Ying, B.; Feng, L.; Inhester, B.; Mierla, M.; Gan, W.; Lu, L.; Li, S.: Three-dimensional analyses of an aspherical coronal mass ejection and its driven shock. Astronomy and Astrophysics 660, p. A23 (2022)
Zhang, Q. M.; Ning, Z. J.; Guo, Y.; Zhou, T. H.; Cheng, X.; Ji, H. S.; Feng, L.; Wiegelmann, T.: Multiwavelength Observations of a Partially Eruptive Filament on 2011 September 8. Astrophysical Journal 805, 4, pp. 1 - 18 (2015)
de Patoul, J.; Inhester, B.; Feng, L.; Wiegelmann, T.: 2D and 3D Polar Plume Analysis from the Three Vantage Positions of STEREO/EUVI A, B, and SOHO/EIT. Solar Physics 283, pp. 207 - 225 (2013)
Feng, L.; Inhester, B.; Mierla, M.: Comparisons of CME Morphological Characteristics Derived from Five 3D Reconstruction Methods. Solar Physics 282 (1), pp. 221 - 238 (2013)
Feng, L.; Wiegelmann, T.; Su, Y.; Inhester, B.; Li, Y. P.; Sun, X. D.; Gan, W. Q.: Magnetic Energy Partition between the Coronal Mass Ejection and Flare from AR 11283. Astrophysical Journal 765, 37 (2013)
Feng, L.; Inhester, B.; Wei, Y.; Gan, W. Q.; Zhang, T. L.; Wang, M. Y.: Morphological Evolution of a Three-Dimensional Coronal Mass Ejection Cloud Reconstructed from Three Viewpoints. Astrophysical Journal 751 (1), 18 (2012)
Wiegelmann, T.; Inhester, B.; Feng, L.: Solar stereoscopy where are we and what developments do we require to progress? Annales Geophysicae 27, pp. 2925 - 2936 (2009)
Ruan, P.; Wiegelmann, T.; Inhester, B.; Neukirch, T.; Solanki, S. K.; Feng, L.: A first step in reconstructing the solar corona self-consistently with a magnetohydrostatic model during solar activity minimum. Astronomy and Astrophysics 481, pp. 827 - 834 (2008)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).