Tu, C.-Y.; Marsch, E.: Evidence for a ``background'' spectrum of solar wind turbulence in the inner heliosphere. Journal Geophysical Research 95, pp. 4337 - 4341 (1990)
Tu, C.-Y.; Marsch, E.; Rosenbauer, H.: The dependence of MHD turbulence spectra on the inner solar wind stream structure near solar minimum. Geophysical Research Letters 17, pp. 283 - 286 (1990)
Marsch, E.; Pilipp, W. G.; Thieme, K. M.; Rosenbauer, H.: Cooling of solar wind electrons inside 0.3 AU. Journal Geophysical Research 94, pp. 6893 - 6898 (1989)
Marsch, E.; Tu, C.-Y.: Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence. Journal of Plasma Physics 41, pp. 479 - 491 (1989)
Thieme, K. M.; Marsch, E.; Rosenbauer, H.: Estimates of alpha particle heating in the solar wind inside 0.3 AU. Journal Geophysical Research 94, pp. 2673 - 2676 (1989)
Thieme, K. M.; Schwenn, R.; Marsch, E.: Are structures in high-speed streams signatures of coronal fine structures? Advances in Space Research 9, pp. 127 - 130 (1989)
Tu, C.-Y.; Marsch, E.; Thieme, K. M.: Basic properties of solar wind MHD turbulence near 0.3 AU analysed by means of Elsässer variables. Journal Geophysical Research 94, pp. 11739 - 11759 (1989)
Richter, A. K.; Marsch, E.: Helios observational constraints on the development of interplanetary slow shocks. Annales Geophysicae 6, pp. 319 - 324 (1988)
Hernandez, R.; Livi, S.; Marsch, E.: On the He2+ to H+ temperature ratio in slow solar wind. Journal Geophysical Research 92 (A7), pp. 7723 - 7727 (1987)
Livi, S.; Marsch, E.: Generation of solar wind proton tails and double beams by Coulomb collisions. Journal Geophysical Research 92 (A7), pp. 7255 - 7261 (1987)
Marsch, E.; Livi, S.: Observational evidence for marginal stability of solar wind ion beams. Journal Geophysical Research 92 (A7), pp. 7263 - 7268 (1987)
Marsch, E.; Richter, A. K.: On the equation of state and collision time for a multicomponent, anisotropic solar wind. Annales Geophysicae 5A, pp. 71 - 82 (1987)
Hernández, R.; Marsch, E.: Collisional transfer of energy and momentum between drifting tri-Maxwellians. Journal of Plasma Physics 35, pp. 473 - 482 (1986)
Livi, S.; Marsch, E.: Comparison of the Bhatnagar-Gross-Krook approximation with the exact Coulomb collision operator. Physical Review A 34 (1), pp. 533 - 540 (1986)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.