Li, L.; Zhang, J.; Peter, H.; Chitta, L. P.; Su, J.; Xia, C.; Song, H.; Hou, Y.: Coronal Condensations Caused by Magnetic Reconnection between Solar Coronal Loops. The Astrophysical Journal Letters 864 (1), L4 (2018)
Priest, E. R.; Chitta, L. P.; Syntelis, P.: A Cancellation Nanoflare Model for Solar Chromospheric and Coronal Heating. The Astrophysical Journal Letters 862 (2), L24 (2018)
Young, P. R.; Tian, H.; Peter, H.; Rutten, R. J.; Nelson, C. J.; Huang, Z.; Schmieder, B.; Vissers, G. J. M.; Toriumi, S.; van der Voort, L. H. M. R.et al.; Madjarska, M. S.; Danilovic, S.; Berlicki, A.; Chitta, L. P.; Cheung, M. C. M.; Madsen, C.; Reardon, K. P.; Katsukawa, Y.; Heinzel, P.: Solar Ultraviolet Bursts. Space Science Reviews 214, 120 (2018)
Chitta, L. P.; Peter, H.; Young, P. R.; Huang, Y.-M.: Compact solar UV burst triggered in a magnetic field with a fan-spine topology. Astronomy and Astrophysics 605, A49 (2017)
Chitta, L. P.; Peter, H.; Solanki, S.: Coronal loop footpoints threaded with small-scale mixed polarity surface magnetic fields. SOLARNET IV: The Physics of the Sun from the Interior to the Outer Atmosphere, Lanzarote, Spain (2017)
Cilla, A. A.; Chitta, L. P.; Peter, H.: Rotational motion in transition region loops. 8th Coronal Loops Workshop: many facets of magnetically closed corona, Palermo, Italy (2017)
Cilla, A. A.; Chitta, L. P.; Peter, H.: Signs of helical transition region loops embedded in filament channels. Rocks \& Stars II, Göttingen, Germany (2017)
Chitta, L. P.; Peter, H.; Young, P. R.: Chromospheric response to prolonged small-scale reconnections. IRIS-6: The Chromosphere, Stockholm, Sweden (2016)
Chitta, L. P.; Peter, H.; Young, P. R.: A closer look at the footpoints of coronal loops rooted in a sunspot umbra. Hinode 9 Science Meeting, Belfast, Ireland (2015)
Cilla, A. A.; Chitta, L. P.; Peter, H.: Signs of helical transition region loops embedded in filament channels. European Solar Physics Meeting, Budapest, Hungary (2017)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).