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Introduction

In real life :

nonstationary signals

wide spectrum of frequencies

often correlation (ex. human voice):

HF ↔ short duration, well localized in time
LF ↔ long duration
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A nonstationary signal (chirp)
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Fourier analysis

Traditional tool : Fourier transform

s(x) ↔ ŝ(ξ) =
1√
2π

∫ ∞

−∞
e−iξxs(x) dx

no time localization : when does the ŝ(ξ) component occur ?

very uneconomical : (almost) flat signal (no information!) requires
summation of infinite series or calculation of integral

very unstable : tiny perturbation ⇒ Fourier spectrum completely
perturbed (FT is global)
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Effect of a localized perturbation

A pure sine wave and the same with two delta perturbations added
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The localized perturbations are completely delocalized in Fourier
space !

Conclusion : Fourier analysis is not sufficient !
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Time-frequency representation

Solution : Time-frequency representation

Two parameters are needed :

frequency : which one ? ← a
time : when ? ← b

General linear time-frequency transform :

s(x) 7→ S(b, a) =

∫ ∞

−∞
ψb,a(x) s(x) dx ,

where ψb,a is the analyzing function.

Example : Musical score !

2
4

A traditional time-frequency representation of a signal

(from Mozart’s Don Giovanni, Act 1)
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Two simple solutions

Windowed Fourier transform or Gabor transform

ψb,a(x) = e i(x−b)/a ψ(x − b) : a = modulation, b = translation

(1/a ' frequency)

Wavelet transform

ψb,a(x) =
1√
a
ψ

(
x − b

a

)
: a = scaling, b = translation

What is the difference between the two?
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Two simple solutions

high

medium

low

x

a > 1

a = 1

a < 1

1/a ≈ frequency

ψb,a(x)

The function ψb,a(x) for different values of the scale parameter a :
in the case of the Windowed Fourier Transform (left);

in the case of the wavelet transform (right)
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Three stages of WT

Continuous WT (CWT)

S(b, a) = |a|−1/2

∫ ∞

−∞
ψ

(
x − b

a

)
s(x) dx , a 6= 0, b ∈ R

. all values of a and b : useful for feature detection (often a > 0)

Discretization of CWT

. discretization needed for numerical implementation

. choice of sampling grid

. no orthonormal bases, only frames (redundant representation)

Discrete WT (DWT)

. preselected grid (dyadic)

. (bi)orthonormal bases from multiresolution analysis

. good for data compression

J-P. Antoine Wavelet analysis, from the line to the two-sphere 9/167



Three stages of WT

Note :
(discretized) CWT incompatible with DWT, totally different
philosophies

Analogy :
CWT ⇔ Fourier integral

discretized CWT ⇔ Fourier series
DWT ⇔ discrete FT
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WAVELET ANALYSIS OF 1-D SIGNALS
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The Continuous WT in 1-D

Basic formulas

S(b, a) = 〈ψb,a|s〉

= |a|−1/2

∫ ∞

−∞
ψ

(
x − b

a

)
s(x) dx

= |a|1/2
∫ ∞

−∞
ψ̂(aξ) ŝ(ξ) e iξb dξ

a 6= 0, b ∈ R : time-scale plane R2
∗

Conditions on analyzing wavelet ψ

(i) ψ, bψ ∈ L2

(ii) ψ admissible : cψ ≡ 2π

Z ∞

−∞

| bψ(ξ)|2

|ξ| dξ <∞

which essentially reduces to a zero mean condition

bψ(0) = 0 ⇐⇒
Z ∞

−∞
ψ(x) dx = 0
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The Continuous WT in 1-D

(iii) ψ and bψ well localized : ψ ∈ L1 ∩ L2 or better
⇒ good bandpass filtering in x and ξ

(iv) Vanishing moments:

Z ∞

−∞
xn ψ(x) dx = 0, n = 0, 1, . . .N

⇒ ψ blind to polynomials of degree 6 N (smooth part of signal)
⇒ better detection of singularities

(v) ψ progressive : bψ real and bψ(ξ) = 0 for ξ < 0 (analytic signal)

Note : one takes often a > 0 (positive dilation factor only)

⇒ slightly different admissibility condition :

cψ ≡ 2π

∫ ∞

0

dξ
|ψ̂(ξ)|2

|ξ|
dξ = 2π

∫ 0

−∞

|ψ̂(ξ)|2

|ξ|
dξ <∞

(equality automatic if ψ real)
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Two common wavelets

The Mexican hat wavelet

ψH(x) = (1− x2) e−
1
2 x2

ψ̂H(ξ) = ξ2 e−
1
2 ξ

2

. real

. admissible

. not progressive

. 2 vanishing moments n = 0, 1

The Morlet wavelet

ψM(x) = e iξox e−x2/2σ2
o + c(x)

ψ̂M(ξ) = σo e−[(ξ−ξo)σo ]
2/2 + ĉ(ξ)

. complex

. admissible with correction term

. correction term negligible for σoξo > 5.5

. not progressive

−10 0 10−10 0 10

(left) Mexican hat or Marr wavelet;

(right) Real part of the Morlet wavelet, for ξo = 5.6
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Localization properties and interpretation

Assume

num supp ψ(x) ∼ L around 0

num supp ψ̂(ξ) ∼ Ξ around ξo

Then

num supp ψb,a(x) ∼ aL around b

num supp ψ̂b,a(ξ) ∼ Ξ/a around ξo/a

Therefore

if a� 1, ψb,a = wide window (long duration),dψb,a peaked around small frequency ξo/a:

⇒ sensitive to low frequencies (rough analysis)

if a� 1, ψb,a = narrow window (short duration),dψb,a wide and centered around high frequency ξo/a:

⇒ sensitive to high frequencies (small details)
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Localization properties and interpretation

-
xb

p

6

ξ ∼ 1/a

–a > 1 : ξo/a
aL

Ξ/a

–a = 1 : ξo

L

Ξ

–a < 1 : ξo/a

aL

Ξ/a

Support properties of ψb,a and dψb,a
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Localization properties and interpretation

a = 0.5 a = 1 a = 2

−10 0 10 −10 0 10 −10 0 10

0 10 20 0 10 200 10 20

Support properties of the Morlet wavelet ψM :
for a = 0.5, 1, 2 (left to right), ψb,a has width 3, 6, 12, respectively (top),

while dψb,a has width 3, 1.5, 0.75, and peaks at 12, 6, 3 (bottom)
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Consequences

WT = zero mean filter (convolution) + localization properties ⇒

CWT = local filtering in time (b) and scale (a)

S(b, a) 6≈ 0 ⇐⇒ ψb,a(x) ≈ s(x)

CWT = mathematical microscope
optics ψ, position b, magnification 1/a

CWT works at constant relative bandwidth : ∆ξ/ξ = const

⇒ CWT = singularity detector and analyzer

J-P. Antoine Wavelet analysis, from the line to the two-sphere 18/167



Mathematical properties

For ψ admissible, the CWT Wψ : s(x) 7→ S(b, a) is a linear map, with
the following properties:

Covariance under translation and dilation

Wψ : s(x − xo) 7→ S(b − xo , a)

Wψ :
1
√

ao
s
( x

ao

)
7→ S

( b

ao
,

a

ao

)
Energy conservation∫ ∞

−∞
|s(x)|2 dx = c−1

ψ

∫∫
R2
∗

|S(b, a)|2 da db

a2

⇒ |S(b, a)|2 = energy density in half-plane

⇐⇒ Wψ = isometry from space of signals L2(R) onto closed

subspace Hψ of L2(R2
∗, da db/a2) = space of transforms

⇒ Wψ invertible on its range Hψ by adjoint map, i.e.
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Mathematical properties

Reconstruction formula

s(x) = c−1
ψ

∫∫
R2
∗

ψb,a(x) S(b, a)
da db

a2

⇒ linear superposition of wavelets ψb,a with coefficients S(b, a)

Projection Pψ : L2(R2
∗, da db/a2) → Hψ is an integral operator, with

kernel
K (b′, a′; b, a) = c−1

ψ 〈ψb′,a′ |ψb,a〉
K = autocorrelation function of ψ, reproducing kernel

⇒ f ∈ L2(R2
∗, da db/a2) is the WT of a certain signal iff

it satisfies the reproduction property

f (b′, a′) = c−1
ψ

ZZ
R2
∗

〈ψb′,a′ |ψb,a〉 f (b, a)
da db

a2

⇒ the CWT is a highly redundant representation !

⇒ Full information contained is small subset of half-plane :
Lines of local maxima : ridges
Discrete subset ⇒ frames
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Reducing the computational cost : Ridges

Real life signals often entangled and noisy, WT difficult to interpret

But the energy density |S(b, a)|2 is usually well concentrated, around
lines of local maxima = ridges

Skeleton = set of ridges

Result : S(b, a)�skeleton contains essentially the whole information
⇒ Exploit redundancy by reducing WT to its skeleton

Detecting singularities in signals : vertical ridges
Application : estimating the strength of singularities ≡ local Hölder
regularity

s(x − xo) ∼ (x − xo)
α + . . . , for x ∼ xo

+ covariance property of the CWT under dilation
⇒ along ridge, |S(b, a)| behaves as aα

⇒ slope of plot of log |S(b, a)| vs. log a gives regularity index α
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Reducing the computational cost : Ridges

Detecting characteristic frequencies in signals : horizontal ridges

Many signals are well approximated by a superposition of simple
spectral lines:

s(x) =
NX

n=1

An(x) e iξnx , An(x) slowly varying amplitude

By linearity, the WT is a sum of terms, S(b, a) =
P

n Sn(b, a)

To first order, one gets S(b, a) '
PN

n=1
bψ(aξn)sn(b)

Assume bψ(ξ) has a unique maximum in frequency space at ξ = ξo
and frequencies ξn are sufficiently far away from each other
Then Sn(b, a) is localized on the scale an = ξo/ξn
⇒ along the line of maxima a = an, called the nth horizontal ridge,
the CWT is approximately proportional to the nth spectral line:

S(b, an) ' sn(b) bψ(ξo)

Same reasoning for more general spectral lines (asymptotic signal)

sn(x) = An(x) e iφn(x), An(x) slowly varying w.r. to φn(x)

Typical example : NMR spectra
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Reducing the computational cost : Ridges

Wavelet analysis of a discontinuous signal with a Mexican hat wavelet
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Reducing the computational cost : Ridges

Analysis of a rebound signal, with a Mexican hat wavelet
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Reducing the computational cost : Ridges

Analysis of a rebound signal, with a Morlet wavelet

Horizontal ridges
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Choice of analyzing wavelet

For applications, one has to choose an adequate wavelet : the choice
depends on problem at hand !

Detection of singularities
Phase irrelevant ⇒ real wavelet
Need characterization of singularity strength
⇒ derivative of Gaussian

ψ
(n)
G (x) =

“ d

dx

”n

e−
x2

2σ2 : n vanishing moments

n = 1: simplest case
n = 2: Mexican hat : erases linear trends

Spectral analysis
Detection of characteristic frequencies, denoising or rephasing of
spectra,. . .
Phase essential

Modulus/phase representation of CWT
Use of instantaneous frequency

⇒ Morlet wavelet

ψM(x) = e iξox e−x2/2σ2

+ c(x), c(x) negligible for σξo > 5.5

In both cases, σ controls resolution in time and in frequency ⇒ adapt

width σ to signal at hand
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Applications of the 1-D CWT

Noise removal in signals
removal of undesirable noise in signals by subtraction and
reconstruction

Sound and acoustics
musical synthesis, speech analysis (formant detection), disentangling
of underwater acoustic wavetrain

Geophysics
analysis of microseisms in oil prospection, gravimetry (fluctuations of
the local gravitational field), seismology, geomagnetism (fluctuations
of the Earth magnetic field), astronomy (fluctuations of the length of
the day, variations of solar activity, measured by the sunspots, etc)

Fractals, turbulence (1-D and 2-D)
diffusion limited aggregates, arborescent growth phenomena,
identification of coherent structures in developed turbulence
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Applications of the 1-D CWT

Atomic physics
analysis of harmonic generation in laser-atom interaction

Spectroscopy
NMR spectroscopy : subtraction of spectral lines, noise filtering

Medical and biological applications
analyzing or monitoring of EEG, VEP, ECG; long-range correlations
in DNA sequences

Analysis of local singularities
determination of local Hölder exponents of functions

Shape characterization
robotic vision : CWT of contour of an object treated as a complex
curve in the plane

Industrial applications
monitoring of nuclear, electrical or mechanical installations ;
analysis of behavior of materials under impact
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Physical applications of CWT

Noise removal (filtering) in a signal
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(Top) noisy signal : original NMR spectrum

(Bottom) denoised signal : reconstructed spectrum after noise
removal
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Physical applications of CWT

Suppression of unwanted (water) peak in a NMR spectrum
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(Left) original NMR spectrum

(Right) reconstructed spectrum after water peak removal
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Physical applications of CWT

Detection of discontinuities in a signal
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Fall of a striker on a plastic disk : analysis of rebound signal with a
Mexican hat wavelet

(a) Signal : rebounding striker acceleration (= force) and discontinuity
points to be detected

(b) Absolute value of the CWT of signal

(c) Corresponding skeleton
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Discretization of CWT

CWT must be discretized for numerical implementation

Choice of sampling grid: discrete lattice Γ = {aj , bj,k , j , k ∈ Z}
yields good discretization if

s =
∑
j,k∈Z

〈ψjk , s〉ψ̃jk

with ψjk ≡ ψbj,k ,aj and ψ̃jk explicitly constructible from ψjk

Common choice : dyadic grid aj = 2−j , bj,k = k · 2−j

ψjk(x) = 2j/2ψ(2j x − k), j , k ∈ Z

Usually leads to frames, not bases
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The dyadic lattice

-
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Frames

Relevant concept : {ψjk} is a frame in H if ∃ m > 0,M <∞ s.t.

m ‖s‖2 6
∑

j,k ∈Z
|〈ψjk |s〉|2 6 M ‖s‖2

m, M = frame bounds
m = M 6= 1 : tight frame
m = M = 1 and ‖ψjk‖ = 1 : orthonormal basis

Question : given wavelet ψ, find lattice Γ s.t. {ψjk} is a good frame,
i.e. such that

∣∣M
m − 1

∣∣� 1

Solution : lattice adapted to geometry, e.g. dyadic lattice
Result : Mexican hat and Morlet wavelets give good, nontight frames

=⇒ need another approach to get a basis : DWT, based on
multiresolution analysis
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The discrete WT (DWT)

Multiresolution analysis of L2(R) = increasing sequence of closed
subspaces

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

with
⋂

j ∈Z Vj = {0} and
⋃

j ∈Z Vj dense in L2(R), and such that

(1) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1

(2) There exists a function φ ∈ V0, called a scaling function, such that
the family {φ(x − k), k ∈ Z} is an orthonormal basis of V0.

⇒ {φjk(x) ≡ 2j/2φ(2jx − k), k ∈ Z} = orthonormal basis of Vj

Define the spaces Wj by

Vj ⊕Wj = Vj+1

Vj = approximation space at resolution 2j (at level j)

Wj = additional details 2j to 2j+1 (called wavelet spaces)
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The discrete WT (DWT)

⇒ L2(R) =
⊕
j∈Z

Wj

= Vjo ⊕

 ∞⊕
j=jo

Wj

 (jo = lowest resolution level)

Main result :
∃ function ψ, explicitly computable from φ, such that

{ψjk(x) ≡ 2j/2ψ(2jx − k), j ∈ Z} = orthonormal basis of Wj

{ψjk(x) ≡ 2j/2ψ(2jx − k), j , k ∈ Z} = orthonormal basis of L2(R)

⇒ orthonormal wavelets

Examples : Haar wavelets, B-splines, Daubechies wavelets

Note: B-spline wavelets of order > 1 have compact support, but are
not orthogonal to their translates. By orthogonalizing them, one
loses compactness of support.
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Construction of the mother wavelet

From V0 ⊂ V1, get two-scale or refinement equation

φ(x) =
√

2
∞∑

k=−∞

hkφ(2x − k), hk = 〈φ1k |φ〉

Taking Fourier transforms, this gives

φ̂(2ξ) = h(ξ) φ̂(ξ), with h(ξ) =
1√
2

∞∑
k=−∞

hke
−ikξ

⇒ h is a 2π-periodic function and

|h(ξ)|2 + |h(ξ + π)|2 = 1, h(0) = 1

Iterating the two-scale equation, one gets

φ̂(ξ) = (2π)−1/2
∞∏
j=1

h(2−jξ) (convergent!)

Then define ψ ∈ W0 ⊂ V1 by

ψ̂(2ξ) = g(ξ) φ̂(ξ), with g another 2π-periodic function
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Construction of the mother wavelet

By Vj ⊕Wj = Vj+1 and orthonormality, one gets

g(ξ) h(ξ) + g(ξ + π) h(ξ + π) = 0 (1)

Simplest solution: g(ξ) = e iξ h(ξ + π), which implies

|h(ξ)|2 + |g(ξ)|2 = 1 (2)

(1) and (2) = Smith-Barnwell perfect reconstruction conditions

The two-scale equation implies

h(0) = g(π) = 1, h(π) = g(0) = 0,

i.e. h = low-pass filter, g = high-pass filter

This gives

ψ(x) =
√

2
∞∑

k=−∞

(−1)k−1h−k−1φ(2x − k) ⇒ orthonormal basis

Equivalent solution: ψ(x) =
√

2
∑∞

k=−∞ (−1)kh−k+1φ(2x − k)
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Spline wavelet bases

Simplest example : the Haar basis

scaling function : φ(x) = 1 for 0 6 x < 1, and 0 otherwise

associated wavelet : ψHaar(x)

ψHaar(x) =

 1, if 0 6 x < 1/2
−1, if 1/2 6 x < 1

0, otherwise

-

6

0 1

1

φ(x)

Scaling function φ(x)

-

6

0 1

1

-1

ψHaar(x)

Wavelet ψHaar(x)
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Spline wavelet bases

Starting from the Haar basis, one builds successive spline wavelet
bases of successive order, corresponding to scaling functions

φ1 = φ ∗ φ
φn = φ ∗ φn−1

V
(n)
0 = {splines of order n}

= {piecewise polynomial functions of degree n, C n−1 at k ∈ Z}

Spline wavelets of order 1

-

6

�
�

�@
@

@

φ1(x) = (φ ∗ φ)(x)

1-1

1

Scaling function φ1(x)

-

6

@@�
�
�
��B

B
B
BB��

ψ1(x)

-1/2 3/2

-1/2

1

Wavelet ψ1(x)
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Practical implementation of DWT

Practical formula :
Sampled signal in VJ ⇒ finite representation

VJ = Vjo ⊕

J−1⊕
j=jo

Wj

 , jo = lowest resolution

Example with J = 0 and jo = −6 :
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2
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−10

0

10

Six level decomposition of a signal on an orthonormal basis of

Daubechies d6 wavelets

J-P. Antoine Wavelet analysis, from the line to the two-sphere 41/167



Discretized CWT vs. DWT

Question: CWT (discretized) or DWT?

Answer: Depends on the application

CWT for feature detection (no a priori choice for a, b) : more
flexible, more robust to noise, but only frames in general

DWT for large amount of data, data compression : bases, faster, but
more rigid (need generalizations)

Generalizations

Biorthogonal wavelets
Wavelet packets
Continuous wavelet packets (integrated wavelets)
Redundant WT (on a rectangular lattice)
“Second generation” wavelets (lifting scheme)
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Generalization : Biorthogonal wavelet bases

In CWT, decomposition and reconstruction wavelets may be different
(with cross-compatibility conditions)

Analogue in DWT : biorthogonal bases, starting from two different
MRAs {Vj}, {Ṽj} with cross-orthogonality conditions between bases

{φjk , k ∈ Z} in Vj and {φ̃jk , k ∈ Z} in Ṽj

Wavelet subspaces are defined by

Wj ⊂ Vj+1 and Wj ⊥ Ṽj , W̃j ⊂ Ṽj+1 and W̃j ⊥ Vj

Choosing bases {ψjk , k ∈ Z} in Wj and {ψ̃jk , k ∈ Z} in W̃j , one gets

〈φjk |ψ̃j′k′〉 = 〈ψjk |φ̃j′k′〉 = 0

〈φjk |φ̃j′k′〉 = 〈ψjk |ψ̃j′k′〉 = δjj′δkk′

⇐⇒ four filters, two low-pass h, h̃, two high-pass g , g̃

This yields
more flexibility
better control of regularity and decay properties of wavelets
easily adaptation to other geometries : wavelets on interval, wavelets
on manifolds
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Generalization : Wavelet packets

Usual wavelet decomposition scheme:

At each step, approximation subspace Vj is further decomposed into
Vj−1 ⊕Wj−1

And detail subspace Wj is left unchanged

⇒ unique choice of bases

This is an asymmetrical subband coding scheme

Example of a three-level decomposition

V0

V−1 W−1

V−2 W−2 W−1

V−3 W−3 W−2 W−1
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Generalization : Wavelet packets

Wavelet packet decomposition scheme:

At each step, both the approximation subspace Vj and the detail
subspace Wj are further decomposed

⇒ large choice of orthonormal bases (“libraries”)

necessity of choosing one particular basis : Best basis algorithm

Example of wavelet packet three level decomposition, with a
particular choice

V0

V−1 W−1

V−2 W 0
−2 W 1

−2 W 2
−2

V−3 W 00
−3 W 01

−3 W 02
−3 W 11

−3 W 12
−3 W 21

−3 W 22
−3
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Generalization : Lifting scheme, second generation wavelets

Goal: to build a wavelet system without recourse to Fourier
transform, suitable for irregular sampling and arbitrary manifolds

Observe:
in a biorthogonal scheme, {Vj} does not determine {Ṽj} uniquely,
but freedom of choice is known explicitly (arbitrary trigonometric
polynomial)

Idea: start from given biorthogonal scheme (h, h̃, g , g̃), then

tranform it using that freedom into a new one (h(1), h̃(1), g (1), g̃ (1)),
and so on, by a succession of ‘lifting steps’

Starting point : weaken definition of MRA by imposing only

(3) for each j ∈ Z, Vj has a (Riesz) basis {ϕj,k , k ∈ K(j)}

with K(j)= general index set, such that K(j) ⊂ K(j + 1)
(no dilation invariance ⇒ irregular sampling allowed)

Build dual scale {Ṽj} with biorthogonal basis

〈ϕj,k |ϕ̃j,k′〉 = δkk′ , k, k ′ ∈ K(j).
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Generalization : Lifting scheme, second generation wavelets

Biorthogonal filters h, h̃ through refinement equations

ϕj,k =
∑

l∈K(j+1)

hj,k,l ϕj+1,l , similarly for h̃ ≡ h̃j,k,l

Build wavelets in usual way

{ψj,m,m ∈M(j)}, where M(j) = K(j + 1) \ K(j)

and dual wavelets, giving biorthogonal basis

〈ψj,m|ψ̃j′,m′〉 = δjj′δmm′

Refinement equations ⇒ filters g , g̃

ψj,m =
∑

l∈K(j+1)

gj,m,l ϕj+1,l , ψ̃j,m =
∑

l∈K(j+1)

gj,m,l ϕ̃j+1,l ,

⇒ Four biorthogonal filters h, h̃, g , g̃
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Generalization : Lifting scheme, second generation wavelets

Operator notation: hj,k,l ⇒ operator Hj : `2(K(j + 1)) → `2(K(j))

b = Hja ⇐⇒ bk =
∑

l∈K(j+1)

hj,k,l al

a ≡ (al) ∈ `2(K(j + 1)), b ≡ (bk) ∈ `2(K(j))

gj,m,l ⇒ operator Gj : `2(K(j + 1)) → `2(M(j))

Similarly for the operators H̃j , G̃j

Conditions for exact reconstruction(
H̃j

G̃j

)(
H∗

j G∗
j

)
=

(
1 0
0 1

)
(

H∗
j G∗

j

)( H̃j

G̃j

)
= 1
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Generalization : Lifting scheme, second generation wavelets

Lifting scheme

Freedom in designing a set of filters H̃j , G̃j biorthogonal to Hj ,Gj :

arbitrary operator Sj : `2(M(j)) → `2(K(j))

(in the simplest case, trigonometric polynomial s(ξ))

A lifting step:

{Hj , H̃j ,Gj , G̃j} =⇒ {Hj , H̃
(1)
j ,G

(1)
j , G̃j}

where H̃
(1)
j = H̃j + Sj G̃j , G

(1)
j = Gj − S∗j Hj ,

A dual lifting step:

{Hj , H̃
(1)
j ,G

(1)
j , G̃j , } =⇒ {H(1)

j , H̃
(1)
j ,G

(1)
j , G̃

(1)
j , }

where H
(1)
j = Hj + S̃jG

(1)
j , G̃

(1)
j = G̃j − S̃∗j H̃

(1)
j

=⇒ can get any biorthogonal filter set after finite number of steps,
starting from the Lazy wavelet: Hj = H̃j = E , Gj = G̃j = D, where

E : `2(K(j + 1)) → `2(K(j)) and D : `2(K(j + 1)) → `2(M(j))

are restriction (subsampling) operators
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SOME GENERAL CONSIDERATIONS ON BASES AND FRAMES
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Bases vs. frames

Basis {fk}k∈I in Hilbert space H (not necessarily orthogonal !):
every f ∈ H can be represented as

f =
∑
k∈I

ck(f )fk (3)

with unique coefficients ck(f )

Frame {fk}k∈I in H : every f ∈ H may also be written as in (3), but
the coefficients are not necessarily unique (maybe linearly
dependent) =⇒ redundancy

For every frame {fk}k∈I , there exists a dual frame {f̃k}k∈I such that

f =
∑
k∈I

〈f , fk〉f̃k =
∑
k∈I

〈f , f̃k〉fk , ∀ f ∈ H.

Problems : convergence? good appproximation by truncation?

Question: What is better: wavelet bases or frames?
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Wavelet bases and the two-scale matrix

For each j ∈ Z,Vj+1 = Vj

⊕
Wj

Choose bases Φj = (φjk)k in Vj , Ψj = (ψjk)k in Wj (row vectors)

Any f j =
∑nj

k=1 f j
kφjk ∈ Vj and g j =

∑mj

k=1 g j
kψjk ∈ Wj can be

written as

f j = Φj f j , g j = Ψjgj , with f j = (f j
k )j , gj = (g j

k)j column vectors

Since Vj−1,Wj−1are subspaces of Vj = Vj−1 ⊕Wj−1, we may write

Φj−1 = ΦjP j and Ψj−1 = ΦjQ j (∗)
Given f j , ∃ ! f j−1 ∈ Vj−1, g j−1 ∈ Wj−1 such that

f j = f j−1 + g j−1 ⇐⇒ Φj f j = Φj−1f j−1 + Ψj−1gj−1

So, using (∗), we get f j = (P j Q j)︸ ︷︷ ︸
(

f j−1

gj−1

)
= Mj : two-scale matrix

The two-scale matrix has to be inverted for some applications :
sparse, orthogonal?
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What is desirable from a wavelet basis/frame?

continuity, smoothness (if we want to approximate smooth data)

orthogonality

local support

Riesz stability (for nonorthogonal bases)

vanishing moments

for spherical wavelets: absence of distortions around pole(s)

...
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Desirable properties : Why orthogonality ?

In some applications (like compression, denoising) one needs to
invert the two-scale matrix Mj .
Thus, orthogonality =⇒ fast algorithms

However, orthogonality is often difficult to achieve
(for example, on R, there is no symmetric orthogonal wavelet ψ with
compact support)

In many situations, the orthogonality requirement is relaxed to
semi-orthogonality or biorthogonality
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Desirable properties : Why orthogonality ?

Let L2(R) = . . .⊕W−1 ⊕W 0 ⊕W 1 ⊕W 2 ⊕ . . .

Bj = {ψj,k , k ∈ Z} basis in W j , B = {ψj,k , j , k ∈ Z} basis in L2(R)

Orthogonal wavelet basis {ψj,k , j , k ∈ Z} :

〈ψj,k , ψj′,k′〉 = δj,j′δk,k′

One has
f =

∑
j,k∈Z

〈f , ψj,k〉ψj,k , ∀ f ∈ L2(R)

Semi-orthogonal wavelet basis B: 〈ψj,k , ψj′,k′〉 = δj,j′ c(k, k ′)

Biorthogonal wavelet bases generated by ψ, ψ̃ :

〈ψj,k , ψ̃j′,k′〉 = δj,j′δk,k′

f =
∑
j,k∈Z

〈f , ψ̃j,k〉ψj,k =
∑
j,k∈Z

〈f , ψj,k〉ψ̃j,k , ∀ f ∈ L2(R)
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Desirable properties : Why local support ?

Local support implies that the two-scale matrix Mj is sparse (crucial
for large amount of data)

Recall: f j = (P j Q j)

(
f j−1

gj−1

)
, Mj = (P j Q j)

Local support prevents spread of “tails”

Example: Using a spherical harmonics kernel, localized, but not
locally supported, leads to “ripples” when approximating data
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Desirable properties : Why local support ?

A spherical harmonics kernel in spherical coordinates and on the
sphere : localized, but not locally supported

Initial data set and its approximation at level 6
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Desirable properties : Why Riesz stability ?

Let J = countable, H Hilbert space. Then the basis {fk}k∈J ⊂ H
satisfies the Riesz stability conditions if ∃ A > 0,B <∞ such that

A
∑
k∈J

|ck |2 6 ‖
∑
k∈J

ck fk‖2 6 B
∑
k∈J

|ck |2 ∀c = {ck} ∈ l2(J).

Meaning of stability: Let g =
∑

k∈J dk fk , g∗ =
∑

k∈J d∗k fk ∈ H
Then the Riesz stability requirement is equivalent to the inequalities

‖g − g∗‖ 6 B1/2‖d − d∗‖l2(J) and ‖d − d∗‖l2(J) 6 A−1/2‖g − g∗‖,

where d = {dk}k∈J , d∗ = {d∗k }k∈J

Small perturbation on coefficients dk ⇒ the function g can be
reconstructed with small error
Small perturbation of g ⇒ small perturbation of the coefficients dk

Moreover, if there exists a Riesz stable basis, then there exists a
biorthogonal basis {f̃k}k∈J ⊂ H such that

〈fi , f̃j〉 = δij and f =
∑
k∈J

〈f , f̃k〉fk =
∑
k∈J

〈f , fk〉f̃k , ∀f ∈ H.
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Desirable properties : Why vanishing moments ?

Vanishing moments:∫
R

xnψ̃(x) dx = 0, for n = 0, 1, . . . ,N

=⇒ ψ̃ blind to polynomials of degree 6 N
(smooth part of the signal)

=⇒ good for detections of singularities

For DWT:
f =

∑
j,k

dj,kψj,k , dj,k = 〈f , ψ̃j,k〉

Important result: |dj,k | is large only in the region where f is less
smooth (unlike Fourier series, where a discontinuity of f ruins the
decrease of all Fourier coefficients)
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WAVELET ANALYSIS OF 2-D IMAGES

J-P. Antoine Wavelet analysis, from the line to the two-sphere 60/167



Wavelet analysis of 2-D images

Geometric transformations in the plane R2 :

(i) translation by ~b ∈ R2 : ~x 7→ ~x ′ = ~x + ~b

(ii) dilation by a factor a > 0 : ~x 7→ ~x ′ = a~x

(iii) rotation by an angle θ : ~x 7→ ~x ′ = rθ(~x)

rθ ≡
(

cos θ − sin θ
sin θ cos θ

)
, 0 6 θ < 2π, rotation matrix

Action on finite energy signals[
U(~b, a, θ)s

]
(~x) ≡ s~b,a,θ(~x) = a−1s(a−1 r−θ(~x − ~b))
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Wavelet analysis of 2-D images

Basic formulas for CWT :

S(~b, a, θ) = 〈ψ~b,a,θ|s〉

= a−1

∫
R2

ψ(a−1 r−θ(~x − ~b)) s(~x) d2~x

= a

∫
R2

e i~b·~k ψ̂(ar−θ(~k)) ŝ(~k) d2~k

Admissibility of wavelet ψ :

cψ ≡ (2π)2
∫

R2

|ψ̂(~k)|2

|~k|2
d2~k <∞

Necessary condition :

ψ̂(~0) = 0 ⇐⇒
∫

R2

ψ(~x) d2~x = 0.

Note : all formulas almost identical in 1-D and in 2-D !
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Group-theoretical justification in one dimension

Dilation + translation = affine transformation of the line

y = (b, a)x ≡ ay + b, a 6= 0, b ∈ R, x ∈ R

Composition rule : (b, a)(b′, a′) = (b + ab′, aa′)
⇒ {(b, a)} ≡ Gaff ' R2

∗ = affine group

Action of (b, a) on the signal : ψ 7→ U(b, a)ψ

(U(b, a)ψ)(x) = |a|−1/2ψ

(
x − b

a

)
(∗)

and U = unitary irreducible representation of Gaff in L2(R)

U is square integrable

ψ admissible ⇐⇒
∫∫

Gaff

|〈U(b, a)ψ|ψ〉|2 db da

a2
<∞

Note : Restricting to a > 0, one gets the connected affine group
G+

aff (or ax + b group) and (∗) is a UIR of it in L2(R+)
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In two dimensions

Dilations + translations + rotations
= similitude group of the plane : SIM(2) = R2 o (R+

∗ × SO(2))

~y = (~b, a, θ)~x ≡ arθ~x + ~b,

Action on finite energy signals[
U(~b, a, θ)s

]
(~x) = a−1s(a−1 r−θ(~x − ~b))

and U = unitary irreducible representation of SIM(2) in L2(R2)

U is square integrable

ψ admissible ⇐⇒
∫∫∫

SIM(2)

∣∣∣〈U(~b, a, θ)ψ|ψ〉
∣∣∣2 d2~b

da

a3
dθ <∞
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Interpretation of CWT

Interpretation of CWT : exactly as in 1-D

localization properties of ψ + convolution with zero mean function
⇒ local filtering in ~b, a, θ

support properties of ψ ⇒ analysis with constant relative
bandwidth: ∆k/k = const, k = |~k|

⇒ CWT = mathematical directional microscope
(optics ψ, global magnification 1/a, orientation tuning parameter θ)

⇒ CWT = detector and analyzer of singularities
(edges, contours, corners, . . . )
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Main properties of CWT

Energy conservation

c−1
ψ

∫∫∫
SIM(2)

|S(~b, a, θ)|2 d2~b
da

a3
dθ =

∫
R2

|s(~x)|2 d2~x

i.e., isometry from space of signals L2(R2) onto closed subspace of
L2(SIM(2)) = space of wavelet transforms

Reconstruction formula
Inversion of CWT by adjoint map :

s(~x) = c−1
ψ

∫∫∫
SIM(2)

ψ~b,a,θ(~x) S(~b, a, θ) d2~b
da

a3
dθ

i.e., decomposition of the signal in terms of the analyzing wavelets
ψ~b,a,θ, with coefficients S(~b, a, θ)
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Main properties of CWT

Reproduction property (reproducing kernel)

S(~b′, a′, θ′) = c−1
ψ

∫∫∫
SIM(2)

〈ψ~b′,a′,θ′ |ψ~b,a,θ〉 S(~b, a, θ) d2~b
da

a3
dθ

WT is covariant under translations, dilations and rotations
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Choice of the analyzing wavelet

(i) Isotropic wavelets

. Pointwise analysis

. Directions irrelevant
⇒ rotation invariant wavelet

Examples :

2-D Mexican hat wavelet

ψH(~x) = (2− |~x |2) exp(− 1
2 |~x |

2)

ψ̂H(~k) = |~k|2 exp(− 1
2 |~k|

2)

Difference-of-Gaussians or DOG wavelet

ψD(~x) = 1
2α2 exp(− 1

2α2 |~x |2)− exp(− 1
2 |~x |

2) (0 < α < 1)
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Choice of the analyzing wavelet

An isotropic wavelet: The 2-D Mexican hat wavelet
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Choice of the analyzing wavelet

(ii) Directional wavelets

. Detection of directional features

. Directional filtering
⇒ direction sensitive wavelet

Example :
directional wavelet ⇔ num supp ψ̂ ⊂ convex cone, apex at 0

2-D Morlet wavelet

ψM(~x) = exp(i~ko · ~x) exp(− 1
2 |~x |

2) + corr.

ψ̂M(~k) = exp(− 1
2 |~k − ~ko |2) + corr.

Conical wavelet, with support in convex cone

C (−α, α) ≡ {~k ∈ R2 | − α 6 arg~k 6 α, α < π/2}

ψ̂
C
(~k) =

{
(~k · ~e−α̃)m(~k · ~eα̃)m e−

1
2 k2

x , ~k ∈ C (−α, α)
0, otherwise
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Choice of the analyzing wavelet

A directional wavelet : The 2-D Morlet wavelet
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A very directional wavelet : The Gaussian conical wavelet (in spatial

frequency space)
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Exploiting redundancy: frames and ridges in the 2-D CWT

(a) 2-D frames:
same definition as in 1-D, similar results (Mexican hat, Morlet
wavelet, . . . give good, nontight frames)

(b) 2-D ridges:
Caution: several possible definitions !!

Useful choice, in terms of energy density of the CWT :

E[s](~b, a) ≡ |S(~b, a)|2 (in isotropic case)

Ridges = lines of local maxima of E[s](~b, a)
Skeleton = set of all ridges

More precisely, a (vertical) ridge R is a 3-D curve (~r(a), a) such
that, for each scale a ∈ R+, E[s](~r(a), a) is locally maximum in
space and r is a continuous function of scale

As in 1-D, the restriction of the CWT to its skeleton characterizes
the signal completely.
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Choice of the analyzing wavelet

Characteristic features of a ridge:
Amplitude of the ridge

AR = lim
a→0

E[s](~r(a), a)

Slope of E[s] on the ridge

SR = lim
a→0

d ln E[s](~r(a), a)

d ln a

Energy of the ridge

ER =

Z amax

0

E[s](~r(a), a)
da

a3

An example of 2-D vertical ridges

Simulated bright points on the Sun Corresponding vertical ridges
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Applications of the 2-D CWT : Image processing

Image denoising
removal of noise in images using directional wavelets

Contour detection, character recognition
detection of edges, contours, corners . . .

Object detection and recognition in noisy images
automatic target recognition (ATR), application to infrared radar
imagery, using both position and scale-angle features

Image retrieval
recognition of a particular image in a large data basis,
characterization of images by particular features

Medical imaging
Magnetic resonance imaging (MRI), contrast enhancement,
segmentation

Watermarking of images
adding a robust, but invisible, signature in images (e.g. with
directional wavelets)
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Applications of the 2-D CWT : Physical applications

Astronomy and astrophysics
structure of the Universe, cosmic microwave background (CMB)
radiation, feature detection in images of the Sun, detection of
gamma-ray sources in the Universe

Geophysics
geology: fault detection, seismology, climatology

Fluid dynamics
detection of coherent structures in turbulent fluids, measurement of
a velocity field, disentangling of an underwater acoustic wave train

J-P. Antoine Wavelet analysis, from the line to the two-sphere 75/167



Applications of the 2-D CWT : Physical applications

Fractals and the thermodynamical formalism
analysis of 2-D fractals by the WTMM method (diffusion limited
aggregates, arborescent growth phenomena, fractal surfaces,
clouds,. . . ) :
determination of fractal dimension, unraveling of universal laws,
shape recognition and classification of patterns

Texture analysis
classification of textures, “Shape from texture” problem

Detection of symmetries in 2-D patterns
detection of discrete inflation (rotation + dilation) symmetries,
quasicrystals (mathematical and genuine), quasiperiodic point sets
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Applications of the 2-D CWT : Physical applications

Noise removal in images

Clear image Noisy image

Reconstructed, denoised image
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Applications of the 2-D CWT : Physical applications

Contour detection

The signal a = 8 a = 4 a = 2
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Applications of the 2-D CWT : Physical applications

Example of character recognition

1 1 1 1

-1
-1

-1
1

-1
-1

-1
1

Detecting the contour of the letter A with the radial Mexican hat:

The CWT and its coding by the signs of the respective corners

J-P. Antoine Wavelet analysis, from the line to the two-sphere 79/167



Applications of the 2-D CWT : Physical applications

Solar physics : Disentangling bright points from cosmic hits on solar
images

Slope

Lo
g 

of
 A

m
pl

itu
de

−5 −4 −3 −2 −1 0 1 2

1.5

2

2.5

3

3.5

4

4.5

5

5.5 Cosmics
Bright

Points

Top-left quadrant of a 284 Å

wavelength EIT/SoHO image
Slope-amplitude histogram

Selected cosmics (triangles)

and bright points (circles)

Bright points selection Cosmics selection

A closer look on a small on-disk region of the Sun
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Applications of the 2-D CWT : Physical applications

Directional filtering with a conical wavelet

Signal CWT CWT after thresholding

The original image,

representing bacteria Filtering at −10◦ The same at 45◦ The same at 135◦
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Applications of the 2-D CWT : Physical applications

Measuring the velocity field in a turbulent fluid (with Morlet wavelet)

The dot-bar signature of tracers

in the fluid

A quasi-laminar flow

A turbulent flow around an obstacle
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The 2-D discrete WT (DWT)

Choose dilation matrix D : 2× 2 regular matrix such that

(a) DZ2 ⊂ Z2 ( ⇔ D has integer entries)

(b) λ ∈ σ(D)⇒ |λ| > 1

A multiresolution analysis of L2(R2) is an increasing sequence of
closed subspaces Vj ⊂ L2(R2):

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

such that

(1)
T

j∈Z Vj = {0},
S

j∈Z Vj = L2(R2) (exhaustion)

(2) f (·) ∈ Vj ⇐⇒ f (D ·) ∈ Vj+1 (no privileged scale)

(3) ∃Φ ∈ L2(R2) s.t. {Φ(· − k), k ∈ Z2} is an orthonormal basis of V0

(scaling function)

=⇒ {Φj,k(·) = | det D|j/2Φ(D j ·−k), k ∈ Z2} orthonormal basis of Vj
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The 2-D discrete WT (DWT)

Define Wj : Vj+1 = Vj ⊕Wj .

2-D wavelets: functions in W0.

Theorem [Meyer]: There exist q = | det D| − 1 wavelets

1Ψ,2 Ψ, . . . ,q Ψ ∈ V1

that generate an orthonormal basis of W0. These functions can be
constructed explicitly from the scaling function Φ.

=⇒ {νΨj,k(·) = | det D|j/2 · νΨ(D j · −k), ν = 1, . . . , q, k ∈ Z2}
= orthonormal basis of Wj

{νΨj,k, ν = 1, . . . , q, k ∈ Z2, j ∈ Z} = orthonormal basis of L2(R2)
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The 2-D discrete WT (DWT)

Particular case: tensor product wavelets

Take

D =

(
2 0
0 2

)
,

Let {Vj , j ∈ Z} be a 1-D MRA in L2(R). Then the 2-D scaling
function Φ(x) = φ(x)φ(y) generates a MRA of L2(R2) and

Vj+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)⊕ [(Wj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗Wj)]

= Vj ⊕Wj .

Thus Wj consists of three pieces, with the following orthonormal
bases :

{ψj,k1(x)φj,k2(y), (k1, k2) ∈ Z2} o.n.b. for Wj ⊗ Vj ,

{φj,k1(x)ψj,k2(y), (k1, k2) ∈ Z2} o.n.b. for Vj ⊗Wj ,

{ψj,k1(x)ψj,k2(y), (k1, k2) ∈ Z2} o.n.b. for Wj ⊗Wj .
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The 2-D discrete WT (DWT)

⇒ one scaling function : Φ(x , y) = φ(x)φ(y)

and three wavelets :

hΨ(x , y) = φ(x)ψ(y)
vΨ(x , y) = ψ(x)φ(y)
dΨ(x , y) = ψ(x)ψ(y)

Then

{λΨj,k, k = (k1, k2) ∈ Z2, λ = h, v , d} is an o.n.b. for Wj

{λΨj,k, j ∈ Z, k ∈ Z2, λ = h, v , d} is an o.n.b. for⊕
j∈Z Wj = L2(R2)

φ, ψ have compact support =⇒ Φ,λΨ have compact support
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The 2-D discrete WT (DWT)

Typical 3-level decomposition of an image

d h
1 d d

1

d v
1

d h
2 d d

2

d v
2

d h
3 d d

3

d v
3c3
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EXTENDING THE CWT TO THE TWO-SPHERE
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Extending the CWT to curved manifolds

Many situations in physics yield data on non-flat manifolds:

sphere : geophysics, cosmology (CMB), statistics, . . .

two-sheeted hyperboloid : cosmology (an open expanding model of
the universe), optics (catadioptric image processing, where a sensor
overlooks a hyperbolic mirror)

paraboloid : optics (catadioptric image processing)

⇒ suitable analysis tools?

Possible solution: extend the continuous wavelet transform

easy translation of the wavelet, by an isometry of the manifold, i.e.,
an element of SO(3), SO(1,2). . .

local transform, with locality controlled by a dilation (to be defined!)

in practice, usual CWT works with discrete frames

⇒ need discrete wavelet frames on manifold
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Wavelet transforms on the 2-sphere

Do we have suitable analysis tools for signals living on the 2-sphere?
Unit sphere : S2 = {x ∈ R3, ‖x‖ = 1}
Fourier transform is standard, but cumbersome : expansion in
spherical harmonics !

{Y m
l (θ, ϕ)} o.n. basis on L2(S2), so that, ∀ f ∈ L2(S2, dµ(ω)),

f (ω) =
∑
l∈N

∑
|m|6l

f̂ (l ,m) Y m
l (ω),

f̂ (l ,m) = 〈Y m
l |f 〉 =

∫
S2

Y m
l (ω) f (ω) dµ(ω)

where ω = (θ, ϕ) ∈ S2, θ ∈ [0, π], ϕ ∈ [0, 2π), dµ(ω) = sin θ dθ dϕ

Problem : global analysis, Y m
l not localized at all on the sphere!

Note: there exist localized combinations (spherical harmonics
kernels, as seen before)
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The CWT on the sphere

How to define a CWT on the sphere?

Translations ⇒ rotations from SO(3)

Dilations ? the sphere is compact !

Can one use the existing results from 2-D (frames, directional
wavelets, etc.) ?

Successive approaches

W. Freeden & U. Windheuser (1995, 1996) (via spherical harmonics)
M. Holschneider (1996)
S. Dahlke & P. Maass (1996)
J-P. Antoine & P. Vandergheynst (1998)

The continuous wavelet transform (CWT) has many advantages :

locality controlled by a dilation (to be defined!)
easy translation of the wavelet, by a rotation from SO(3)
reasonably fast algorithms
possibility of constructing spherical frames
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The DWT on the sphere

MRA on L2(S2)

A multiresolution analysis of L2(S2) is an increasing sequence of
closed subspaces {V j , j > 0}

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ L2(S2)

such that
∞S
j=0

V j is dense in L2(S2)

∃ index sets Kj ⊆ Kj+1 s.t., ∀ j ,V j has a Riesz basis {ϕj
v , v ∈ Kj}.

More precisely, there exist constants 0 < A 6 B <∞, independent
of the level j , such that

A 2−j

‚‚‚‚n
c j
v

o
v∈Kj

‚‚‚‚
l2(Kj)

6

‚‚‚‚‚‚
X
v∈Kj

c j
vϕ

j
v

‚‚‚‚‚‚
L2(S2)

6 B 2−j

‚‚‚‚n
c j
v

o
v∈Kj

‚‚‚‚
l2(Kj )

(we do not require that ϕj
v = translations/dilations of the same

function ϕ: too difficult for spherical wavelet frames/bases)

Define the wavelet spaces W j as W j = V j+1 	 V j and then
construct a basis in each W j
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The DWT on the sphere

Main approaches in literature

Via spherical harmonics kernels :

D. Potts, G. Steidl, M. Tasche (1996) spherical frames

no distortion (no pole has a privileged role), preserves smoothness,
but frame is not locally supported

F. Narcowich & J.D. Ward (1996)

W. Freeden & U. Windheuser (1997)

T. Bülow (2002) : diffusion, heat equation on the sphere

W. Freeden & M. Schreiner (1997, 2006)

wavelets locally supported, but they are defined as infinite
convolutions of kernels of spherical harmonics

W. Freeden & M. Schreiner (2007)

wavelets are locally supported, but the MRA is truncated at j = N

{0} ⊂ V0 ⊂ V1 ⊂ . . . ⊂ VN−1 ⊂ VN ⊂ L2(S2).

H. Mhaskar, J. Prestin (2006) (spherical) polynomial frames

Via polar coordinates (θ, ϕ) ∈ [0, π]× [0, 2π] → S2
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An example of spherical harmonics kernel : Potts, Steidl & Tasche (1996)

For localization : kernels of spherical harmonics, localized, but not locally
supported!

Analogy in 1-D: Dirichlet kernel : DN(x) =
1

2π

NX
k=−N

e ikx

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

4

6

8

D
25

(x)

Spherical harmonics kernel at level j : Φj =
1

2j

2j−1X
l=0

lX
m=−l

(2l + 1)Y m
l

in polar coordinates on the sphere
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The DWT on the sphere

Via radial projection from a convex polyhedron Γ + weighted scalar
product on S2: D. Roşca (2005, 2006, 2007)
In this way one gets

Piecewise constant wavelets on spherical triangulations

Piecewise linear wavelets on triangulations of R2  Piecewise
rational semi-orthogonal wavelets on S2: continuous

Γ = cube + wavelets on an interval  Haar wavelets on S2

Properties : Riesz stability, local support (=⇒ sparse matrices), no

distortion around the poles, easy implementation, possible extension to

sphere-like surfaces (closed surfaces), but no smoothness

Other methods : direct calculations on the sphere, S2 MRA on
spherical meshes, using lifting scheme (P. Schröder et W. Sweldens,
1995)

Important observation : no construction mentioned so far yields
simultaneously continuity & local support & orthogonality of the
wavelet bases (OK for every choice of 2 conditions + no distortions
around poles)

DWT on the sphere via stereographic projection:
J-P. Antoine & D. Roşca (2007)
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The CWT on the 2-sphere: heuristics

Origin of the spherical CWT : affine transformations on S2

motion = rotation % ∈ SO(3)

dilation by scale factor a ∈ R∗+ : how to define it?

Possible solution : stereographic dilation on S2

!a

add

S

N B B’

A’

A

!
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The CWT on the 2-sphere: heuristics

Realization by unitary operators in L2(S2, dµ) :

. rotation R% : (R%f )(ω) = f (%−1ω), % ∈ SO(3)

. dilation Da : (Daf )(ω) = λ(a, θ)1/2f (ω1/a), a ∈ R∗+

where

ωa ≡ (θa, ϕ), a > 0

θa is defined by tan θa
2

= a tan θ
2

the normalization factor (cocycle, Radon-Nikodym derivative) is
needed for compensating the noninvariance of the measure dµ under
dilation :

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2

% may be factorized into 3 rotations (Euler angles):

R% = Rz
ϕ Ry

θ Rz
γ , ϕ, γ ∈ [0, 2π), θ ∈ [0, π]
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Construction of the spherical CWT : The group-theoretical method

General (coherent states) formalism: group of affine transformations on S2 ?

Note :

motions % ∈ SO(3) and dilations by a ∈ R+
∗ do not commute

/∃ semidirect product of SO(3) and R+
∗ ⇒ the only extension of

SO(3) by R+
∗ is their direct product

way out : embed the two factors into the Lorentz group SOo(3,1),
by the Iwasawa decomposition:

SOo(3, 1) = SO(3) · A · N,

where A ∼ SOo(1, 1) ∼ R ∼ R+
∗ (boosts in the z-direction) and

N ∼ C
Justification : the Lorentz group SOo(3, 1) is the conformal group
both of the sphere S2 and of the tangent plane R2
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Construction of the spherical CWT : The group-theoretical method

Action of Lorentz group :

Stability subgroup of the North Pole : P = SOz(2) · A · N (minimal
parabolic subgroup)
⇒ S2 ' SOo(3, 1)/P ' SO(3)/SO(2)
⇒ SOo(3, 1) acts transitively on S2

explicit computation (with Iwasawa decomposition) :
pure dilation = boost in z-direction = stereographic dilation !

Natural UIR of Lorentz group SOo(3, 1) in Hilbert space L2(S2, dµ):

[U(g)f ] (ω) = λ(g , ω)1/2 f
(
g−1ω

)
, g ∈ SOo(3, 1), f ∈ L2(S2, dµ),

where λ(g , ω) = Radon-Nikodym derivative

Parameter space of spherical wavelets :

X = SOo(3, 1)/N ' SO(3) · R+
∗

⇒ introduce section σ : X = SOo(3, 1)/N → SOo(3, 1)

and consider reduced representation U(σ(%, a))

Natural (Iwasawa) section : σ(%, a) = % a, % ∈ SO(3), a ∈ A.
⇒ U(σ(%, a)) = U(% a) = U(%)U(a) = R% Da as before !
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The group-theoretical method : Result # 1

The UIR is square integrable on X , that is, there exists nonzero
(admissible) vectors ψ ∈ L2(S2, dµ) such that∫

X

|〈U(σ(%, a))ψ|φ〉|2 da

a3
d% := 〈φ|Aψφ〉 <∞, ∀φ ∈ L2(S2, dµ) ,

where d% = left Haar measure on SO(3)

Resolution operator Aψ is diagonal in Fourier space (Fourier
multiplier):

Âψf (l ,m) = Gψ(l)f̂ (l ,m)

where

Gψ(l) =
8π2

2l + 1

∑
|m|6l

∫ ∞

0

|ψ̂a(l ,m)|2 da

a3
, ∀ l ∈ N,

and ψ̂a(l ,m) = 〈Y m
l |ψa〉 is the Fourier coefficient of ψa = Daψ
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The group-theoretical method : Result # 2

Admissible wavelet = function ψ ∈ L2(S2, dµ) for which ∃ c > 0
such that

Gψ(l) 6 c , ∀ l ∈ N,

⇔ the resolution operator Aψ is bounded and invertible

Weak admissibility condition on ψ:∫
S2

ψ(θ, ϕ)

1 + cos θ
dµ(θ, ϕ) = 0 + regularity conditions

similar to the “zero mean” condition of ψ on the line/plane.

⇒ the spherical CWT acts as a local filter, as in the flat case !
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The group-theoretical method : Result # 3

For any admissible ψ such that
∫ 2π

0
ψ(θ, ϕ) dϕ 6≡ 0, the family

{ψa,% := R% Daψ, (%, a) ∈ X} is a continuous frame, that is,

∃ m > 0 and M <∞ such that

m ‖φ‖2 6
∫

X

|〈ψa,%|φ〉|2
da

a3
d% 6 M ‖φ‖2, ∀φ ∈ L2(S2, dµ).

⇔ ∃ d > 0 such that d 6 Gψ(l) 6 c , ∀ l ∈ N

⇔ Aψ and A−1
ψ both bounded

Note :

true for any axisymmetric (zonal) wavelet
frame probably not tight !
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Example of admissible spherical wavelet

Difference of Gaussians spherical wavelet (SDOG)

ψ
(α)
G (θ, ϕ) = φ(θ, ϕ)− 1

α [Dαφ](θ, ϕ), α > 0

where φ(θ, ϕ) = exp(− tan2( θ2 ))

original (a = 0.125) rotated rotated and scaled (a = 0.0625)

The spherical DOG ψ
(α)
G wavelet, for α = 1.25.
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The Spherical CWT

The Spherical CWT

Wf (%, a) = 〈ψa,%|f 〉 =

∫
S2

[R%Daψ](ω) f (ω) dµ(ω)

ψ admissible wavelet, f ∈ L2(S2)

Reconstruction formula

For f ∈ L2(S2), ψ an admissible wavelet such that
∫ 2π

0
dϕ ψ(θ, ϕ) 6= 0,

f (ω) =

∫
R∗+

∫
SO(3)

Wf (%, a) [A−1
ψ R%Daψ](ω)

da

a3
d%

Plancherel relation

‖f ‖2 =

∫
R∗+

∫
SO(3)

W̃f (%, a) Wf (%, a)
da

a3
d%

with
W̃f (%, a) = 〈ψ̃%,a|f 〉 = 〈A−1

ψ R%Daψ|f 〉
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The Spherical CWT: the axisymmetric case

General rotation : % = %(ϕ, θ, α) ∈ SO(3), Euler angles

g axisymmetric ⇒ R%g = R[ω]g , where [ω] = %(ϕ, θ, 0)

∴ g localized around North Pole ⇒ R[ω]g localized around ω = (θ, ϕ)

Thus CWT redefined on S2 × R∗+ by a spherical correlation

Wf (ω, a) = (ψa ? f )(ω) =

∫
S2

R[ω] ψa(ω′) f (ω′) dµ(ω′)

New reconstruction formula

f (ω) =

∫
R∗+

∫
S2

Wf (ω
′, a) [A−1

ψ R[ω]Daψ](ω′)
da

a3
dµ(ω′)
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An academic example

a = 0.5 a = 0.2 a = 0.1 a = 0.035
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A real life example: analysis of the Milky Way

Original data: Hipparcos and Tycho Stars Catalogues

Wf (ω, 0.08) Wf (ω, 0.04) Wf (ω, 0.02)
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Another example: spherical map of Europe

Original picture Wavelet transform at a = 0.032

Wavelet transform at a = 0.016 Wavelet transform at a = 0.0082

Note: WT at finest resolution has same artifacts as the original picture: closed

strait of Gibraltar, unresolved complex Corsica–Sardinia, ragged coastlines, etc.
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The Euclidean limit

Wanted: CWT on S2 tends locally to CWT on tangent plane

Technique : group contraction along z-axis, with sphere radius as
parameter (R →∞)

For the groups

SO(3) −→ R2 o SO(2)

SOo(3, 1) = SO(3) · A · N −→ R2 o SIM(2)

For the group actions

Replace sphere S2 by sphere S2
R of radius R, then:

action of σ(X ) ⊂ SOo(3, 1) on S2
R −→ action of SIM(2) on R2

For the representations

Define a family of representations UR on L2(S2
R , dωR) (dωR = R2dω)

UR(γ; a) = U(σ(γ; a/R))

Then UR −→ U as R →∞ (strong limit on a dense set)
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The Euclidean limit

For the CWT on S2

Let ψ(~x) ∈ L2(R2, d2~x) and ψR = π−1
R ψ, where

πR : L2(S2
R , dωR) → L2(R2, d2~x)

is the unitary map induced by the stereographic projection. Then

GψR
(l) 6 c (∀ l ∈ N)

R→∞−→ cψ ∼
∫
|ψ̂(~k)|2 d2~k

|~k|2
<∞

Thus admissible vectors on S2 correspond to admissible vectors on
R2, i.e., the Euclidean limit holds : for ψ = limR→∞ πRψR ,

ψR admissible on S2
R =⇒

∫
S2

R

ψR(ω)

1 + cos θ
dωR = 0

⇓ ⇓

ψ admissible on R2 =⇒
∫

ψ(~x) d2~x = 0

Example:

SDOG wavelet on S2
R =⇒ DOG wavelet on R2
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Construction of the spherical CWT : The geometrical or conformal method

The geometrical or conformal method

Group-theoretical method yields only asymptotic connection with
plane CWT (Euclidean limit : R →∞)

There is a direct connection through inverse stereographic projection

. . . and it is uniquely specified by geometrical considerations !

⇒ it is possible to obtain uniquely the same spherical CWT from the
plane (Euclidean) one, simply by lifting everything from the tangent
plane to the sphere by inverse stereographic projection:

Wavelets

Admissibility conditions

Directionality or steerability properties
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Construction of the spherical CWT : The geometrical or conformal method

Uniqueness of the stereographic projection
Let p : S2 → R2 be a radial diffeomorphism from the 2-sphere to the
tangent plane at the North Pole:

p(θ, ϕ) = (r(θ), ϕ) with inverse p−1(r , ϕ) = (θ(r), ϕ)

Assume that p is a conformal map, i.e., it preserves angles, or the
metric g ′ induced by p on R2 is conformally equivalent to the
Euclidean metric g :

g ′ij(r , ϕ) = eφ(r) gij(r , ϕ), φ(r) > 0

Then r(θ) = 2 tan θ
2
, i.e., p is the stereographic projection

Uniqueness of the stereographic dilation
Let Da be a radial dilation on the sphere S2 :

Da(θ, ϕ) = (θa(θ), ϕ)

Assume Da is a conformal diffeomorphism

Then one has uniquely :

tan(
θa

2
) = a tan(

θ

2
), i.e., Da is the stereographic dilation
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Construction of the spherical CWT : The geometrical or conformal method

Thus one obtains an equivalence principle between the two wavelet
formalisms :

Let π : L2(S2, dω) → L2(R2, d2~x) be the unitary map induced by the
stereographic projection :

[πF ](~x) =
1

1 + (r/2)2
F (p−1(~x)), F ∈ L2(S2, dω)

with inverse

[π−1f ](θ, ϕ) =
2

1 + cos θ
f (p(θ, ϕ)), f ∈ L2(R2, d2~x)

Then every admissible Euclidean wavelet ψ ∈ L2(R2, d2~x) yields an
admissible spherical wavelet π−1ψ ∈ L2(S2, dω)

In particular, if ψ is a directional wavelet, so is π−1ψ

J-P. Antoine Wavelet analysis, from the line to the two-sphere 113/167



Example : The spherical Morlet wavelet (real part)

a = 0.3 a = 0.03

−1

−0.5

0

0.5

1

−1
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1
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1

X
Y

Z

a = 0.03, center at (π/3, π/3) The same, rotated by π/2
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Analysis of the same triangle with the spherical Morlet wavelet (α = 1.25)

χ = 0◦ χ = 90◦
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Wavelet frames on the 2-sphere

Different notions of frame (equivalent mathematically, not
numerically!)

Classical frame {ψn} ∈ H:

m ‖f ‖2 6
∑
n∈Γ

|〈ψn|f 〉|2 6 M ‖f ‖2, ∀ f ∈ H

Controlled frame :

m ‖f ‖2 6
∑
n∈Γ

〈ψn|f 〉 〈f |C ψn〉 6 M ‖f ‖2, ∀ f ∈ H

where C ∈ GL(H) : bounded, bounded inverse

Weighted frame :

m ‖f ‖2 6
∑
n∈Γ

wn |〈ψn|f 〉|2 6 M ‖f ‖2, ∀ f ∈ H

wn > 0 : weights (diagonalize C !)
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Half-continuous spherical frames

Approach # 1 : weighted frame

ψ = axisymmetric wavelet (throughout)

Half-continuous grid Λ = {(ω, aj) : ω ∈ S2, j ∈ Z, aj > aj+1}
Want :

m ‖f ‖2 6
∑
j∈Z

νj

∫
S2

|Wf (ω, aj)|2 dµ(ω) 6 M ‖f ‖2

⇔ {ψω,aj = R[ω]Dajψ : (ω, aj) ∈ Λ} = half-continuous frame in L2(S2)

Sufficient condition :

m 6
4π

2l + 1

∑
j∈Z

νj |ψ̂aj (l , 0)|2 6 M

J-P. Antoine Wavelet analysis, from the line to the two-sphere 117/167



Half-continuous spherical frames

Example:

SDOG wavelet (α = 1.25),

discretized dyadic scale with K voices aj = a0 2−j/K , j ∈ Z
weights adapted to natural measure a−3da :

νj =
aj − aj+1

a3
j

= a−2
j

(
21/K−1

21/K

)
frame bounds m,M estimated from minimum and maximum of
quantity

S(l) =
4π

2l + 1

∑
j∈Z

νj |ψ̂aj (l , 0)|2 over l ∈ [0, 31] and for K ∈ [1, 4]

Result :
K m M M/m
1 0.5281 0.9658 1.8288
2 0.6817 1.1203 1.8107
3 0.6537 1.1836 1.8107
4 0.6722 1.2171 1.8107

∴ ratio M/m → 1.8107 : nontight frame !

Reason : resolution operator Aψ not taken into account
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Half-continuous spherical frames

Approach # 2 : controlled frame

Want :

m ‖f ‖2 6
∑
j∈Z

νj

∫
S2

Wf (ω, aj) W̃f (ω, aj) dµ(ω) 6 M ‖f ‖2

W̃f (%, a) = 〈A−1
ψ R%Daψ|f 〉

Sufficient condition :

m 6
4π

2l + 1
Gψ(l)−1

∑
j∈Z

νj |ψ̂aj (l , 0)|2 6 M

Example : Same SDOG wavelet as in approach # 1
Result :

K m M M/m
1 0.7313 0.7628 1.0431
2 0.8747 0.8766 1.0021
3 0.9242 0.9254 1.0014
4 0.9503 0.9512 1.0009

∴ ratio M/m → 1 : a tight frame might be obtained
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Half-continuous spherical frames

Construction of a tight half-continuous frame

Assume ψ is an axisymmetric wavelet such that

gψ(l) =
4π

2l + 1

∑
j∈Z

νj |ψ̂aj (l , 0)|2 6= 0, ∀ l ∈ N

Then
f (ω) =

∑
j∈Z

νj [Wf (·, aj) ? ψ
#
aj

](ω)

where

ψ#
aj

= A−1
ψ Dajψ

Aψ = resolution operator defined by dl−1
ψ h(l ,m) = g−1

ψ (l)h(l ,m)

(discretization of continuous resolution operator Aψ)

⇒ tight frame controlled by A−1
ψ
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Discrete spherical frames

Discretization of scales : as before

a ∈ A = {aj ∈ R∗+ : aj > aj+1, j ∈ Z}

Discretization of positions : equi-angular grid Gj , j ∈ Z

Gj = {ωjpq = (θjp, ϕjq) ∈ S2 : θjp = (2p+1)π
4Bj

, ϕjq = qπ
Bj
}

p, q ∈ Nj := {n ∈ N : n < 2Bj}, Bj ∈ N, j ∈ Z,Bj ∈ B

{θjp} = pseudo-spectral grid, with nodes on the zeros of a
Chebyshev polynomial of order 2Bj

⇒ (exact) quadrature rule (Driscoll-Healy)∫
S2

f (ω) dµ(ω) =
∑

p,q∈Nj

wjp f (ωjpq),

for certain weights wjp > 0 and for every band-limited function

f ∈ L2(S2) of bandwidth Bj (i.e., f̂ (l ,m) = 0 for all l > Bj)
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Discrete spherical frames

⇒ complete space of discretization :

Λ(A,B) = {(aj , ωjpq) : j ∈ Z, p, q ∈ Nj}

Want : weighted frame controlled by A−1
ψ

m ‖f ‖2 6
∑
j∈Z

∑
p,q∈Nj

νjwjp Wf (ωjpq, aj) W̃f (ωjpq, aj) 6 M ‖f ‖2 (∗∗)

Sufficient condition : Let

S ′(l) =
∑
j∈Z

4πνj

2l+1 1l[0,Bj )(l) G−1
ψ (l) |ψ̂aj (l , 0)|2,

δ = ‖X‖ ≡ sup
(Hl )l∈N

‖XH‖
‖H‖ ,
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Discrete spherical frames

with the infinite matrix (Xll ′)l,l′∈N given by

Xll ′ =
∑
j∈N

cj(l , l
′)1l[2Bj ,+∞)(l + l ′)|ψ̂aj (l , 0)||ψ̂aj (l

′, 0)|

and cj(l , l
′) =

2πνj

Bj
G−1
ψ (l)

[
(2(l + Bj) + 1

)(
2(l ′ + Bj) + 1

)] 1
2 .

Let K0 = inf l∈N S ′(l) and K1 = supl∈N S ′(l). If one has

0 6 δ < K0 6 K1 < ∞,

then the family {ψjpq = R[ωjpq ]Dajψ : j ∈ Z, p, q ∈ Nj} is a weighted

spherical frame controlled by the operator A−1
ψ (i.e., (**) holds),

with frames bounds K0 − δ, K0 + δ.

Note :

‖X‖ difficult to compute (infinite dimensional matrix)
f ∈ L2(S2) band-limited of bandwidth b ∈ N0

⇒ X is b × b-dimensional
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Discrete spherical frames

Result :

spherical DOG wavelet frame
b = 64, dyadically discretized scale with K = a0 = 1
bandwidth associated to grid size at resolution j :
Bj = B02

|j|, B0 ∈ N, where B0 is the minimal bandwidth associated
to ψ1.

Then one gets

K0 K1 δ m = K0 − δ M = K1 + δ M/m
B0 = 2 0.6807 0.7700 84.1502 − − −
B0 = 4 0.7402 0.7790 0.0594 0.6808 0.8384 1.2314
B0 = 8 0.7402 0.7790 0.0014 0.7388 0.7804 1.0564

Conclusion :

sufficient condition 0 6 δ < K0 6 K1 <∞ satisfied for B0 > 4
but a tight frame cannot be obtained by increasing B0

for B0 →∞, spherical grids get finer and finer ⇒ half-continuous
frame with one voice discretization of scale : not sufficient to get a
tight frame !

J-P. Antoine Wavelet analysis, from the line to the two-sphere 124/167



Example #1 : Local enhancement of Jupiter’s Red Spot

Tools :

. SpharmonicKit (Rockmore et al.)

. MATLAB c© YAWtb toolbox (UCL)

Half-continuous spherical frame with SDOG wavelet, data bandwith
b = 256, equi-angular grid of size 512× 512

⇒ good discretization for |j | 6 7 and a0 = 1

Technique :

Before reconstruction, coefficients at the finest scale Wf (ω, a7) are
multiplied by a Gaussian mask M(ω) = 1 + na′ [R[ω′]Da′G ](ω)
localized on the center ω′ of the Spot, with ‖M‖∞=2

Mask increases their amplitudes by 6 2 in vicinity of Red Spot

The rest of the coefficients are not modified

Impossible to do with a purely frequential spherical decomposition !
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Example #1 : Local enhancement of Jupiter’s Red Spot

Result :

Original image Local mask

Zoom over the Red Spot Zoom over the Red Spot with sharper details
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Example #2 : Map of the Earth

Original data f : World map, recorded on a equi-angular grid of
512×512 points

Reconstruction (|j | 6 6) with half-continuous spherical frame and
SDOG wavelet, as before : relative error = 1.1%

Combination of reconstruction with conjugate gradient algorithm
(3 iterations) : relative error = 10−5 %
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Example #2 : Map of the Earth

Result : SDOG coefficients Wj [p, q] = Wj(ωjpq)

World map W0[p, q] W2[p, q]

(green ' 1, blue ' 0)

W4[p, q] Difference between original data and

reconstruction (scale 10−5)
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The spherical CWT via stereographic projection

Advantages:

easy to implement, if wavelet ψ is given explicitly

large freedom in choosing the mother wavelet ψ

allows use of directional wavelets

smoothness

Disadvantages:

frames, not bases =⇒ redundancy =⇒ higher computing cost, not
suitable for large amount of data

frames are applicable to band-limited functions only

problem of finding an appropriate discretization grid which leads to
good frames

an explicit mother wavelet ψ cannot be continuous, locally supported
and orthogonal at the same time
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Orthogonal wavelet bases on the 2-sphere

Idea : exploit unitary map π−1 : L2(R2, d2~x) → L2(S2, dω) to lift
orthogonal wavelet bases from the tangent plane to the sphere

Pointed sphere :

Ṡ2 = {(η1, η2, η3) ∈ R3, η2
1 + η2

2 + (η2
3 − 1)2 = 1} \ {(0, 0, 2)}

Parametrization:

η1 = cosϕ sin θ

η2 = sinϕ sin θ, θ ∈ (0, π], ϕ ∈ [0, 2π)

η3 = 1 + cos θ

p : Ṡ2 → R2 : stereographic projection from North Pole N(0, 0, 2)
onto tangent plane at South Pole

Area elements of R2 and S2 : d~x = ν(η)2 dµ(η), with ν : Ṡ2 → R
defined as

ν(η) =
2

2− η3
=

2

1− cos θ
, η = (η1, η2, η3) ≡ (θ, ϕ) ∈ Ṡ2

Note : L2(Ṡ2) := L2(Ṡ2, dµ(η)) = L2(S2), since µ({N}) = 0
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Orthogonal wavelet bases on the 2-sphere

The stereographic projection induces a map π : L2(Ṡ2) → L2(R2)
with inverse π−1 : L2(R2) → L2(Ṡ2) :

[π−1F ](η) = ν(η)F (p(η)), for all F ∈ L2(R2)

π is a unitary map :

to each F ∈ L2(R2), associate the function F s = ν · (F ◦ p) ∈ L2(Ṡ2)
Then

〈F |G 〉L2(R2) = 〈F s |G s〉L2(Ṡ2), ∀F ,G ∈ L2(R2).

Consequences:

MRA/wavelet bases of L2(R2)  MRA/wavelet bases of L2(Ṡ2)

orthogonal bases of L2(R2)  orthogonal bases of L2(Ṡ2)

More precisely:

F ,G orthogonal in L2(R2) =⇒ F s ,G s orthogonal in L2(Ṡ2)
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Lifting everything to the sphere S2

Choose a multiresolution analysis of L2(R2)

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

Then define F ∈ L2(R2) 7−→ F s = ν · (F ◦ p) ∈ L2(S2)

In particular,

F s
j,k = ν · (Fj,k ◦ p), for j ∈ Z, k ∈ Z2

Taking F = Φ and F = Ψ,

Φs
j,k = ν · (Φj,k ◦ p)

Ψs
j,k = ν · (Ψj,k ◦ p)

For j ∈ Z, we define Vj as

Vj = {ν · (F ◦ p), F ∈ Vj}.
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Lifting everything to the sphere S2

Then

(1) V j ⊂ V j+1 for j ∈ Z and V j closed subspaces of L2(Ṡ2)

(2)
⋂

j∈Z V j = {0},
⋃

j∈Z V j = L2(Ṡ2)

(3) {Φ0,k, k ∈ Z2} = ONB of V 0 =⇒ {Φs
0,k, k ∈ Z2} = ONB of V0

A sequence (V j)j∈Z of subspaces of L2(Ṡ2) satisfying (1), (2), (3)

constitutes a multiresolution analysis of L2(Ṡ2)

Define the wavelet spaces W j = V j+1 	 V j

If {Ψj,l , l ∈ J} is a basis (resp. ONB) of Wj , then

{Ψs
j,l , l ∈ J} = basis (resp. ONB) of W j

{Ψs
j,l , l ∈ J, j ∈ Z} = basis (resp. ONB) of ⊕j∈ZW j = L2(S2)

(here J = {(k, λ) : k ∈ Z2, λ = h, v , d})
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Orthogonal wavelet bases on the 2-sphere

Conclusion:

Φ has compact support in R2 ⇒ Φs
j,k has local support on S2

( diam supp Φs
j,k

j→∞−→ 0 )

orthonormal 2-D wavelet basis
⇒ orthonormal spherical wavelet basis

smooth 2-D wavelets ⇒ smooth spherical wavelets

In particular:
Daubechies wavelets ⇒ locally supported & orthonormal wavelets on S2

decomposition & reconstruction matrices: the same tools as in plane
2-D case can be used (∃ toolboxes)
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Example : Function with discontinuous second derivative

Take the following axisymmetric (or zonal) function on S2:

f (θ, ϕ) =

{
1, θ 6 π

2

(1 + 3 cos2 θ)−1/2, θ > π
2

This function and its gradient are continuous, but the second partial
derivative with respect to θ has a discontinuity on the equator θ = π

2
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Example : Function with discontinuous second derivative

Detecting properly such a discontinuity requires a wavelet with two
vanishing moments at least :

none of the methods described above would do in practice !

Discretized CWT :

The spherical DOG wavelet does not detect the discontinuity : not
enough vanishing moments

Analysis with the spherical wavelet Ψs
H2

associated to the planar
wavelet, with vanishing moments up to order 3 :

ΨH2(~x) = ∆2e−
1
2
|~x|2 ,

= (|~x |4 − 8|~x |2 + 8)e−
1
2
|~x|2

Then analysis with db3 lifted onto Ṡ2 as above
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Example : Function with discontinuous second derivative

Analysis of the function f (θ, ϕ) by the discretized CWT method with the
wavelet Ψs

H2
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Example : Function with discontinuous second derivative

So, the detection performance improves when going down the scales
(‘zooming in’) . . .

. . . but there is a limit : when a becomes too small, the method fails
(the wavelet becomes too small and ‘falls in between’ the
discretization points)

The same at scale 0.0085 :
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Example : Function with discontinuous second derivative

On the contrary, a Daubechies wavelet db3 lifted on the sphere does
the job better than the wavelet ΨH2 :
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The detection is much more precise, with less artefacts on the sides
of the discontinuity : this is a consequence of the local support of
the db3 wavelet, as opposed to the Gaussian tail of ΨH2

Conclusion : a locally supported orthonormal wavelet basis may be
lifted onto the sphere and it is more efficient for detecting a
singularity than the discretized spherical CWT
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DWT via stereographic projection

Further advantage:

One can use all 2-D constructions, like ridgelets, curvelets, and so on

Disadvantages:

One must avoid a region around a point (the North Pole N)

Deformations of the grid around N

Possible generalization

The method works for any manifold with an orthogonal projection
onto a fixed plane, that induces a unitary map between the
respective L2 spaces :

Upper sheet of two-sheeted hyperboloid with vertical projection onto
plane z = 0

Same for paraboloid

Possible generalization to local analysis, e.g. on one hemisphere
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THE CWT ON OTHER MANIFOLDS
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The CWT on curved manifolds

The two-sheeted hyperboloid : manifold dual to the sphere, constant
negative curvature

Motions are OK : isometry group = SOo(2, 1)

Dilations are problematic : large stereographic dilations map upper
sheet onto lower sheet ; several other methods available (projection
onto tangent cone, onto equatorial plane, . . . )

But CWT can be derived using appropriate integral transform
(Fourier-Helgason) that leads to convolution theorems

The paraboloid : singular case! No large isometry group, possible
time-frequency-like transform, not really a wavelet transform

General conic sections : unified CWT for all 3 conic sections, using
differential-geometric methods, promising approach, not yet
complete
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The CWT on other conic sections

Apollonius : the (normalized) conic sections are

the sphere S2

the paraboloid P2

the two-sheeted hyperboloid H2

All three are obtained as sections by a hyperplane of a double
null-cone

C3
0 := {(x0, x1, x2, x3) ∈ R4 : x2

0 − x2
1 − x2

2 − x2
3 = 0}

All conic sections may be obtained by varying the tilt angle α of the
hyperplane intersecting the null-cone C3

0 , i.e., writing the equation of
the plane as x0 = 1 + tanα(x3 − 2), α ∈ [0, π/2]

In this way we get

S2 for α = 0

ellipsoids for α ∈ (0, π/4)

a paraboloid for α = π/4

hyperboloids for α ∈ (π/4, π/2].
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The CWT on the two-sheeted hyperboloid

[ I. Bogdanova (PhD thesis, 2005), P. Vandergheynst (EPFL) ]

The two-sheeted hyperboloid H2 is the dual manifold of the sphere
S2, with constant negative curvature and equation

x2
0 − x2

1 − x2
2 = 1

Parameterization of the upper sheet H2
+(x0 > 1) is given by

x = (x0, x1, x2) = x(χ, ϕ), where

x0 = coshχ

x1 = sinhχ cosϕ,

x2 = sinhχ sinϕ

(χ > 0, 0 6 ϕ < 2π)
x

x

x

2

1

0

H2

+
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The CWT on the two-sheeted hyperboloid H2

Affine transformations on H2
+

Motions on H2
+

(i) rotations : x(χ, ϕ) 7→ x(χ, ϕ+ ϕ0)

(ii) hyperbolic motions : x(χ, ϕ) 7→ x(χ+ χ0, ϕ)

Together they constitute the isometry group SOo(2, 1)

Dilations ??

Requirement : Dilation = homeomorphism da : H2
+ → H2

+ such that

da monotonically dilates the azimuthal distance between two points

{da, a > 0} is homomorphic to R+
∗ : dadb = dab, da−1 = d−1

a , d1 = I

Many possibilities !
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Choice of hyperbolic dilation

(1) Dilation through stereographic projection

As for S2, one has a “pseudo-Iwasawa” decomposition:

SOo(3, 1) = SOo(2, 1) · R ·N,

where R ∼ SOo(1, 1) ∼ boosts in the z-direction and N ∼ C By the
same technique, one gets

tanh
χa

2
= a tanh

χ

2

Problems :

Since | tanhχ| 6 1, there is a critical value χo such that all points
(χo , ϕ) will be sent to infinity by a finite dilation ao = (tanhχo/2)−1

Moreover, for a > ao , the dilation maps the upper sheet H2
+ of the

hyperboloid onto the lower sheet H2
− !

Unacceptable for setting up a CWT !

Also, there is no obvious representation of SOo(3, 1) in L2(H2
+)
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Choice of hyperbolic dilation

a

N

S

x

x

x

2

1

0

aH
2

+

H
2

-

Under stereographic projection :

Upper sheet H2
+ ⇔ interior of unit disk

Lower sheet H2
− ⇔ exterior of unit disk
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Choice of hyperbolic dilation

(2) Dilation through conic projection

Idea : project the upper sheet of the hyperboloid H2
+ onto its

tangent half null-cone C2
+

C2
+ := {(x0, x1, x2) ∈ R3 : x2

0 − x2
1 − x2

2 = 0, x0 > 0},

with radial dilation x 7→ a x

Conic projection : Φ : H2
+ → C2

+, given by

Φ(x) = 2 sinh
χ

2
e iϕ, x = x(χ, ϕ)

=⇒ dilation given by sinh
χa

2
= a sinh

χ

2

N

x x

x

2 1

0

r

ra a

a

H2+
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Choice of hyperbolic dilation

(3) Dilation through conic projection and“flattening”

Idea : project the cone C2
+ onto the plane x0 = 0

Conic projection + “flattening” : π0Φ : H2
+ → C, given by

π0Φ(x) = sinhχ e iϕ, x = x(χ, ϕ)

=⇒ dilation given by sinhχa = a sinhχ

C

0

N

x

x

x

2

1

0
H
2

+
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Choice of hyperbolic dilation

Generalization : one-parameter family of possible projections

π0Φ(x) =
1

p
sinh pχ e iϕ, x = x(χ, ϕ)

=⇒ dilation given by sinh pχa = a sinh pχ

p = 1
2

: dilation by conic projection
p = 1 : dilation by conic projection and flattening

CWT on the hyperboloid

Idea : Exploit the existence of an appropriate integral transform on
L2(H2

+), the Fourier-Helgason transform, that defines harmonic
analysis on H2, including convolution theorems
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The Fourier-Helgason transform

The FH-transform :

f̂ (ν, ξ) =

∫
H2

+

f (x) (x · ξ)− 1
2 +iν dµ(x), ∀ f ∈ C∞

0 (H2
+)

where
µ = SOo(2, 1)-invariant measure on H2

+

ν > 0, ξ ∈ PC+ = {ξ ∈ C2
+ : λξ ≡ ξ, λ > 0, ξ0 > 0}

(projective forward cone)

(x · ξ)−
1
2
−iν= hyperbolic plane wave

= eigenfunction of Laplacian over H2
+

FH-transform extends to isometry of L2(H2
+, dµ) onto L2(L, dη)

Hyperbolic convolution : for f ∈ L2(H2
+) and s ∈ L1(H2

+)

(f ∗ s)(y) =

∫
H2

+

f ([y ]−1x) s(x) dµ(x), y ∈ H2
+

where one uses a section [·] : H2
+ → SOo(2, 1)

Convolution theorem :
let f , s ∈ L2(H2

+) with s rotation invariant. Then s ∗ f ∈ L1(H2
+) and

(̂s ∗ f )(ν, ξ) = f̂ (ν, ξ)ŝ(ν)
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The hyperbolic CWT

Hyperbolic CWT : looks exactly the same as its spherical
counterpart:

Wf (a, g) = 〈ψa,g |f 〉 =

∫
H2

+

ψa(g−1x) f (x) dµ(x),

where

µ = SOo(2, 1)-invariant measure on H2
+

g ∈ SOo(2, 1), a > 0

ψa(x) = λ(a, x)ψ(d1/ax), with da an appropriate dilation and

λ(a, x) = normalization factor (Radon-Nikodym derivative) for
compensating the noninvariance of the measure dµ under dilation

If the wavelet ψ is axisymmetric, the HCWT is a convolution :

Wf (a, g) = Wf (a, [x ]) = (ψa ∗ f )(x)

=⇒ reconstruction formula, as in the spherical case
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The hyperbolic CWT

Admissibility condition

ψ ∈ L1(H2
+), axisymmetric

α positive function on R+
∗

∃ constants m, M such that

0 < m 6 Aψ(ν) =

Z ∞

0

|cψa(ν)|2 α(a)da 6 M <∞

Then the resolution operator Aψ defined by

Aψf (x ′) =

∫
H2

+

∫ ∞

0

Wf (a, x)ψa,[x](x
′)dx α(a)da

is bounded with bounded inverse

The resolution operator Aψ is diagonal in Fourier–Helgason space
(Fourier–Helgason multiplier):

Âψf (ν, ξ) = Aψ(ν)f̂ (ν, ξ)

∴ The family {ψa,[x], a > 0, x ∈ H2
+} is a continuous frame
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The hyperbolic CWT

Reconstruction formula (in strong sense in L2(H2
+))

f (x ′) =

∫ ∞

0

∫
H2

+

Wf (a, x)A−1
ψ ψa,[x](x

′)α(a)da dx

Choice of function α is arbitrary, up to admissibility

Example :

α(a) ∼ a−β , β > 0, for large a ⇒ ψ is p-admissible if β >
2

p
+ 1

Typical hyperbolic wavelet : hyperbolic DOG at scale a :

fψ(χ, ϕ) =
1

a
exp

[
− 1

a2
sinh2(

χ

2
)
]
− 1

4a
exp

[
− 1

4a2
sinh2(

χ

2
)
]

(dilation via conic projection)

J-P. Antoine Wavelet analysis, from the line to the two-sphere 154/167



The hyperbolic CWT

Action of hyperbolic translation on hyperbolic DOG at scale a = 0.3 and
position ϕ = π
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The paraboloid P2

Paraboloid P2 = {x ∈ R3 : x0 = x2
1 + x2

2}
P2 is a singular limit case (α = π/4) between

the sphere S2 (α = 0) and ellipsoids (0 < α < π/4)

the two-sheeted hyperboloids (α > π/4)

Missing ingredient : P2 has no large isometry group

P2 does not have a constant curvature

=⇒ general method does not work, designing a CWT on P2 is hard!
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CWT on the paraboloid P2: Suggestions

Suggestions

(1) Consider the related manifold : P = P2 \ {0, 0, 0}, paraboloid with
apex removed

The set P of 3× 3 matrices of the form g = diag(a2, arθ), whith
a > 0, rθ ∈SO(2), leaves both P2 and P invariant !

Embed P into the group

G =
n

g(b, a, θ) ≡
“

a2 0T

b arθ

”
: a > 0, b ∈ R2, 0 6 θ < 2π

o
G = nonunimodular Lie group, similar to, but different from SIM(2)

Then P ' G/H ' P, where H = {g(b, a, θ) : a = 1, θ = 0}
P has a natural action on P

There is a P-invariant measure on P

G has a unique UIR U in L2(P, dµP) and it is square integrable
Corresponding “coherent states” :

ψb,a,θ = (cψ)−1/2 U(b, a, θ)ψ, (b, a, θ) ∈ G

The corresponding time-frequency transform looks more like a Gabor
transform than a wavelet transform !
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CWT on the paraboloid P2: Suggestions

(2) Transport a CWT from cylinder to P

Set-up a CWT on cylinder

Z =
n

X (x0, θ) = (x0, cos θ, sin θ)T : x0 ∈ R, 0 6 θ < 2π
o

w.r. to group G3 = Gaff× SO(2) with action

X (x0, θ) 7→ X (g(x0, θ)) = X (ax0+b, θ+φ mod 2π), g = (a, b, φ) ∈ G3

define CWT as usual
transport that CWT from Z to P by homeomorphism
get CWT on P

Problems :

Group G3 too small, no irreducible representation in L2(Z, dx0dθ)
G3 3 g(a, 0, 0) 6= genuine 2-D dilation : it dilates only in the x0

direction
⇒ not a genuine CWT !

the same is true for CWT on P

Conclusion : this approach does not respect the geometry of the
problem (the cylinder is flat !), not sufficient !
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CWT on the paraboloid P2: Suggestions

(1-2) [S.T.Ali & G.Honnouvo, Concordia U., Montréal]

(3) Same method as for S2 [D.Roşca & JPA]

Start from orthogonal wavelet basis in the plane x0 = 0

Lift it to P2 with inverse vertical projection

Get orthogonal wavelet basis in L2(P2, ds)
(work in progress)
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The CWT on the conic sections: A unified approach

[ I. Bogdanova and P. Vandergheynst (EPFL), JPA ]

All conic sections are obtained as sections of a double null-cone

C3
0 = {(x0, x1, x2, x3) ∈ R4 : x2

0 − x2
1 − x2

2 − x2
3 = 0}

by a hyperplane x0 = 1 + tanα(x3 − 2), 0 6 α 6 π/2.

Analogy : intersection of 3-dimensional cone C2
0 with plane

x0 = 1 + tanα(x3 − 1), 0 6 α 6 π/2

For α = π/4 : degenerate paraboloid (half-line)
x0

x 1 ... x n-1A O

x0

x 1 ... x n-1

A

O

x0

x 1 ... x n-1

A
O
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Construction of dilations

On any section, define generalized projective coordinates

ui =
1− 2 tanα

x0 − x3 tanα
xi , i = 1, 2, 3

For the sphere (α = 0) : ui = xi/x0

Dilation = Lorentz boost of parameter t ∈ R along axes x0, x3

Result :

u′i = ui , i = 1, 2

u′3 =
(1− 2 tanα)(u0 sinh t + u3 cosh t)

u0 cosh t + u3 sinh t + tanα(u0 sinh t + u3 cosh t)
,

where u0 = 1 + tanα(u3 − 2)

For the sphere (α = 0) :
recover stereographic dilation tan θa

2 = a tan θ
2 , with a = et
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Construction of dilations

Dilation on the sphere or an ellipsoid via Lorentz boost

S

N

x0

x1 ... xn-1

P’

(P)'

A
O

P

Graphically :

S,N = South, resp. North, pole of sphere or ellipsoid

boost P 7→ P ′

back to sphere by homogeneous coordinates P ′ 7→ π(P ′)
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Construction of conic sections

Group-theoretical generation of conic sections :

Start from spherical section x0 = 1

Apply boost along x0, x2 ⇒ get ellipsoid of revolution around
x0 axis

Start from hyperbolic section x3 = 1 ⇒ get 2-sheeted hyperboloid

As limit from both sides, paraboloid becomes degenerate half-line
(see previous figure)

Differential-geometric generation of conic sections :

upper sheet of null-cone C3
0 without tip = trivial principal fiber

bundle with base S2 (spherical section) and fiber R
sections of C3

0 by various planes = global C∞ sections in that fiber
bundle (in differential geometry sense)
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The CWT on conic sections

Strategy for building CWT :

Start with spherical section that gives S2 and consider the usual
representation U of the Lorentz group SOo(1, 3) in L2(S2)

Any other smooth section σ : S2 → C3
0 of the same type

allows to bring the action of SOo(1, 3) to σ(S2)

induces an isometry Vσ : L2(S2)→ L2(σ(S2))

Get a new UIR of SOo(1, 3) in L2(σ(S2)) by V ◦ U ◦ V−1

Then the construction of wavelets on the new section is immediate

Same technique starting from hyperbolic section giving H2

Conclusion :

Promising approach

Much work remains to be done !
(in progress : S.T.Ali, P.Vandergheynst, D. Roşca, JPA)

J-P. Antoine Wavelet analysis, from the line to the two-sphere 164/167



REFERENCES

J-P. Antoine Wavelet analysis, from the line to the two-sphere 165/167



References

General references

I. Daubechies Ten Lectures on Wavelets, SIAM, Philadelpia, 1992

B. Torrésani, Analyse continue par ondelettes, InterÉditions/CNRS
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