Hernández, R.; Marsch, E.: Collisional time scales for temperature and velocity exchange between drifting Maxwellians. Journal Geophysical Research 90, pp. 11062 - 11066 (1985)
Marsch, E.; Livi, S.: Coulomb self-collisions frequencies for non-thermal velocity distributions in the solar wind. Annales Geophysicae 3 (5), pp. 545 - 556 (1985)
Marsch, E.; Richter, A. K.: Distribution of solar wind angular momentum between particles and magnetic field: Inferences about the Alfvén critical point from Helios observations. Journal Geophysical Research 89, pp. 5386 - 5394 (1984)
Marsch, E.; Goldstein, H.: The effects of Coulomb collisions on solar wind ion velocity distributions. Journal Geophysical Research 88, pp. 9933 - 9940 (1983)
Marsch, E.; Mühlhäuser, K.-H.; Rosenbauer, H.; Schwenn, R.: On the Equation of State of Solar Wind Ions Derived From Helios Measurements. Journal Geophysical Research 88, pp. 2982 - 2992 (1983)
Pizzo, V.; Schwenn, R.; Marsch, E.; Rosenbauer, H.; Mühlhäuser, K.-H.; Neubauer, F. M.: Determination of the solar wind angular momentum flux from the Helios data - an observational test of the Weber and Davis theory. Astrophysical Journal 271, pp. 335 - 354 (1983)
Marsch, E.; Goertz, C. K.; Richter, K.: Wave heating and acceleration of solar wind ions by cyclotron resonance. Journal Geophysical Research 87, pp. 5030 - 5044 (1982)
Marsch, E.; Mühlhäuser, K.-H.; Rosenbauer, H.; Schwenn, R.; Neubauer, F. M.: Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU. Journal Geophysical Research 87, pp. 35 - 51 (1982)
Marsch, E.; Mühlhäuser, K.-H.; Rosenbauer, H.; Schwenn, R.; Denskat, K. U.: Pronounced proton core temperature anisotropy, ion differential speed, and simultaneous Alfvén wave activity in slow solar wind at 0.3 AU. Journal Geophysical Research 86, pp. 9199 - 9203 (1981)
Dum, C. T.; Marsch, E.; Pilipp, W.: Determination of wave growth from measured distribution functions and transport theory. Journal of Plasma Physics 23, pp. 91 - 113 (1980)
Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.: Ion-Acoustic Waves and Related Plasma Observations in the Solar Wind. Journal Geophysical Research 84, pp. 2029 - 2038 (1979)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.