Zong, Q.-G.; Wilken, B.; Reeves, G. D.; Daglis, I. A.; Doke, T.; Iyemori, T.; Livi, S.; Maezawa, K.; Mukai, T.; Kokubun, S.et al.; Pu, Z.-Y.; Ullaland, S.; Woch, J.; Lepping, R.; Yamamoto, T.: Geotail observations of energetic ion species and magnetic field in plasmoid-like structures in the course of an isolated substorm event. Journal Geophysical Research 102, pp. 11409 - 11428 (1997)
Aellig, M. R.; Grünwaldt, H.; Hefti, S.; Wurz, P.; Bochsler, P.; Axford, W. I.; Balsiger, H.; Bürgi, A.; Coplan, M. A.; Galvin, A. B.et al.; Geiss, J.; Gliem, F.; Gloeckler, G.; Hilchenbach, M.; Hovestadt, D.; Hsieh, K. C.; Ipavich, F. M.; Judge, D. L.; Kallenbach, R.; Klecker, B.; Lee, M. A.; Livi, S.; Managadze, G. G.; Marsch, E.; Möbius, E.; Neugebauer, M.; Ogawa, H. S.; Reiche, K.-U.; Scholer, M.; Verigin, M. I.; Wilken, B.: Solar corona diagnostic with solar wind iron charge spectra. Helv. Phys. Acta 69, pp. 49 - 50 (1996)
Astudillo, H. F.; Livi, S.; Marsch, E.; Rosenbauer, H.: Evidence for nongyrotropic alpha particle and proton distribution functions: TAUS solar wind measurements. Journal Geophysical Research 101, pp. 24423 - 24432 (1996)
Daglis, I. A.; Axford, W. I.; Livi, S.; Wilken, B.; Grande, M.; Søraas, F.: Auroral ionospheric ion feeding of the inner plasma sheet during substorms. J. Geomag. Geoelectr. 48, pp. 729 - 739 (1996)
Roeder, J. L.; Fennell, J. F.; Chen, M. W.; Schulz, M.; Grande, M.; Livi, S.: CRRES observations of the composition of the ring-current ion populations. Advances in Space Research 17, pp. 17 - 24 (1996)
Daglis, I. A.; Livi, S.: Potential merits for substorm research from imaging of charge-exchange neutral atoms. Annales Geophysicae 13 (5), pp. 505 - 516 (1995)
Geiss, J.; Gloeckler, G.; von Steiger, R.; Balsiger, H.; Fisk, L. A.; Galvin, A. B.; Ipavich, F. M.; Livi, S.; McKenzie, J. F.; Ogilvie, K. W.et al.; Wilken, B.: The southern high-speed stream: Results from the SWICS instrument on Ulysses. Science 268, pp. 1033 - 1036 (1995)
Hovestadt, D.; Hilchenbach, M.; Bürgi, A.; Klecker, B.; Laeverenz, P.; Scholer, M.; Grünwaldt, H.; Axford, W. I.; Livi, S.; Marsch, E.et al.; Wilken, B.; Winterhoff, H. P.; Ipavich, F. M.; Bedini, P.; Coplan, M. A.; Galvin, A. B.; Gloeckler, G.; Bochsler, P.; Balsiger, H.; Fischer, J.; Geiss, J.; Kallenbach, R.; Wurz, P.; Reiche, K.-U.; Gliem, F.; Judge, D. L.; Ogawa, H. S.; Hsieh, K. C.; Möbius, E.; Lee, M. A.; Managadze, G. G.; Verigin, M. I.; Neugebauer, M.: CELIAS-Charge, element and isotope analysis system for SOHO. Solar Physics 162, pp. 441 - 481 (1995)
Kohl, J. L.; Esser, R.; Gardner, L. D.; Habbal, S.; Daigneau, P. S.; Dennis, E. F.; Nystrom, G. U.; Panasyuk, A.; Raymond, J. C.; Smith, P. L.et al.; Strachan, L.; van Ballegooijen, A. A.; Noci, G.; Fineschi, S.; Romoli, M.; Ciaravella, A.; Modigliani, A.; Huber, M. C. E.; Antonucci, E.; Benna, C.; Giordano, S.; Tondello, G.; Nicolosi, P.; Naletto, G.; Pernechele, C.; Spadaro, D.; Poletto, G.; Livi, S.; von der Lühe, O.; Geiss, J.; Timothy, J. G.; Gloeckler, G.; Allegra, A.; Basile, G.; Brusa, R.; Wood, B.; Siegmund, O. H. W.; Fowler, W.: The ultraviolet coronagraph spectrometer for the Solar and Heliospheric Observatory. Solar Physics 162, pp. 313 - 356 (1995)
Liu, S.; Marsch, E.; Livi, S.; Woch, J.; Wilken, B.; von Steiger, R.; Gloeckler, G.: Radial gradients of ion densities and temperatures derived from SWICS/Ulysses observations. Geophysical Research Letters 22, pp. 2445 - 2448 (1995)
Wilken, B.; Zong, Q.-G.; Daglis, I. A.; Pu, Z. Y.; Livi, S.; Yamamoto, T.; Doke, T.; Maezawa, K.; Ullaland, S.: High CNO abundance tailward flow, associated with a flux rope in the distant magnetotail: GEOTAIL observations. Geophysical Research Letters 22, pp. 3267 - 3270 (1995)
Daglis, I. A.; Livi, S.; Sarris, E. T.; Wilken, B.: Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms. Journal Geophysical Research 99 (A4), pp. 5691 - 5703 (1994)
Orsini, S.; Daglis, I. A.; Candidi, M.; Hsieh, K. C.; Livi, S.; Wilken, B.: Model calculation of energetic neutral atoms precipitation at low altitudes. Journal Geophysical Research 99 (A7), pp. 13489 - 13498 (1994)
Rosenbauer, H.; Verigin, M. I.; Kotova, G. A.; Livi, S.; Remizov, A. P.; Riedler, W.; Schwingenschuh, K.; Shutte, N. M.; Slavin, J. A.; Szegö, K.et al.; Tátrallyay, M.; Zhang, T.-L.: The relationship between the magnetic field in the Martian magnetotail and upstream solar wind parameters. Journal Geophysical Research 99, pp. 17199 - 17204 (1994)
Kirsch, E.; McKenna-Lawler, S. M. P.; Afonin, V. V.; Keppler, E.; Livi, S.; Rosenbauer, H.; Witte, M.; Schwingenshuh, K.; Tompson, A.; O'Sullivan, D.: Signature of the Martian moon Phobos in the fluxes of energetic particles as measured by experiment SLED onboard Phobos 2. Space Science Reviews 4 (6), pp. 435 - 440 (1993)
Kirsch, E.; McKennal-Lawlor, S. M. P.; Afonin, V. V.; Keppler, E.; Livi, S.; Rosenbauer, H.; Witte, M.; Schwingenschuh, K.; Thompson, A.; O'Sullivan, D.: Signatures of the Martian moon Phobos in the fluxes of energetic particles as measured by experiment SLED onboard Phobos 2. Planetary and Space Science 41 (6), pp. 435 - 440 (1993)
Verigin, M. I.; Gringauz, K. I.; Kotova, G. A.; Remizov, A. P.; Shutte, N. M.; Rosenbauer, H.; Livi, S.; Richter, A. K.; Riedler, W.; Schwingenshuh, K.et al.; Szego, K.; Apathy, I.; Tatrallyay, M.: The dependence of the Martian magnetopause and bow shock on the solar wind ram pressure according to PHOBOS 2/TAUS spectrometer measurements. Journal Geophysical Research 98 (A2), pp. 1303 - 1309 (1993)
Geiss, J.; Gloeckler, G.; Balsiger, H.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.; Ipavich, F. M.; Livi, S.; Mall, U.et al.; Ogilvie, K. W.; von Steiger, R.; Wilken, B.: Plasma composition in Jupiter's magnetosphere: initial results from the solar wind ion composition spectrometer (SWICS). Science 257, pp. 1535 - 1539 (1992)
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".