Anand, A.; Spitzer, F.; Hopp, T.; Windmill, R.; Kruttasch, P.; Burkhardt, C.; Dauphas, N.; Greenwood, R.; Hofmann, B.; Mezger, K.et al.; Kleine, T.: Isotopic evidence for a common parent body of IIG and IIAB iron meteorites. Geochimica et Cosmochimica Acta 382, pp. 118 - 127 (2024)
Jansen, C. A.; Burkhardt, C.; Marrocchi, Y.; Schneider, J. M.; Wölfer, E.; Kleine, T.: Condensate evolution in the solar nebula inferred from combined Cr, Ti, and O isotope analyses of amoeboid olivine aggregates. Earth and Planetary Science Letters 627, p. 118567 (2024)
Schneider, J. M.; Burkhardt, C.; Kleine, T.: Distribution of s-, r-, and p-process Nuclides in the Early Solar System Inferred from Sr Isotope Anomalies in Meteorites. The Astrophysical Journal 952, p. L25 (2023)
Fridolin, S.; Burkhardt, C.; Pape, J.; Kleine, T.: Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics and Planetary Science 57, pp. 261 - 276 (2022)
Kruijer, T. S.; Burkhardt, C.; Borg, L. E.; Kleine, T.: Tungsten and molybdenum isotopic evidence for an impact origin of pallasites. Earth and Planetary Science Letters 584, p. 117440 (2022)
Render, J.; Brennecka, G. A.; Burkhardt, C.; Kleine, T.: Solar System evolution and terrestrial planet accretion determined by Zr isotopic signatures of meteorites. Earth and Planetary Science Letters 595, p. 117748 (2022)
Renggli, C. J.; Hellmann, J. L.; Burkhardt, C.; Klemme, S.; Berndt, J.; Pangritz, P.; Kleine, T.: Tellurium isotope fractionation during evaporation from silicate melts. Geochimica et Cosmochimica Acta 339, pp. 35 - 45 (2022)
Burkhardt, C.; Spitzer, F.; Morbidelli, A.; Budde, G.; Render, J. H.; Kruijer, T. S.; Kleine, T.: Terrestrial planet formation from lost inner solar system material. Science Advances 7 (52), eabj7601 (2021)
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).