Krupp, N.; Woch, J.; Lagg, A.; Roelof, E. C.; Williams, D. J.; Livi, S.; Wilken, B.: Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere. Planetary and Space Science 49 (3-4), pp. 283 - 289 (2001)
Lagg, A.; Krupp, N.; Livi, S.; Woch, J.; Krimigis, S. M.; Dougherty, M. K.: Energetic particle measurements during the Earth swing-by of the Cassini spacecraft in August 1999. Journal Geophysical Research 106 (A12), pp. 30209 - 30222 (2001)
Verigin, M. I.; Kotova, G. A.; Remizov, A. P.; Szego, K.; Tatrallyay, M.; Slavin, J.; Rosenbauer, H.; Livi, S.; Riedler, W.; Schwingenschuh, K.et al.; Zhang, T. L.: Evidence of the influence of equatorial Martian crustal magnetization on the position of the planetary magnetotail boundary by Phobos 2 data. Advances in Space Research 28 (6), pp. 885 - 889 (2001)
Dubinin, E.; Sauer, K.; Delva, M.; Grard, R.; Livi, S.; Lundin, R.; Skalsky, A.; Schwingenschuh, K.; Szegö, K.; Trotignon, J.-G.: Multi-instrument study of the upstream region near Mars: Phobos-2 observations. Journal Geophysical Research 105, pp. 7557 - 7571 (2000)
Dubinin, E.; Sauer, K.; Delva, M.; Livi, S.; Lundin, R.; Skalsky, A.; Szego, K.: Deceleration of the solar wind upstream of the Martian bow schock. Mass-loading or foreshock features? Advances in Space Research 26, pp. 1627 - 1631 (2000)
Daglis, I. A.; Kasotakis, G.; Sarris, E. T.; Kamide, Y.; Dialetis, D.; Livi, S.; Wilken, B.: Variation of the ion composition during an intense magnetic storm and their consequences. Physics and Chemistry of the Earth 24, pp. 229 - 232 (1999)
Fritz, T. A.; Chen, J.; Sheldon, R. B.; Spence, H. E.; Fennell, J. F.; Livi, S.; Russell, C. T.; Pickett, J. S.: Cusp energetic particles events measured by POLAR spacecraft. Physics and Chemistry of the Earth 24, pp. 135 - 140 (1999)
Milillo, A.; Orsini, S.; Daglis, I. A.; Livi, S.: An empirical model of the ion distributions in the equatorial inner magnetosphere. Physics and Chemistry of the Earth 24, pp. 209 - 214 (1999)
Roeder, J. L.; Fennell, J. F.; Grande, M.; Livi, S.; Sheldon, R.: Ring current response to interplanetary magnetic cloud events. Physics and Chemistry of the Earth 24, pp. 83 - 88 (1999)
Rosenbauer, H.; Fuselier, S. A.; Ghielmetti, A.; Greenberg, J. M.; Goesmann, F.; Ulamec, S.; Israel, G.; Livi, S.; MacDermott, J. A.; Matsuo, T.et al.; Pillinger, C. T.; Raulin, F.; Roll, R.; Thiemann, W.: The COSAC experiment on the lander of the ROSETTA mission. Advances in Space Research 23, pp. 333 - 340 (1999)
Aellig, M. R.; Grünwaldt, H.; Bochsler, P.; Wurz, P.; Hefti, S.; Kallenbach, R.; Ipavich, F. M.; Axford, W. I.; Balsiger, H.; Bürgi, A.et al.; Coplan, M. A.; Galvin, A. B.; Geiss, J.; Gliem, F.; Gloeckler, G.; Hilchenbach, M.; Hovestadt, D.; Hsieh, K. C.; Klecker, B.; Lee, M. A.; Livi, S.; Managadze, G. G.; Marsch, E.; Möbius, E.; Neugebauer, M.; Reiche, K.-U.; Scholer, M.; Verigin, M. I.; Wilken, B.: Iron freeze-in temperatures measured by SOHO/CELIAS/CTOF. Journal Geophysical Research 103, pp. 17215 - 17222 (1998)
Chen, J.; Fritz, T. A.; Sheldon, R. B.; Spence, H. E.; Spjeldvik, W. N.; Fennell, J. F.; Livi, S.; Russell, C. T.; Pickett, J. S.; Gurnett, D. A.: Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere. Journal Geophysical Research 103, p. 69 (1998)
Fennell, J. F.; Roeder, J. L.; Grande, M.; Perry, C.; Friedel, R.; Korth, A.; Livi, S.; Fritz, T. A.: The plasma mantle: Polar satellite observations. Physics of Space Plasmas (15), pp. 389 - 394 (1998)
Henke, T.; Woch, J.; Mall, U.; Livi, S.; Wilken, B.; Schwenn, R.; Gloeckler, G.; von Steiger, R.; Forsyth, R. J.; Balogh, A.: Differences in the O7+ /O6+ ratio of magnetic cloud and non-cloud coronal mass ejections. Geophysical Research Letters 25, pp. 3465 - 3468 (1998)
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.