Grensing, D.; Marsch, E.; Steeb, W.-H.: Magnetic and electric properties of the Hubbard model for the f.c.c. Lattice. Physical Review B 17, pp. 2221 - 2232 (1978)
Marsch, E.; Steeb, W.-H.; Grensing, D.: One-Dimensional Hubbard Model With Nearest and Second Nearest Neighbour Hopping in the Hartree-Fock Approximation. J. Phys. F: Metal Phys. 7, pp. 401 - 406 (1977)
Rosenbauer, H.; Schwenn, R.; Marsch, E.; Meyer, B.; Miggenrieder, H.; Montgomery, M.; Mühlhäuser, K.-H.; Pilipp, W.; Voges, W.; Zink, S. K.: A Survey on Initial Results of the Helios Plasma Experiment. J. Geophys. 42, pp. 561 - 580 (1977)
Marsch, E.: Force-force correlation function method for the ideal resistance of the Hubbard model. J. Phys. C: Solid State Phys. 9, pp. L117 - L120 (1976)
Steeb, W.-H.; Marsch, E.: Thermodynamics of a two-point doubly degenerate Hubbard model in the half-filled case. Phys. Stat. Sol. (b) 78, pp. K39 - K44 (1976)
Steeb, W.-H.; Marsch, E.: A new upper bound for the free energy of the Hubbard model based on the cluster approach. Phys. Stat. Sol. (b) 69, pp. K149 - K152 (1975)
Solanki, S. K.; Marsch, E.: Solar Space Missions: present and future. In: Formation and Evolution of Cosmic Structures: Reviews in Modern Astronomy, Volume 21, pp. 229 - 248 (Ed. Röser, S.). Wiley-VCH, Weinheim (2009)
Marsch, E.: Waves and turbulence in the solar corona. In: The Sun and the Heliosphere as an Integrated System, pp. 283 - 317 (Eds. Poletto, G.; Suess, S. T.). Kluwer Academic Publishers, Dordrecht, The Netherlands (2004)
Marsch, E.; Axford, W. I.; McKenzie, J. F.: Solar Wind. In: The Dynamic Sun, pp. 374 - 402 (Ed. Dwivedi, B.). Cambridge University Press, Cambridge (2003)
Marsch, E.: Solar Wind: Kinetic Properties. In: Encyclopedia of Astronomy and Astrophysics, pp. 2862 - 2866 (Ed. Murdin, P.). Institut of Physics Publishing, Nature Publishing Group (2001)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.