Centeno, R.; Blanco Rodriguez, J.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.et al.; Orozco Suarez, D.; Berkefeld, T.; Schmidt, W.; Pillet, V. M.; Knoelker, M.: A Tale of Two Emergences: SUNRISE II Observations of Emergence Sites in a Solar Active Region. Astrophysical Journal, Suppl. Ser. 229 (1), 3 (2017)
Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T.; Rodríguez, J. B.; Solanki, S. K.; Barthol, P.; Gandorfer, A. M.; Gizon, L.; Hirzberger, J.; van Noort, M.et al.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.: The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun. The Astrophysical Journal Supplement Series 233, 5 (2017)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.