Cheng, X.; Xing, C.; Aulanier, G.; Solanki, S. K.; Peter, H.; Ding, M. D.: Deciphering the Slow-rise Precursor of a Major Coronal Mass Ejection. The Astrophysical Journal 954, p. L47 (2023)
Zhang, J.; Tian, H.; Zarka, P.; Louis, C. K.; Lu, H.; Gao, D.; Sun, X.; Yu, S.; Chen, B.; Cheng, X.et al.; Wang, K.: Fine Structures of Radio Bursts from Flare Star AD Leo with FAST Observations. The Astrophysical Journal 953, p. 65 (2023)
Wang, W.Y.; Cheng, X.; Ren, Z.N.; Ding, M.D.: Current-sheet Oscillations Caused by the Kelvin-Helmholtz Instability at the Loop Top of Solar Flares. Astrophysical Journal Letters 931 (2) (2022)
Li, Z. F.; Cheng, X.; Chen, F.; Chen, J.; Ding, M. D.: Three-dimensional Magnetic and Thermodynamic Structures of Solar Microflares. The Astrophysical Journal 930, p. L7 (2022)
Chitta, L. P.; Priest, E. R.; Cheng, X.: From Formation to Disruption: Observing the Multiphase Evolution of a Solar Flare Current Sheet. The Astrophysical Journal 911 (2), 133 (2021)
Li, Z. F.; Cheng, X.; Ding, M. D.; Reeves, K. K.; Kittrell, D.; Weber, M.; McKenzie, D. E.: Thermodynamic Evolution of Solar Flare Supra-arcade Downflows. The Astrophysical Journal 915 (2), 124 (2021)
Huang, Z.W.; Cheng, X.; Ding, M.D.: The kinematic evolution of erupting structures in confined solar flares. The Astrophysical Journal Letters 904 (1), L2 (2020)
Kou, Y. K.; Jing, Z. C.; Cheng, X.; Pan, W. Q.; Liu, Y.; Li, C.; Ding, M. D.: What Determines Solar Flares Producing Interplanetary Type III Radio Bursts? The Astrophysical Journal Letters 898 (1), L24 (2020)
Nindos, A.; Patsourakos, S.; Vourlidas, A.; Cheng, X.; Zhang, J.: When do solar erupting hot magnetic flux ropes form? Astronomy and Astrophysics 642, A109 (2020)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).