [Φ(t)] , (6.25)

where Φ(t) is the wave phase. Applying a Hilbert transformation on Eq. 6.25 leads to

y(t) = H [x(t)] =

∫ ∞

−∞

x(τ)
π(t − τ)

dτ (6.26)

and the complex analytic signal can be expressed as

z(t) = x(t) + iy(t). (6.27)

Its instantaneous amplitude A(t), wave phase Φ(t) and wave frequency ω(t) are given by

A(t) =
√

x(t)2 + y(t)2

Φ(t) = arctan
(

y(t)
x(t)

)
(6.28)

ω(t) =
dΦ(t)

dt
.

The meaning of the analytic signal for the ULF pulsation analysis can be clarified by
applying the method to an artificial signal x1(t) = A1(t) cos(2π f1(t)t) with a linearly
increasing frequency from f1(t = 0s) = 10 mHz to f1(t = 1000s) = 25 mHz and a
Gaussian amplitude modulation. The time series x1(t) and the resulting instantaneous
amplitude A1(t), phase Φ1(t) and frequency ω1(t) are shown in Fig. 6.5. A1(t) describes the
envelope of the signal x1(t) and thus, can be used to quantify the wave activity of an ULF
pulsation. The predetermined frequency f1(t) is reproduced by applying the Carson Gabor
method.

The determination of the analytic signal leads to reliable results only for monochromatic
waves (Glassmeier and Motschmann 1995), which is satisfied for most of the observed
pulsations in the Pc3 to Pc5 range, as demonstrated for example by the successful appli-
cation of the Carson-Gabor method to satellite observation of a field line oscillation by
Cramm et al. (2000). However, in order to proof the monochromatic wave character a
time-frequency analysis method is applied that is based on computing the power spectral
density (PSD) of the time series x(t) defined by (e.g. Jenkins and Watts 1969)

Px(ω) = 2 T |x(ω)|2, (6.29)

where x(ω) denotes the Fourier transformation of the time series and T the length of the
time interval. Px(ω) describes the distribution of signal energy density in the frequency
space. Instead of determining Px(ω) for the complete signal the time interval T is separated
into M shorter subintervals of the length ∆T = T/M and the PSD is calculated for each of
these. In so doing a dynamical spectrogram is established that gives information about the
time dependence of the signal frequency and if multiple frequencies contribute possibly
to the fluctuation. Due to the short subintervals the frequency resolution is reduced at the
expense of a better time resolution (e.g. Eriksson 1998).
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Figure 6.5: Top panel: Time series of an artificial signal with a Gaussian amplitude
modulation and linearly increasing frequency. The red line corresponds to its instantaneous
amplitude. Middle panel: Instantaneous phase of the artificial signal. Lower panel:
Instantaneous frequency of the signal.
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7 Case study: Poloidal Alfvén waves
inside the plasmasphere

7.1 Cluster location

The first case study discussed under inspection of the theoretical expectations described in
Sec. 2 has been detected onboard the Cluster spacecraft on September 15, 2002 between
06:50 and 08:00 UT. The orbits of the four satellites are displayed in Fig. 7.1 projected
in the (XY)GS M-plane (equatorial plane) and the (XZ)GS M-plane. During the time interval
of interest the satellites are located in the dayside magnetosphere near magnetic noon.
The spacecraft move from the southern magnetosphere into the northern part of the
magnetosphere with a velocity of vsc ≈ 2 km/s. The spacecraft form a large scale
tetrahedron with distances between 3000 km and 16000 km. This configuration provides
for an opportunity to investigate ULF pulsations simultaneously observed on different field
lines by applying a specific analysis method described in detail in Sec. 7.3.

Spatial and temporal parameters of magnetospheric ULF pulsations are controlled
by the local background conditions, e.g. plasma mass density and temperature as well
as magnetic field strength and curvature (see Sec. 2). An accurate interpretation of the
observations requires the knowledge of the magnetospheric region where the Cluster
satellites are located. As the perigee of the spacecraft was rather low they most probably
entered the terrestrial plasmasphere and traversed the magnetospheric resonator region
discussed in Sec. 3.

The radial distance of the plasmapause in the magnetic equatorial plane is determined
using the method described in Sec. 6.2.3 to confirm the passage through this resonator
region. For the given time interval the activity index Kp = 3 indicates quiet and stable solar
wind conditions which justifies the assumption of a constant position of the plasmapause
in time. For comparison with the Cluster orbits the resulting distribution of the dayside
plasmapause is added in Fig. 7.1 (left). The radial distance of the plasmapause near
magnetic noon is Lpp = 4.7 RE. The field line with the corresponding vertex at Lpp = 4.7
RE is assumed as the plasmapause out of the equatorial plane and is indicated by the
thick black line in Fig. 7.1 (right). Magnetic field lines have been calculated using the
Tsyganenko magnetospheric magnetic field model as described in Sec. 6.2.1 with the
following input parameters: a storm time index of Dst = −19 nT, a solar wind dynamic
pressure of pdyn = 0.85 nPa and the orientation of the interplanetary magnetic field,
by,im f = 0.9 nT and bz,im f = −0.3 nT.

The assumed plasmapause location is confirmed by the spacecraft potentials detected
with the EFW instruments onboard the four satellites (Fig. 7.2). As the potential U is
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Figure 7.1: The Cluster orbits in the dayside magnetosphere on September 15, 2002,
between 06:30 and 08:30. The satellites are located near magnetic noon (left) and move
from south to north (right). The thick black line in the left panel represents the plasmapause
distribution. In the right panel the field line L = 4.7 (thick line) marks the plasmapause out
of the equatorial plane.

reverse proportional to the plasma electron density ne, one would expect a clear change in
U during the crossing of the plasmapause due to the large differences in the plasma density
between plasmapause and outer magnetosphere. Furthermore, a spacecraft potential of
U < 1 V is expected inside the plasmasphere (e.g. Gustafsson et al. 2001, Pedersen et al.
2001). The red lines in Fig. 7.2 represent the time intervals when a satellite crosses
magnetic L shells lower than the assumed L shell of the plasmapause Lpp = 4.7. These
intervals are in excellent agreement with the times when the spacecraft potential of C2,
C3 and C4 is lower than 1 V. Consequently, these three satellites entered the dayside
plasmasphere, whereas the orbit of spacecraft C1 was outside the plasmapause. Spacecraft
C2 is inside the plasmasphere between 06:37 and 07:15 UT, spacecraft C3 between 07:19
and 08:03 UT and spacecraft C4 between 06:45 and 07:39 UT. Direct measurements of the
electron density as well as ion density and plasma composition by the WHISPER (Décréau
et al. 2001) and CIS (Rème et al. 2001) instruments, respectively, onboard Cluster do not
provide reliable observations for the time period of interest.
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Figure 7.2: Spacecraft potential U detected by Cluster. The red lines mark the time
intervals when spacecraft C2, C3 and C4 are located inside of the assumed plasmapause
position at L = 4.7.

7.2 Observation of ULF pulsation

Magnetic and electric field measurements transformed into the MFA coordinate system
(see Sec. 6.3.1) are displayed in Fig. 7.3, where br and Er denote the radial, bφ and Eφ the
azimuthal and b‖ the compressible field perturbations. To discriminate between the four
spacecraft they are denoted as C1, C2, C3, and C4, respectively. The pulsation event is
most clearly identified in records of spacecraft C3 and C4 with an onset time shift of about
30 minutes (Fig. 7.3). The other two spacecraft only detect minor field perturbations. The
frequency of the observed signal is in the range of a Pc4 pulsation, f ≈ 16 mHz, observed
in all components of the magnetic and electric field. The pulsation at spacecraft C3 is
detected between 07:20 UT and 08:00 UT with dominating transverse electric and magnetic
field variations. The amplitudes of bφ and br are modulated exhibiting a maximum of about
4 nT in br and nearly constant field after 07:40 UT. The compressible component b‖ only
shows a small amplitude fluctuation of the order of 1 nT. The electric field oscillates with a
maximum amplitude of about 2 mV/m in both components and is almost zero between
07:37 UT and 07:48 UT. At spacecraft C4 the oscillation is seen 30 minutes earlier than
at C3 and ceases at about 07:40 UT. Similar to the observation in C3 the pulsation is
observable in every component of b and E. At C4 the radial amplitude br is twice as large
as the azimuthal amplitude bφ and exhibits a peculiar two-wave packet modulation. The
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Figure 7.3: FGM and EFW measurements for the four Cluster spacecraft (C1:black, C2:
red, C3, green, C4: blue), transformed into a Mean-Field-Aligned coordinate system. The
scale denotes amplitudes of magnetic and electric field, respectively.

electric field oscillates again with an amplitude of 2 mV/m and is zero between 07:05 UT
and 07:18 UT, whereas the amplitude increases in both components after 07:30 UT up to
5mV/m in Eφ and 10mV/m in Er.

Further information about the observed signal is provided by the Poynting vector Sp

and the time-average energy flux 〈Sp〉 determined using Eqs. 6.23 and 6.24, respectively.
Here 〈Sp〉 is calculated by averaging over the wave period T = 67 s. Indications for the
existence of a standing wave, i.e. a vanished time-average energy flux and fluctuation in
Sp,‖ (see Sec. 6.4), are especially observed until 07:20 UT in spacecraft C4. After that time
the character of the energy flux changes with both transverse components now indicating
a non-zero energy flux transverse to the ambient magnetic field. In particular, the large
negative radial component S r corresponds to an inward directed energy transport indicating
the presence of a propagating wave. The wave as observed by spacecraft C3 exhibits small
variations of the transverse energy flux 〈S r〉 and 〈S φ〉. The field parallel energy flux is
non-zero between 07:20 and 07:34 UT, but the oscillating component of S ‖ is dominant. A
non-zero component 〈S ‖〉 is expected for a standing poloidal wave in case of asymmetric
ionospheric conductivities at the northern and southern footprint of the oscillating field
lines (Ozeke et al. 2005). Using the Tsy96 magnetic field model (see Sec. 6.2.1) the
geographic footprint coordinates of the field line crossed by spacecraft C4 at 07:00 UT
have been identified as 64◦ N, 61◦ E for the northern footprint and 49◦ S, 61◦ E for the
southern footprint. The northern ionospheric height integrated Pedersen conductivity is
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Figure 7.4: Components of the Poynting vector Sp observed by spacecraft C3 and C4. The
red line represents the time-average energy flux.

ΣP,N = 9.1 S, the southern conductivity ΣP,S = 11.7 at this time. At the footprints of the
field line crossed by spacecraft C3 at 08:00 UT (coordinates 65◦ N, 55◦ E and −51◦ S,
76◦ E) the conductivities found are ΣP,N = 9.1 S and ΣP,S = 13.1 S. Consequently, the
small but significant non-zero component 〈S ‖〉 is supposed to be a consequence of the
slightly different ionospheric conductivities at northern and southern field line footprints.
We conclude that at this time interval an almost standing field line oscillation is observed
by spacecraft C3 as well as spacecraft C4 between 06:50 and 07:20 UT.

7.3 Spatio-temporal structure
The orbital coordinates of the different spacecraft are transformed into the LDM coordi-
nate system as defined in Sec. 6.3.2. Fluctuations of the electromagnetic field are still
represented using the Mean-Field-Aligned coordinate system. At first we concentrate on
the actual observations of br and 〈S p,r〉 in the L-D plane as seen in the upper panels of Fig.
7.5. Effects of minor changes in the M coordinate (lowest panel of Fig. 7.5) are discussed
later. For the representation of br the Carson-Gabor representation is used (see Sec. 6.5),
which allows to determine instantaneous amplitude and phase of the given time series. As
the ULF signals to be analyzed here are rather regular the analytic signal representation is
a very suitable tool. The thickness of the lines denoting the spacecraft positions in the first
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panel of Fig. 7.5 represents the instantaneous amplitude or signal envelope of the dominant
radial component of the magnetic field oscillation. The width of the lines in the second
panel of Fig. 7.5 is related to the radial component of the time averaged energy flux 〈S r〉.
The vertical black line in Fig. 7.5 represents the plasmapause position, previously also
given in Fig. 7.1. Wave activity occurs preferentially within the plasmasphere.

In the present case study each spacecraft covers different ranges of L-values. The
magnetic equator (D = 0) is crossed by spacecraft C4 at the field line with its vertex at
L = 4.1, C3 at L = 4.35, C2 at L = 4.45, and C1 at 4.77, that is the four spacecraft
cover a radial extent of about 0.67 RE, a value comparable to earlier estimates of the radial
extent of magnetospheric pulsations. Therefore, the configuration is suitable to analyze the
poloidal oscillation.

Information about the time at which a spacecraft crossed a specific field line is of
particular interest. Spacecraft positions at five selected times, labeled by roman numbers,
are marked by squares in Fig. 7.5. These times have been selected as they correspond
to those times when spacecraft C4 and C3 cross the L = 4.22 and L = 4.4 field lines in
the southern and northern hemisphere and the time spacecraft C4 detects the maximum,
radially directed energy flux.

At time I spacecraft C4 observed an amplitude maximum at L = 4.22; the wave
amplitude decreased while spacecraft C4 moved to lower L-values and increased after it
crossed the magnetic equator D = 0 RE. Spacecraft C1 and C2 were located far away from
this field line at L > 4.45 and did not detect pulsations as seen in the magnetic and electric
field measurements (Fig. 7.3). We conclude that at time I the radial spatial extent of the
pulsation event was too small to be observed by C1 and C2. Afterwards both spacecraft
move further apart from the region of interest and in the following we concentrate on the
observations of spacecraft C3 and C4. C3 was still too far away from the region of interest
to detect any ULF signal at time I.

At time II another amplitude maximum was observed by C4 at the same field line
L = 4.22 as at time I. This clearly indicates the existence of a radially localized wave
structure along this field line oscillating for at least 24 minutes. At time II a pulsation was
also detected by spacecraft C3, but at L = 4.5 indicating a more complex radial structure
of the wave field observed by the two satellites.

At time III C3 and C4 were located at the same field line shell L = 4.4, but at slightly
different M values. Approaching this field line shell C3 saw an increasing amplitude,
indicating a localized wave packet. At the same time C4, moving towards the plasmapause
only detected a minor change of the field amplitude. This difference in the amplitude
behavior might be due to rapid azimuthal variations of the wave field.

After time III spacecraft C4 recorded regular fluctuations for about 10 minutes between
L = 4.4 RE and L = 4.6 RE; these were not observed at any of the other spacecraft as
they were located at other field lines. This period of regular oscillations ceased when C4
reached the plasmapause region.

Between time I and time III the time averaged Poynting vector 〈S〉 is close to zero
indicating the existence of a standing wave field structure. Afterwards spacecraft C4
observes an increasing radial energy flux with its maximum at time IV located at L = 4.55
and D = 1.4 RE. At the same time spacecraft C3 observes 〈S r〉 = 0 at L = 4.36 and
D = −0.3 RE. Spacecraft C4 seems to transit a wave propagating in a defined region as no
energy flux is observed by spacecraft C3. One can speculate that a wave source is located
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Figure 7.5: Positions of the Cluster spacecraft in the L-D coordinate system at different
times, where the squares mark the positions of each spacecraft. Time I corresponds to
06:58:38 UT, time II to 07:23:42 UT, time III to 07:30:22 UT, time IV to 07:34:22 UT and
time V to 07:50:06 UT. The arrows show the flight direction of the Cluster satellites. The
thickness of the lines are related to the amplitude of the radial oscillation of the magnetic
field br (upper panel) and the radial component of the time averaged Poynting vector 〈S r〉
(second panel). The bottom panel shows the orbit in the L-M plane, where M corresponds
to the magnetic local time MLT.
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Figure 7.6: Ratio of poloidal and toroidal instantaneous amplitudes for time series of
spacecraft C3 and C4. The grey shaded areas mark the time intervals when standing field
lines are detected.

near the observed maximum of the energy flux. The nearby plasmapause at L = 4.7 acts
as a very good wave reflector for the excited wave (e.g. Lee 1996) which can thus only
propagate towards lower L shells; this is a probable explanation for the observed radially
inward directed energy flux. At time V spacecraft C3 again crossed the L = 4.4 field line.
However, the amplitude was smaller than during the southern crossing, which indicates a
temporal variation of the pulsation activity rather than a spatial one. All other spacecraft
had already left the activity region at this time.

As discussed in Chapter 4 poloidal Alfvén waves are expected to be transformed to
toroidal waves in the course of time. This change in wave polarization can be identified
in the time series of the magnetic field observation by introducing the ratio of the instan-
taneous toroidal amplitude Aφ to the instantaneous poloidal amplitude Ar. The resulting
values Aφ/Ar are shown in Fig. 7.6 for spacecraft C3 and C4 observations during the
time interval under investigation. In both cases Aφ/Ar < 1 hold while oscillations with a
standing wave character are detected. The average level of this ratio is slightly higher in
the time series of C3 indicating that here the toroidal component is closer to the poloidal
one than in the time series of spacecraft C4 (see also Fig. 7.3). A significant increase of
Aφ/Ar is not apparent in both time series, i.e. a transformation of wave polarization cannot
be identified for the standing Alfvén waves. However, when spacecraft C4 detects the
radial directed energy flux, as described above, Aφ/Ar rises from 0.4 to approximately 1.
Apparently, the end of the pulsation lifetime accompanies with radial wave propagation
away from the outer barrier, the plasmapause. Unfortunately, all satellites besides C4 are
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Figure 7.7: Time series of br for spacecraft C3 (top) and C4 (bottom) between 07:29 and
07:32 UT, where both satellites cross the same L-shell at different azimuthal positions M.

located at other field lines during this short time interval and, thus, a multi-point analysis
of this situation is not possible.

7.4 Azimuthal wave number
A typical feature of poloidal Alfvén waves is a small-scale spatial structure associated with
a large azimuthal wave number m. The knowledge of the phase difference ∆Ψ of signals
observed by two different satellites allows an estimation of this number:

m =
∆Ψ

∆Φ
=

360◦

∆Φ

∆t
T
, (7.1)

where ∆Φ is the spatial separation between the two satellites in the azimuthal direction,
∆t the time difference between points of the same wave phase and T the wave period (e.g.
Eriksson et al. 2005a, Schäfer et al. 2008). A variation of the magnetic field b ∝ exp(imΨ)
is assumed. High resolution magnetometer data (10 Hz) are used to estimate the phase
difference in the bφ component of two satellites observed between 07:29 and 07:32 UT,
where the data are bandpass filtered between 5 mHz and 50 mHz (Fig. 7.7).

At time III spacecraft C3 and C4 are located on the same L shell, L = 4.4 (see Fig.
7.5). The angle in the azimuthal direction between the two satellites is ∆Φ = 3.18◦ ± 0.01◦.
The time difference ∆t between minima and maxima, respectively, is about 18 s (Fig. 7.7),
which corresponds to ∆ψ ≈ 100◦, as the wave period is T = 1/ fobs = 63 s. Assuming an
uncertainties in ∆t of δt = 0.2 s due to the temporal resolution of the time series and in
T of δT = 1s the law of error propagation can be applied to Eq. 7.1. Accordingly, the
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azimuthal wave number for the analyzed wave is m = 30± 2. The corresponding azimuthal
wavelength is λ = 2π/kφ ≈ 5900 km with kφ = m/L. Such large azimuthal wave numbers
are expected for poloidal oscillations (e.g. Radoski 1967) and observed by Eriksson et al.
(2005b) recently.

7.5 Wave Frequency

Phenomenological characteristics of the waves observed in the outer region of the plas-
masphere are quite complex as discussed above. The wave frequency, however, is rather
stable at fobs = 16 mHz during the time spacecraft C3 and C4 traversed this region, as
seen in the dynamic spectra of the radial magnetic field component br (Fig. 7.8). Due
to the radial spacecraft motion a frequency constant in time is equivalent to a uniform
frequency with respect to magnetic L shells, which has been previously observed and
discussed for poloidal wave events in outer magnetospheric regions (L > 6) by Denton
et al. (2003). Contrary to that the frequency of toroidal waves is expected to have a L
dependence and consequently the radial structure of the here observed poloidal wave event
cannot be explained by the field line resonance mechanism. Details of the radial structure
of poloidal waves can be gained by comparing the observed frequency with the radial
profile of theoretically expected poloidal and toroidal eigenfrequencies (e.g. Denton and
Vetoulis 1998, Klimushkin 1998b).

At first the eigenfrequencies ΩT and ΩP are estimated using the WKB approximation,
i.e. Eqs. 2.21 and 2.28 are applied, respectively. For this purpose necessary plasma
background parameters, e.g. distribution of magnetic field, current density and plasma
density, are determined as introduced in Sec. 6.2. The radial and field aligned profiles
of the magnetic field are calculated by the Tsy96 model (Tsyganenko and Stern 1996)
for the input parameters pdyn = 0.85 nPa, Dst = −19 nT, bsw

y = 0.9 nT and bsw
z = −0.3

nT. The radial plasma pressure profile P(L) is calculated using Eq. 6.12 with L0 = 2.9
RE and W = 1.9 RE. The maximum plasma pressure P0 = P(L0) is selected so that at L0

the plasma β is 0.035. For this set of parameters the current density J⊥(L) determined by
Eq. 6.13 coincides with the current density obtained from the Tsy96 model (Eq. 6.11). The
resulting radial profiles of β, P and J⊥ are displayed in Fig. 7.9 corresponding to expected
profiles during low geomagnetic activity (e.g. Lui and Hamilton 1992).

The plasma number density along the field line is assumed as the power law Eq. 6.19
with an exponent α = 1 typical for the plasmasphere (e.g. Goldstein et al. 2001, Denton
et al. 2004). The number density in the equatorial plane neq can be obtained from the
model of Carpenter and Anderson (1992) (see Sec. 6.2.3). Influences on neq due to
complex features of the plasmapause formation such as plasma plumes or shoulders (e.g.
Pierrard and Lemaire 2004, Goldstein 2006) are not predicted by the applied simulation
of the plasmapause formation, additionally approved by the observed spacecraft potential
(Fig. 7.2). The plasma of the plasmasphere is composed of hydrogen and heavier ions such
as helium and oxygen. This requires a mass correction factor mcorr to calculate the plasma
mass density ρ(s) = n(s)mcorrmp accurately, where mp is the proton mass. The typical
plasmaspheric ion composition lead to a mass correction of mcorr ≈ 3.

With these assumptions and model values the eigenfrequencies of the fundamental
poloidal and toroidal field line oscillation, fP = ΩP/2π and fT = ΩT/2π, as well as the
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Figure 7.8: Dynamic spectra of the radial magnetic field components br of the spacecraft
C3 (top) and C4 (bottom) observations.

frequencies of their harmonics N = 2, ..., 4 have been calculated for L shells in the range
[2.5, 5.5] RE (Fig. 7.10). In this region and in particular at L shells L = [4.1, 4.7], where
spacecraft C3 and C4 observe the described pulsation activity, poloidal eigenfrequencies are
larger than the toroidal eigenfrequencies. The theoretical framework predicts the existence
of a region transparent for poloidal waves near a minimum of fP only if the condition
fP < fobs < fT is satisfied (Klimushkin et al. 2004). In contrast to that fT < fP < fobs is
found. In Schäfer et al. (2007) it has been suggested that the reason for this discrepancy
is due to the power law assumed for the field aligned density distribution (Eq. 6.19) with
α = 1. In this case the second term on the right hand side in Eq. 2.28 can become negative
for certain radial distances that results in ΩP > ΩT . It has been assumed that the WKB
approximation does not lead to reliable results for the field line eigenfrequencies.

This evident difficulties are avoided when determining fP and fT with the numerical
method introduced in Sec. 6.1. The resulting radial frequency profiles are shown in
Fig. 7.11 (left), where the same plasma parameters are considered as described above
(Fig. 7.9). As apparent in the fundamental harmonic fT exceeds fP only at magnetic shells
below L = 3.5, while at higher L shells, where the pulsation is detected, the poloidal
frequency is still larger than the toroidal one. In order to clarify the influence of the
plasma pressure the eigenfrequencies are additionally calculated for β = 0 ( Fig. 7.11,
right). In this case fP < fT holds over the complete range of L shells best visible in the
fundamental and second harmonic frequencies, as field line curvature reduces fP (see Sec.
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Figure 7.9: Profiles of plasma properties. Plasma pressure and plasma β are assumed
for quiet geomagnetic activity (Lui and Hamilton 1992). The current density is obtained
from the Tsyganenko ’96 model (red line). Positive values of J⊥ correspond to a current
directed eastward. The plasma mass density is calculated from modeling the electron
number density (Carpenter and Anderson 1992).

2.3). Consequently, the numerical calculation of the eigenfrequencies is not capable to
resolve the discrepancy between theory and observation. For this particular case study
fP > fT is found considering realistic plasma background conditions as described above.

However, the theory used here describes wave fields bounded by surfaces satisfying the
condition fobs = fP. These surfaces act as turning points of the radial propagating wave and
define a region transparent for poloidal waves. Consequently, we assume that the observed
pulsation is localized within such a wave transparency region despite the contradiction
between observation and theory. We suggest that Fig. 7.10 reflects the radial width of the
poloidal resonator (e.g. Leonovich and Mazur 1993). The outer boundary coincides with
the plasmapause at L ≈ 4.7 and the inner boundary depends on the harmonic number N.
Since spacecraft C4 observes the pulsation even at L = 4.1, we exclude the fourth harmonic
oscillation, which has the inner resonance surface located at L ≈ 4.2. The observations
described in the L-D coordinate system (Fig. 7.5) reveal a symmetric amplitude structure
relative to the magnetic equator D = 0 RE suggesting an oscillation with an odd harmonic
number. For the fundamental oscillation N = 1 the spatial extent of the oscillating structure
would be more than 2 RE. Consequently, we suggest that the observed pulsation is a third
harmonic oscillation with a spatial extent of approximately 0.7 RE.
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Figure 7.10: Profiles of the poloidal eigenfrequencies fP (solid lines) and toroidal eigenfre-
quencies fT (dashed line) of magnetospheric field lines calculated for harmonic numbers
N = 1, ..., 4 and the mass correction factor mcorr = 3. The dotted line marks the observed
frequency f = 16 mHz. The grey shaded background marks L-shells crossed by spacecraft
C3 and C4 during the analyzed time interval.

7.6 Modeling the Spatio-temporal Structure
For further understanding of the observed pulsation event and to reach a deeper insight
into its spatio-temporal structure we present a simple model for the spatio-temporal char-
acteristics of the wave which is fitted to the actually observed data for better comparison.
The dominant poloidal magnetic field component is given by

br,model = b0 · A(D, φ) · B(L) ·C(t). (7.2)

Here A(D, φ) describes the spatial structure along the field line and in the azimuthal
direction, B(L) is the spatial structure in the radial direction across L-shells, and C(t) is the
temporal evolution of the wave amplitude. All three amplitude functions are normalized to
1, so that the maximum amplitude of the modeled signal is given by b0.

The model assumes a standing wave along the background magnetic field line:

A(D, φ) = sin(k‖D + mφ) · cos(ωPt). (7.3)

This functional form describes odd mode oscillations with k‖ denoting the field parallel
wave number. Wave frequency ωP = 2π fP and azimuthal wave number m are determined
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Figure 7.11: Numerically calculated poloidal eigenfrequencies fP (solid lines) and toroidal
eigenfrequencies fT for given plasma background parameters (left) and assuming zero
plasma pressure (right). The dotted lines marks the observed frequency f = 16 mHz.
The grey shaded background marks L-shells crossed by spacecraft C3 and C4 during the
analyzed time interval.

using the observations. As mentioned in Sec. 7.2 the change in the azimuthal spacecraft
position ∆φ = ∆M is small, but since we found m ≈ 30, the phase variation ∆(mφ) is not
negligible. The parallel wavelength λ‖ = 2π/k‖ depends on the length of the field line
l and the harmonic number N: λ‖ = 2l/N. The lengths of the field lines with vertices
between L = 4.1 RE and L = 4.7 RE are between l = 9.4 and l = 10.0 RE. Assuming a third
harmonic oscillation as discussed above gives one wavelengths in the range λ‖ = [6.3, 6.7]
RE or wave numbers k‖ = [0.94, 1.00] R−1

E .
The transverse variation of the wave field is described by multiplying the standing

wave (7.3) with an amplitude function B(L). Leonovich and Mazur (1990) have shown
that for a poloidal wave resonator the function B(L) can be approximated by the product of
a Hermitian polynomial Hn of order n and a Gaussian:

B(L) = Hn(ξ) exp(−ξ2/2), (7.4)

where ξ = (L − LR)/σ. Here LR denotes the location of maximum wave amplitude and σ
describes the radial width of the wave field within the wave guide region, respectively. For
a zeroth order Hermitian polynomial (n = 0) the radial structure B(L) is just given by a
Gaussian as already observed for poloidal pulsations (e.g. Cramm et al. 2000).

Using higher order Hermitian polynomials allows to describe a more complex wave
field variation in radial direction as the number of extrema of the polynomial used is equal
to n + 1. Fig. 7.5 exhibits two amplitude maxima at L = 4.22 and L = 4.40 RE. The first
one at L = 4.22 RE is detected twice by spacecraft C4 when it crosses the corresponding
field line below and above the magnetic equator. The second one at L = 4.40 RE is detected
only by C3. Due to this observation a first order Hermitian polynomial with n = 1 is used
in Eq. 7.4.

The amplitude maxima on the field line L = 4.22 RE are observed at D = −0.7 RE and
D = 0.9 RE, that is almost symmetric with respect to the magnetic equator. Assuming a
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Figure 7.12: Comparison between measurements of the br (solid line) component and the
model of the wave field br,model (dashed line).

standing wave, one would expect nearly the same pulsation strength for both crossings.
However, the opposite is observed with the northern maximum displaying a somewhat small
amplitude value (Fig. 7.5). This is either due to the symmetry point not coinciding with
the magnetic equator or the result of a temporal evolution of the wave field, approximated
by a Gaussian function C(t) with its maximum at 07:32 UT corresponding to the observed
maximum of the signal. An increasing amplitude can be explained by e.g. drift bounce
resonance effects, as described in Klimushkin and Mager (2004). On the other hand, wave
dissipation at the ionospheric boundaries leads to a decreasing pulsation amplitude.

The aim of our modeling effort is to characterize the amplitude b0, the activity maxi-
mum position LR and its width σ. Varying these model parameters the best correspondence
between modeled signal and the actual observations of spacecraft C3 and C4 have been
reached for LR = 4.35 RE, σ = 0.1 RE, m = 30, and b0 = 6.5 nT. A comparison of both
signals is displayed in Fig. 7.12. The correspondence is fairly reasonable with major fea-
tures of the observed amplitude modulation being explained. However, it is not possible to
reproduce the measurements in detail. The first amplitude maximum observed at spacecraft
C4 is not fully reproduced by the model such as the amplitude modulation seen in C3 after
07:35 UT. Observations between 07:10 and 07:35 UT are well represented by the modeled
signal. Especially the modeled shape of the second amplitude peak in spacecraft C4 is in a
good agreement with the observed amplitude modulation.

Fig. 7.13 shows a comparison between the modeled radial variation of the wave field
and the radial variation of the poloidal eigenfrequency. It is remarkable to see that the
wave activity region as modeled well coincides with the wave guide region identified as
the trough in the poloidal eigenfrequency variation. From the modeled signal we also infer
that the total width of the wave guide is about 0.6 RE, which corresponds to the observed
extend of the wave activity region.

It should be noted that the time interval between 07:30 and 07:40 UT of the spacecraft
C4 observation is excluded from our modeling efforts as at this time a propagating wave is
detected (Figs. 7.4 and 7.5) and the assumption of a standing wave is not suitable in this
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Figure 7.13: Comparison between the modeled radial variation and the radial variation of
the poloidal eigenfrequency.

region.
Differences between model and measurements originate from several sources. First,

the Hermitian function used to describe the radial structure is based on the assumption
of a wave guide symmetric to the point of minimum eigenfrequency. This assumption
is not fully consistent with the actual variation of the poloidal eigenfrequency. Second,
theoretical studies such as presented by Klimushkin and Mager (2004) assume a constant
wave amplitude in time. A more realistic temporal evolution of the wave field is not
incorporated in current theoretical treatments. We think that this oversimplification is
the main reason for discrepancies between model and observation. However, similarities
found suggest that the theoretical assumptions allow for explaining the observed amplitude
modulation, at least after the wave field is fully developed and before it collapses due to
ionospheric dissipation.

7.7 Summary
The field line oscillations analyzed were observed in the time interval September 15, 2002,
06:50 - 08:00 UT. The large scaled spacecraft configuration during this interval has entailed
the possibility to record the pulsation event over a time period of around 70 minutes in
spacecraft C3 and C4. During this time the spacecraft crossed the oscillating field lines
twice during their inbound and outbound approaches to the Earth on an almost polar orbit.

Analyzing the phase differences between signals observed by two spacecraft while
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7.7 Summary

passing the same L shell has given us the possibility to estimate the azimuthal wave
number; we found m ≈ 30. Accordingly, a poloidal polarized oscillation with m � 1 was
detected.

To describe temporal and spatial properties of the observed wave field we have used
a theoretical framework developed by Leonovich and Mazur (1990, 1993, 1995) and
Klimushkin (1998a). A profile of poloidal eigenfrequencies fP was evaluated based on
realistic assumption concerning plasma composition and plasma properties in the region of
interest. The comparison with the observed frequency fobs = 16 mHz has suggested a third
harmonic oscillation.

The wave field was found localized near the minimum of fP bounded by turning points
fP = fobs at the plasmapause and within the plasmasphere, respectively. In this region the
existence of a localized pulsation is not fully predicted by theory. Hence, further efforts on
the theoretical description of plasmaspheric ULF pulsations are necessary.

Modeling spacecraft observations of plasmaspheric field line crossing has suggested a
spatial structure and temporal development of the detected wave field. We have found clear
indications of the existence of a standing wave at L = 4.22 RE together with a complex
radial structure extended to higher L-shells. The wave event is localized in radial direction.
However, this localization is not due to any resonant mode coupling, but thought to be
the result of the wave field encountering two poloidal turning points, much as predicted
by Klimushkin (1998a). The spatial extent of the wave field area is around 0.6 RE, which
confirms previous observations of plasmaspheric ULF pulsations (Ziesolleck et al. 1993,
Menk et al. 1999). The radial structure was described by a specific function as suggested
by Leonovich and Mazur (1990). In addition to the standing structure the investigation
of the wave’s Poynting vector has clearly exposed the existence of an inward directed,
propagating wave.

Comparing observations with the modeled standing oscillation exposes strengths and
weak points of the applied model and its theoretical basis. For the given situation of a
solely poloidally polarized field line oscillation a theory is currently unavailable specifying
the temporal evolution of such a wave field. Thus, the measured pulsation can only be
reproduced in parts by the modeled standing structure.
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8 Case study: Poloidal Alfvén waves
near the plasmapause

8.1 Cluster location

The second ULF wave event was detected on August 8, 2003, between 07:40 and 08:20
UT. The Cluster orbits in GSM-coordinates are shown in Fig. 8.1. The satellites are located
in the dayside magnetosphere at a magnetic local time of MLT ≈ 14 h and move from
the southern magnetosphere into the northern part of the magnetosphere with a velocity
of vsc ≈ 2 km/s. In contrast to the previous case study (Sec. 7), the four satellites form a
small scaled tetrahedron: the distances between the spacecraft are between 200 km and
1000 km allowing a detailed analysis of spatial properties of the detected pulsation (see
Sec. 8.3 and 8.5).

The radial distance of the plasmapause in the magnetic equatorial plane is determined
using the method described in Sec. 6.2.3 using the activity index kp = 3 as input parameter.
At the azimuthal position of the Cluster orbit, MLT ≈ 14 h, the plasmapause is found at a
radial distance of L = 4.3 RE. The field line with the corresponding vertex at Lpp = 4.23 RE

is assumed as the plasmapause out of the equatorial plane and is indicated by the thick black
line in Fig. 8.1 (right). Magnetic field lines have been calculated using the Tsyganenko
magnetospheric magnetic field model as described in Sec. 6.2.1 with the following input
parameters: a storm time index of Dst = −7 nT, the solar wind dynamic pressure of
pdyn = 0.85 nPa and the orientation of the interplanetary magnetic field, by,im f = 6.0 nT
and bz,im f = 5.0 nT. This set of parameters indicates quiet and stable solar wind conditions
which justifies the assumption of a constant position of the plasmapause in time.

During the time interval of interest the spacecraft closely approach the plasmapause
location. However, the exact position of the satellites with respect to the boundary layer
has to be inferred from the measurement of the spacecraft potentials U as shown in Fig. 8.2.
Neither the characteristic change in U while crossing the plasmapause nor the condition
U < 1 V expected within the plasmasphere (e.g. Gustafsson et al. 2001, Pedersen et al.
2001), as observed for the first case study (Fig. 7.2), are detected by one of the four
satellites. Consequently, it is assumed that during the time period of interest Cluster is
located outside the plasmasphere near the magnetospheric resonator region at the maximum
Alfvén velocity (see Sec. 3).
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Figure 8.1: The Cluster orbits in the dayside magnetosphere on August 7, 2003, between
07:00 and 09:00. The satellites are located at magnetic local time 14 h (left) and move from
south to north (right). The thick black line in the left panel represents the plasmapause
distribution. In the right panel the field line L = 4.23 marks (thick line) marks the
plasmapause out of the equatorial plane.

8.2 Observation of ULF pulsation

Fig. 8.3 shows observations of the magnetic and electric fields from all four Cluster
spacecraft. The first three panels exhibit the magnetic field components, br, bφ and b‖.
The latter component has been defined by subtracting the mean magnetic field from the
field aligned component to identify perturbations parallel to B. The lower two panels
display the electric field components Er and Eφ, respectively. To describe the electric field
perturbations we assume that E · B = 0, that is no field-aligned electric field component
exists. The wave frequency is rather stable at f = 23 mHz during the time Cluster
spacecraft detects the pulsation, as seen in the dynamic spectra of the radial magnetic field
components br (Fig. 8.4). Consequently, as discussed in the previous case study the wave
frequency is uniform with respect to magnetic L shells (see Sec. 7.5).

The pulsation event observed can be subdivided into two different wave packages
with respect to its amplitude pattern. The first packet occurs between 07:50 and 07:56,
where amplitudes up to 2 nT are observed in the br component and up to 1 nT in the bφ
component. The electric field oscillates mainly in the Er component with amplitudes up to
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Figure 8.2: Spacecraft potential measured by Cluster spacecraft C1. Values of U < 1 V
(dotted line) are expected inside the plasmasphere.

2 mV/m at C1 and lower amplitudes at the other spacecraft.
The onset of the pulsation occurs at different times and different locations with space-

craft C1 detecting the perturbation first followed by spacecraft C3, C2 and C4. Furthermore,
the amplitude pattern of both, the magnetic and electric fields are clearly different at each
spacecraft, where distinct signals are seen in the br and Er components of C1 and C3, that
is those spacecraft observing the pulsation first.

The second wave packet is seen between 08:04 and 08:16, where again amplitudes up
to 2 nT are observed in br and up to 1 nT in bφ. In contrast to the first wave packet the
oscillations in the br components are regular at each spacecraft. The onsets of the wave
are again different at the different spacecraft. But now the order has changed compared to
the first packet. The pulsation event is first observed by C2 and C4 almost simultaneously
followed by C1 and C3 observing the event about one minute later. The amplitude of the
electric field is much smaller than in the first packet.

In order to proof the standing wave character of the detected pulsation, the Poynting
vector Sp and the time-average energy flux 〈Sp〉 is determined using Eqs. 6.23 and 6.24,
respectively. Here 〈Sp〉 is calculated by averaging over the wave period T = 43 s. We found
Sp,r ≈ 0 and Sp,φ ≈ 0 and oscillations in Sp,‖ (Fig. 8.5), but the field parallel component
of the time integrated energy flux 〈Sp,‖〉 is non-zero for the first wave packet. 〈Sp,‖〉 can
deviate from zero in case the oscillation is detected off from the null point of the field line
(see Sec. 6.4). In order to proof this assumption the ionospheric conductivity is determined
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Figure 8.3: FGM and EFW measurements for the four Cluster spacecraft (C1: black, C2:
red, C3, green, C4: blue), transformed into a Mean-Field-Aligned coordinate system.

at the northern and southern footprints of the field lines crossed by the four satellites.
Due to the small Cluster configuration the geographic coordinates of all footprints are
approximately at 50◦ N, 93◦ E at the northern and 70◦ S, 80◦ at the southern ionosphere.
At 08:00 UT the northern ionospheric height integrated Pedersen conductivity is ΣP,N = 7.7
S, and in the southern ionosphere it is ΣP,S = 5.9, respectively. Similar to the first case
study the small but significant non-zero component 〈S ‖〉 is supposed to be a consequence
of the slightly different ionospheric conductivities (see Sec. 7.2). Accordingly, one can
conclude that a standing field line oscillation is detected simultaneously by all four Cluster
satellites. The first wave packet is detected south of the field line null point, whereas the
second wave packet is located close to it, as here 〈Sp,‖〉 is almost zero.

8.3 Temporal evolution

The simultaneous measurements of the four Cluster satellites allows in principle the
investigation of spatial and temporal structures of the detected ULF pulsation, but it
requires a data representation in four dimensions. An approach to this representation is a
field line related coordinate system, the LDM coordinate system, introduced in Sec. 6.3.2.
During the time interval analyzed the spacecraft orbits vary in the M coordinate between
M = 13.72 and M = 13.84 (Fig. 8.6), which implies that the Cluster satellites cover a
spatial range of 0.05 RE in azimuthal direction.
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Figure 8.4: Dynamic spectra of br components observed by the four Cluster satellites.
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Figure 8.6: Magnetic local time of Cluster orbit plotted against the L coordinate.
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The orbits of the four satellites are displayed in Fig. 8.7 transformed to the L-D
coordinates, where the exact position of each spacecraft is marked at four specific times
t1 = 07:54:02, t2 = 07:55:06, t3 = 08:04:10 and t4 = 08:09:26 UT. The satellites move
from the southern magnetic hemisphere D < 0 RE across the magnetic equator D = 0 RE

into the northern hemisphere D > 0 RE. Between 07:46 and 08:20 UT all four Cluster
spacecraft cross field lines with L values between 4.4 and 4.8. The color index of each
orbit is related to the transverse amplitude A = (A2

r + A2
φ)

0.5 to identify regions of high
wave activity. Here Ar and Aφ are the instantaneous amplitudes of the poloidal and toroidal
magnetic field component, respectively, determined using the analytic signal or Carson-
Gabor representation of the time series br and bφ (see Sec. 6.5). Fig. 8.8 displays a more
detailed description of the instantaneous transverse amplitude A.

The LD representation reveals, that the first maximum occurs when crossing field lines
in the range L = [4.50, 4.65] in the southern magnetosphere at D ≈ −0.6RE, whereas the
second maximum occurs crossing different field lines at L = [4.42, 4.50] close to the field
line vertex, i.e. close to the magnetic equator. The existence of an amplitude maximum in
br together with the absence of any electric field oscillations near the magnetic equator
suggest the existence of an even mode oscillation. This assumption is consistent with
earlier studies, where dayside Pc4 pulsations have been interpreted as second harmonic
wave modes (e.g. Singer et al. 1982, Takahashi and Anderson 1992).

Now we describe further details of the detected wave field by discussing the four
selected times t1, t2, t3 and t4 marked in Figs. 8.7 and 8.8. At t1 an amplitude maximum of
around 2.6 nT is observed in spacecraft C1 and C3 simultaneously when both satellites
are located nearly at the same L shell L = 4.57. At the same time spacecraft C2 and
C4 are located about 0.05 RE further out, where no clear amplitude maxima are visible.
Accordingly, the radial extension of the first wave packet can be estimated at time t1; we
found a width of around w = 0.1 RE.

At t2 spacecraft C2 and C4 detects maxima with amplitudes of A = 1.9 nT (C2) and
A = 1.2 nT (C4). These peaks are found at L shell L = 4.59, close to the field lines
where C1 and C3 detect maxima. Consequently, the amplitude of the field line oscillation
decreases between t1 and t2. Assuming that the amplitude of the signal decays exponentially
in time, i.e. A(t) ∝ e−γt, the decay constant γ can be determined from

γ =
1
∆t

ln
(

A(t1)
A(t2)

)
(8.1)

with ∆t = 64 s. Amplitude values are obtained from spacecraft C3 at t1 and C2 at t2, as
both spacecraft have the same field parallel position D = −0.58 RE at these times. Inserting
A(t1) = 2.6 nT and A(t2) = 1.8 nT in Eq. 8.1 leads to a decay constant of γ ≈ 5 mHz and a
corresponding e-folding time 1/γ giving an approximation of the lifetime τ = 2/γ ≈ 400 s.
The amplitude pattern observed by the four Cluster satellites at two different times indicates
the existence of a transient standing field line oscillation at L shells L = [4.5, 4.65].

The field line oscillation does not disappear after time t2 despite the detected amplitude
decay: While the satellites move to inner L shells and towards the magnetic equator
spacecraft C2, C3 and C4 detect an amplitude peak simultaneously at t3, whereas a peak
is visible at C1 around 40 seconds later. Comparing with time series of br (Fig. 8.3)
shows that these maxima mark the onset of the second wave packet detected at L shells
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Figure 8.7: Cluster orbits in L-D coordinates at t1 − t4. The spacecraft move from negative
to positive D values across the magnetic equator (D = 0RE). The color index gives the
instantaneous amplitude of the transverse magnetic field oscillation.
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Figure 8.8: Instantaneous amplitude A(t) of the transverse magnetic field oscillation (left)
and ratio of poloidal and toroidal amplitudes (right) for time series of the four satellites.

L = [4.42, 4.50]. This wave packet is fully developed at time t4 in all four spacecraft
observations.

The observed temporal evolution of the wave amplitude justifies the assumption that
both wave packets are excited successively. The first wave is detected at the end of its
lifetime, whereas the second wave packet can be understood as another wave excited at
the same magnetic field lines. As discussed in Chapter 4 the wave polarization of an ULF
pulsation is expected to change from poloidal to toroidal during the temporal evolution of
the wave field. Comparing the ratio of the toroidal amplitude Aφ and the poloidal amplitude
Ar of both wave packets (Fig. 8.8) reveals that the first one is characterized by Aφ ≈ Ar ,
i.e. the toroidal part of the amplitude is comparable to the poloidal part. In contrast to that
the second wave packet exhibits Aφ < Ar, i.e. it is "less" toroidal than the first wave packet.
Following the theory the observed pattern of the wave polarization indicates that the first
wave packet is detected in a later phase of the temporal evolution than the second wave
packet. Consequently, the double excitation of magnetic field lines within the same region
is a possible scenario to describe the observed amplitude pattern and wave polarization.

8.4 Azimuthal wave number
The azimuthal wave number of the poloidal Alfvén wave under investigation is estimated
using the method described in Sec. 7.4. Again high resolution magnetometer data (10 Hz)

97



8 Case study: Poloidal Alfvén waves near the plasmapause

 
 

-2

-1

0

1

2
b

r [
n

T
] 

o
f 

C
1

∆t

 

 

08:09 08:10 08:11
Time [UT]

 

-2

-1

0

1

2

b
r [

n
T

] 
o

f 
C

2

∆t

Figure 8.9: Time series of the radial magnetic field oscillation of spacecraft C1 and C2.

are used to estimate the phase difference ∆Φ in the br component of two satellites observed
between 08:09 and 08:11 UT, where the data are bandpassed filtered between 10 mHz and
50 mHz (Fig. 8.9). During this time interval spacecraft C1 and C2 are located on the same
L shell, L = 4.44 (see Fig. 8.7). The angle in the azimuthal direction between the two
satellites is ∆Φ = 0.26◦ ± 0.01◦. The time difference between extreme values of the signals
is ∆t = 4.8s which corresponds to a phase difference of ∆Ψ = 40◦ assuming a wave period
of T = 1/ fobs = 43 s. Assuming an uncertainty in ∆t of δt = 0.2 s due to the temporal
resolution of the time series and in T of δT = 1s we have m = 155 ± 11, which is in good
agreement with the theoretically expected high-m values for poloidal ULF pulsations. The
corresponding azimuthal wavelength is λ = 2π/kφ ≈ 1100 km with kφ = m/L.

8.5 Radial Structure
A range-time-intensity (RTI) representation as known from ground-based ULF wave
observations (e.g. Walker et al. 1979, McDiarmid and Allan 1990, Fenrich et al. 1995) is
used to infer the radial structure and is displayed for the br component in Fig. 8.10. The
actual perturbations of the magnetic field measured at the same time have been linearly
interpolated between the four spacecraft positions. For the first wave packet, located
at L shells between L = 4.50 and L = 4.65, the RTI plot reveals a clear spatial and
temporal structure with perturbation maxima and minima moving across L-shells towards
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Figure 8.10: Range-time-intensity plot of the August 7, 2003, 07:49-08:16 UT magnetic
field fluctuations of the br component. The ordinate is the time axis with T = 0 s corre-
sponding to 07:49 UT. The black line in the inlet indicates the estimated location of the
phase jump in L-direction.

the Earth. The structured change from positive to negative perturbations indicates a clear
phase change in the L-direction. The black line in the inset of Fig. 8.10 traces the zero
of magnetic field amplitude as the wave field goes through its temporal cycle within a
spatial structure that exhibits a phase jump in the radial direction. Due to the time variation
imposed on such a spatial structure the wave phase moves apparently towards smaller L
shells (Wright et al. 1999b). This virtual earthward moving phase structure is reminiscent
of poleward moving bands of irregularities observed in ionospheric data associated with
field line resonance (Walker et al. 1979, Poulter et al. 1982).

In contrast to the first wave packet the second one found at L = [4.42, 4.50] is composed
of field lines oscillating exactly in phase (Fig. 8.10). Assuming that both wave packets
originate from the oscillation of the same bundle of field lines and the phase jump is fixed
between L = 4.50 and L = 4.65, the identification of a phase jump in the second wave
packet is impossible. The Cluster satellites move parallel to the apparent position of the
phase jump while detecting the second wave packet (see Fig. 8.7). This assumption is
supported by the observation of the instantaneous amplitude A at time t4: Spacecraft C1
and C2 located at L = 4.45 detects higher amplitude values, A ≈ 2.0 nT, than C3 and C4
located at L = 4.43 detecting A ≈ 1.6 nT (Fig. 8.8).
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8 Case study: Poloidal Alfvén waves near the plasmapause

8.6 Modeling the spatio-temporal structure
For a more detailed understanding of the observed spatio-temporal structure we have
modeled the ULF wave event using the following assumptions and observations:

(a) The pulsation is composed of two consecutively excited wave packets with lifetimes
in the order of τ ≈ 400s.

(b) The pulsation is a second longitudinal harmonic standing field line oscillation.

(c) The azimuthal wave number of the wave field is m = 155.

(d) The wave phase changes by 180◦ in the range of L shells L ∈ [4, 50, 4.65].

The spatio-temporal variation is described by the following expression:

br,model = b0(t) · S (D, t) · B(Ψ) ·C(L), (8.2)

where the function b0(t) represents the time dependent amplitude, S (D, t) the standing
wave character, B(Ψ) the azimuthal and C(L) the radial structure of the wave field. In the
following we discuss each of these functions whose parameter range is varied restricted by
the assumptions given above in order to fit the actual observed data simultaneously in all
four Cluster satellites. The main objective of this modeling efforts is a comparison of the
modeled field line oscillation with the observed pulsation.

The time dependent amplitude b0(t) is given by two Gauss-functions generating the
temporal development of the two wave packets:

b0(t) = b1 exp
(
− (t − t1)2

2τ2
1

)
+ b2 exp

(
− (t − t2)2

2τ2
2

)
. (8.3)

The amplitude maxima in time are at t1 = 07:51 UT and t2 = 08:10 UT. For the first wave
packet the maximum amplitude is b1 = 3.0 nT and the width of the temporal amplitude
distribution τ1 = 200 s. For the second wave packet we choose b2 = 4.0 nT and τ2 = 250 s.
The resulting temporal evolution of b0(t) is displayed in Fig. 8.11.

In order to demonstrate the need for assuming two separate wave packets and an
decay of wave amplitude, Fig. 8.12 compares the time series of a modeled single wave
packet with constant amplitude in time and the observed signals of the four satellites. The
amplitude pattern of the first wave packet is well reproduced only in the spacecraft C1 and
C3 observations. In C2 and C4 the observed wave amplitude is much smaller than the
modeled amplitude. Furthermore, the observed second wave packet cannot be reproduced
by the single wave model. A second amplitude maximum would be expected more than 10
minutes after the observed maximum when the satellites traverse the magnetic L shells
where the first maximum is observed.

The standing wave along the magnetic field line is expressed by

S (D, t) = exp
(
iωt + ik‖D

)
+ exp

(
iωt − ik‖D

)
, (8.4)

where k‖ denotes the field parallel wave number. The corresponding wavelength λ‖ = 2π/k‖
depends on the length of the field line l and the harmonic number N of the oscillation:
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Figure 8.11: Temporal development of the wave amplitude b0(t).
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Figure 8.12: Instantaneous amplitudes of the radial magnetic field component br: observed
signal (black) and modeled signal consiting of a single wave (red).
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Figure 8.13: Radial profile of the wave amplitude (solid line) and phase shift (dotted line).

λ‖ = 2l/N. The length of the field line with the vertices Lpos = 4.56 is l = 10.4 RE.
Assuming a second harmonic oscillation, as discussed above, results in a wavelength of
λ‖ = 10.4 RE and a field parallel wave number of k‖ = 0.096 R−1

E .
The azimuthal variation of the wave field is given by

B(Ψ) = exp (imΨ) , (8.5)

where an azimuthal wave number of m = 155 is inserted which fits to the observed values
of m. The corresponding azimuthal wavelength is λΨ = 2π/kΨ with kΨ = m/Lpos = 34.0
R−1

E . Accordingly, the azimuthal spatial scale of the wave is λΨ = 0.18 RE.
The transverse structure of the wave field is described by a Gauss function and a phase

function representing the amplitude variation and the change of the wave phase across the
L shells, respectively:

C(L) = exp
(
− (L − Lpos)2

2σ2

)
· exp (iΘ) . (8.6)

The parameter Lpos marks the position of maximum amplitude and phase jump. Lpos

cannot be determined directly from the observations as the RTI plot indicates only the
apparent motion of the phase jump, but not its actual position Lpos. This position can
be determined comparing modeled and observed time series. The radial width of the
wave field is represented by σ. The distribution of the phase is modeled by Θ = (π/2) +

arctan
[
w(L − Lpos)

]
, where w affects the width of the region within which the phase

changes from 0◦ to 180◦. With these assumptions and the free model parameter Lpos, σ and
w we generated in trial-and-error manor a series of pulsation wave fields. We found the
best agreement between the observed and the modeled br components by using Lpos = 4.56,
w = 300 R−1

E , σ = 0.05 RE for the first wave packet and σ = 0.2 RE for the second one.
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Figure 8.14: Instantaneous amplitudes of the radial magnetic field component br: observed
signal (black) and modeled signal consisting of two waves but without phase jump (red).

At first the modeled signal is determined without the detected jump in wave phase, i.e.
the second factor on the right hand side of Eq. 8.6 is ignored (Fig. 8.14). The correspon-
dence is evident in main features of the observed amplitude modulation, such as time and
magnitude of the amplitude maxima of both wave packets, although the observed maxima
of the first wave packet (07:50 - 08:00 UT) in spacecraft C2 and C3 are clearly larger than
in the artificial signal. Considering the complete model including the phase jump further
improves the accordance of observation and model (Fig. 8.15), especially the amplitude
pattern of the C2 and C3 observations.

Furthermore, the modeled signal is capable to explain some detailed structure in the
first wave packet of the spacecraft C2, C3 and C4 observation, which is caused by crossing
the phase jump at L = 4.56. However, some other details are not reproduced, e.g. the
small-scale structure of the first wave packet seen by spacecraft C1 and in particular the
narrow amplitude peaks at the beginning of the second wave packet visible in all four
satellites. We speculate that the latter discrepancy between model and observation is a
consequence of the assumed temporal amplitude modulation. Apparently, modeling b0(t)
by Gauss-functions fails to satisfy the real temporal evolution of a field line oscillation at
least at the beginning of its lifetime. Nevertheless, modeling resulted in a value Lpos = 4.56
for the position of the excited field line.

103



8 Case study: Poloidal Alfvén waves near the plasmapause

 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0
A

m
p

lit
u

d
e 

[n
T

]

Cluster 1

 
 

 

Cluster 2

 

 

07:50 08:00 08:10
Time [UT]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
m

p
lit

u
d

e 
[n

T
]

Cluster 3

 

 

07:50 08:00 08:10
Time [UT]

 

Cluster 4

Figure 8.15: Instantaneous amplitudes of the radial magnetic field component br: observed
signal (black) and modeled signal (red).

8.7 Poloidal Alfvén resonator

The excited field line bundle is located in the outer edge of the plasmapause as inspection
of measurements of the spacecraft potential shows (Fig. 8.2). This outer region is suitable
for the existence of an Alfvén resonator that confines the wave field by two poloidal turning
points LP (see Sec. 3). On account of this we compare the assumed radial amplitude
distribution and the observed frequency fobs = 23 mHz of the pulsation with the radial
profile of the theoretically expected field line eigenfrequencies ΩP and ΩT (Fig. 8.18).

These eigenfrequencies are determined by applying the numerical method introduced
in Sec. 6.1. For this purpose necessary plasma background parameters, e.g. distribution
of magnetic field, current density and plasma density, are determined as introduced in
Sec. 6.2. The radial and field aligned profiles of the magnetic field are calculated by
the Tsy96 model (Tsyganenko and Stern 1996) for the input parameters pdyn = 2.60 nPa,
Dst = −7 nT, bsw

y = 6.0 nT and bsw
z = 5.0 nT. The radial plasma pressure profile P(L) is

calculated using Eq. 6.12 with L0 = 2.6 RE and W = 2.04 RE. The maximum plasma
pressure P0 = P(L0) is selected so that at L0 the plasma β is 0.019. For this set of
parameters the current density J⊥(L) determined by Eq. 6.13 coincides with the current
density obtained from the Tsy96 model (Eq. 6.11). The resulting radial profiles of β, P and
J⊥ are displayed in Fig. 8.16 corresponding to expected profiles during low geomagnetic
activity (e.g. Lui and Hamilton 1992, Klimushkin et al. 2004).
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Figure 8.16: Assumed plasma background conditions. The plasma density is calculated
from modeling the electron density. Profiles of plasma pressure P, β and current density J
are determined by comparing the current density given by Eq. 6.14 with the current density
obtained from the Tsy96 model (red line). Negative values of J correspond to a current
directed westward.

The number density in the equatorial plane neq can be obtained from the model of
Carpenter and Anderson (1992) (see Sec. 6.2.3). The distribution of the plasma density
along field lines is assumed to follow the power law ρ(s) = ρeq(LRE/r)α, where α = 2 is
typical for the vicinity of the plasmapause (e.g. Goldstein et al. 2001). From the modeled
electron density distribution neq (Carpenter and Anderson 1992) we receive the plasma
mass density ρeq = neqmcorrmp, where mp is the proton mass. Using a mass correction
factor of mcorr = 2 considers that the plasma near the plasmapause is composed of protons
and a significant part of heavier ions such as He+, O+ and O2+ (e.g. Takahashi et al. 2004).

The resulting radial profiles of poloidal and toroidal eigenfrequencies displayed in
Fig. 8.17 are calculated for harmonic numbers N = 1, . . . , 4. The poloidal eigenfrequency is
slightly larger than the toroidal one, which is a necessary condition for the existence of the
Alfvén resonator (e.g. Leonovich and Mazur 1995, Klimushkin et al. 2004). Observations
and model of the wave field provide that the pulsation under investigation is a even
harmonic wave. As evident from Fig. 8.17 the observed wave frequency fobs = 23 mHz
apparently belongs to a second harmonic oscillation which is radially trapped in an Alfvén
resonator at the maximum of field line eigenfrequencies. However, similar to the first case
study (Chapter 7) fobs is not found between fP and fP as required by the theory.

In Fig. 8.18 the radial variations of eigenfrequencies ΩP and ΩT are compared with
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Figure 8.17: Profiles of the toroidal eigenfrequencies fT (solid line) and poloidal eigen-
frequencies (dashed line) fT calculated for harmonic numbers N = 1, . . . , 4 and a mass
correction factor mcorr = 2. The dotted line marks the observed frequency fobs = 23 mHz
and the grey shaded background indicates L-shells where Cluster detects ULF wave
activity.

the modeled amplitude profile of the wave mode at time t4 of its maximum extension.
The poloidal turning points defined by fobs = fP are identified at field lines L = 4.4 and
L = 5.0 leading to a total width of the poloidal wave resonator of 0.6 RE. The modeled
radial extend of the wave activity region is of the same size. The shift of the maximum of
the amplitude distribution against the extremum of the eigenfrequency distribution is due
to the asymmetry of the latter. We conclude that the wave field is confined in a poloidal
Alfvén resonator at the outer edge of the dayside plasmapause.

The observed phase jump can be easily explained taking into account the radial lo-
calization and the rapid azimuthal variation br ∝ exp(imΨ). This results in a radially
localized polarization current causing a magnetic field perturbation sheared in radial di-
rection (Klimushkin et al. 2004). However, two other processes are capable to explain the
existence of a phase jump in magnetic field line oscillations: Field line resonance and phase
mixing. The classical process of field line resonance causes the onset of purely toroidal
polarized Alfvén waves and, accordingly, can be excluded as origin of the phase jump, as
the observed wave is mainly poloidally polarized. Phase mixing of adjacent field lines is
as well inappropriate to explain the phase jump, because the wave packet is localized near
the maximum of field line eigenfrequencies ΩP(L), where the gradient dΩP/dL is small.

In order to examine under which conditions a theoretical correct Alfvén resonator can
be established, the plasma background parameters are varied for the second harmonic
frequencies. For this purpose the plasma mass density ρ has to be increased causing smaller
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Figure 8.18: Radial profiles of wave amplitude at time t4 and toroidal (solid line) and
poloidal (dashed line) field line eigenfrequencies, each for the second longitudinal har-
monic. The dotted line marks the observed frequency fobs = 23 mHz, the dot-dashed line
marks the L shell of maximum amplitude and phase jump Lpos = 4.56.

Alfvén velocity VA(L, θ) and smaller eigenfrequencies. By changing the mass correction
factor to mcorr = 4.5 the condition fobs > fT is achieved. Additionally, the plasma β
must be higher than before leading to an increase of the poloidal eigenfrequency and thus
fP > fobs. Fig. 8.19 shows possible plasma background parameters, which are necessary
for satisfying the requirement fP > fobs > fT . Apparently, these conditions are not realistic
for the terrestrial magnetosphere. A plasma pressure leading to β ≈ 1 would be assumed at
L-shells of interest as well as a high concentration of oxygen ions that would justify the
high plasma density. Both is not expected to appear near the plasmapause, in particular
during the assumed quiet level of geomagnetic activity.

8.8 Summary
The pulsation analyzed was detected by the four Cluster satellites in the time interval
August 7, 2003 between 07:46 and 08:20 UT and has been localized close to the magnetic
equatorial plane at field lines between L = 4.42 and L = 4.70. Comparing the plasmapause
position, obtained from a dynamical simulation of the electron density, with the spacecraft
orbit exhibited that the pulsation was excited at the outer edge of the boundary between
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Figure 8.19: Plasma background parameters (left) and second harmonic eigenfrequencies
(right). The grey shaded background indicates L-shells where Cluster detects ULF wave
activity.

plasmasphere and magnetosphere. The spatial separation of the spacecraft has given us the
possibility to determine the phase differences between signals of pairs of satellites in order
to estimate the azimuthal wave number m of the pulsation. We have found m ≈ 155 and
consequently, a poloidal Alfvén wave with m � 1 has been observed.

A two wave packet structure of the pulsation has been detected in the instantaneous
amplitude of the magnetic field oscillation featuring differences between both parts in
terms of the wave polarization. In the first wave packet poloidal and toroidal magnetic field
component have almost the same amplitude, whereas the second wave packet is purely
poloidal for the most part. At first view this observation seems to be inconsistent with
the theoretically expected evolution of a standing Alfvén wave which predicts a change
in wave polarization from poloidal to toroidal (e.g. Mann and Wright 1995, Mager and
Klimushkin 2006). However, displaying the instantaneous amplitude of the magnetic field
oscillation in the LD coordinate system has elucidated a decrease of the wave amplitude in
time at the same field lines for the first wave packet. Consequently, we have concluded
that the first wave packet has been detected in a late stage of its temporal evolution when
the amplitude of the toroidal component becomes comparable to the poloidal one. Wave
damping due to dissipation at the ionosphere prevents the wave field from being observed
in the status of purely toroidal polarization. The second wave packet has to be interpreted
as a new excitation of a standing wave at the same field lines.

Modeling spacecraft observations crossing a double excited standing field line oscil-
lation has confirmed and improved the knowledge about the above discussed spatial and
temporal features of the detected wave field. It was shown that the wave is localized in
radial direction with maximum of amplitude and phase jump located at L = 4.56. The
spatial extend of the wave field is around 0.6 RE. Location and size of the wave field was
compared with the radial profile of theoretically expected toroidal and poloidal field line
eigenfrequencies. We have suggested that the wave field is radially confined at the outer
edge of the plasmapause between two L shells defined by fobs = fP acting as wave turning
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points. For that reason this specific region is believed to exhibit suitable conditions for the
excitation of poloidal Alfvén waves (e.g. Klimushkin 1998a).

The radial magnetic field oscillation observed by the four Cluster satellites has been
combined to a RTI representation (Fig. 8.10) which has clearly exposed a change in the
wave phase by 180◦ in the radial direction. This phase jump is interpreted as a result
of the localization of the wave field at the maximum of the radial amplitude distribution
(Klimushkin et al. 2004).
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9 General conclusions and outlook

The main aim of the present thesis has been formulated to compare the theoretically
predicted spatio-temporal structure of poloidal standing field line oscillations excited in an
Alfvén wave resonator region with multi-point measurements of ULF pulsations made by
the Cluster satellites. In two case studies Alfvén wave activity has been detected near the
terrestrial plasmapause, which is a favored region for the existence of the Alfvén resonator
due to the strong gradients in Alfvén velocity and field line eigenfrequencies. The field
aligned and azimuthal structure of these wave fields has been successfully identified as
second and third harmonic standing field line oscillations, respectively, each with azimuthal
wave numbers m � 1, which are well known characteristics of poloidal Alfvén waves.
Investigating the radial structure and the temporal evolution in particular has benefited
from the constellation of the four Cluster satellites and the polar orbit with perigee near the
dayside plasmapause. These configurations have allowed the execution of newly developed
representations of the magnetic field data, such as the field line related LDM coordinate
system and the Range-Time-Intensity plot.

The LDM representation of wave activity has been successfully applied for different
spacecraft constellations, both for the large spacecraft separation in Chapter 7 and for
the small scaled Cluster tetrahedron in Chapter 8. The primary outcome of this analysis
technique is that the detected radial structure of both wave fields exhibits theoretically
expected Gaussian or more complex radial amplitude distribution, whose localization and
radial extend fits precisely to the size of the Alfvén resonator regions bounded by two
poloidal turning points fwave = fP. The resonator has been determined by comparing the
observed frequency with theoretically expected poloidal and toroidal eigenfrequencies for
realistic plasma background conditions. The RTI data representation produces reliable
results only when the spacecraft separation is not too large. Consequently, the small- scale
spacecraft configuration of the event detected outside the plasmasphere provides an insight
into the temporal evolution of the wave field and enables the identification of a 180◦ jump
of the wave phase across magnetic L-shells. The application of such investigations are
inappropriate for the pulsation detected inside the plasmasphere due to the prevalent large
distances between the satellites of more than 2 RE.

Both studies have shown that spatial and temporal properties of the analyzed wave
fields are in good agreement with main features predicted by the theoretical framework
of Leonovich and Mazur (1990, 1993, 1995), Klimushkin et al. (2004) and Mager and
Klimushkin (2006). However, some details of this framework concerning high-m waves
are not reported until now, neither in ground based data nor in space. Although, for
example, the radial extension of the observed wave fields coincide with the theoretical
predicted wave turning points, the determined difference between poloidal and toroidal
eigenfrequencies is in fact too small for the generation of resonator eigenfrequencies. It
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9 General conclusions and outlook

has been found that a sufficient difference ΩP − ΩT can be achieved for second or third
harmonic oscillations only if the values of plasma density and plasma β are higher than
one would expect in the inner magnetosphere. Consequently, the theoretical framework
has to be improved in order to explain the existence of poloidal Alfvén resonators when
ΩP ≈ ΩT .

Furthermore, the suggested temporal change in wave polarization has not been detected
neither in the pulsations analyzed in this work nor in other observations of magnetospheric
ULF waves. In this case one would also expect the existence of a toroidal wave with a
large azimuthal wave number, as m remains constant during the transformation of wave
polarization. The reason for these lacking observations is probably the rapid damping of
the poloidal oscillation due to ionospheric damping, which implies that the transformation
from poloidal to toroidal is incomplete (e.g. Klimushkin and Mager 2004).

Consequently, further investigations on ULF wave activity near the plasmapause are
necessary to improve our knowledge on the spatio-temporal structure of magnetospheric
Alfvén waves. The detection of a field line oscillation transforming its polarization
and the corresponding high-m toroidal wave would be an impressive verification of the
theoretical framework. The present thesis could be used as a guide for future analysis of
magnetospheric ULF wave activity with multi-spacecraft missions. It specifies essential
theoretical background information on the characteristics of poloidal and toroidal field
line oscillations and their spatial and temporal structure. The introduced analysis methods,
developed for both small and large spacecraft separations, are capable to distinguish
between spatial and temporal effects that cause the modulation in the observed wave
amplitude. In general a small spacecraft tetrahedron seems to provide better possibilities
of a detailed wave field analysis. In addition, the Cluster mission is an appropriate tool for
the development of a statistical survey of properties of Alfvénic waves in the terrestrial
magnetosphere, as it delivers an extensive amount of magnetic and electric field data
over a time range of more than eight years and covering different regions of the Earth’s
magnetosphere.
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