Steininger, H.; Goesmann, F.; Goetz, W.: Influence of Magnesium Perchlorate on the Pyrolysis of Organic Compounds in Mars Analogue Soils. Planetary and Space Science 71, pp. 9 - 17 (2012)
Grant, J. A.; Westall, F.; Beaty, D. W.; Cady, S. L.; Carr, M. H.; Ciarletti, V.; Coradini, A.; Elfving, A.; Glavin, D. P.; Goesmann, F.et al.; Hurowitz, J. A.; Ori, G. G.; Phillips, R. J.; Salvo, C. G.; Sephton, M. A.; Syvertson, M. L.; Vago, J. L.: Two Rovers to the Same Site on Mars, 2018: Possibilities for Cooperative Science. Astrobiology 10, pp. 663 - 685 (2010)
Szopa, C.; Goesmann, F.; Rosenbauer, H.; Sternberg, R.; The COSAC Team: The COSAC experiment of the Rosetta mission: Performance under representative conditions and expected scientific return. Advances in Space Research 40 (2), pp. 180 - 186 (2007)
Meierhenrich, U. J.; Thiemann, W.; Goesmann, F.; Roll, R.; Rosenbauer, H.: Enantioselective amino acid analysis in cometary matter planned for the COSAC instrument onboard ROSETTA lander. International Journal of Astrobiology 1, p. 255 (2002)
Szopa, C.; Meierhenrich, U. J.; Coscia, D.; Janin, L.; Goesmann, F.; Sternberg, A.; Brun, J. F.; Israel, G.; Cabane, M.; Roll, R.et al.; Raulin, F.; Thiemann, W.; Vidal-Madjar, C.; Rosenbauer, H.: Gas chromatography for in situ analysis of a cometary nucleus - IV. Study of capillary column robustness for space application. J. Chromatogr. A 982 (2), pp. 303 - 312 (2002)
Meierhenrich, U. J.; Thiemann, W.; Goesmann, F.; Roll, R.; Rosenbauer, H.: Separation of cometary enantiomers by Rosetta/Roland. Geophysical Research Abstract 3, p. 7597 (2001)
Rosenbauer, H.; Fuselier, S. A.; Ghielmetti, A.; Greenberg, J. M.; Goesmann, F.; Ulamec, S.; Israel, G.; Livi, S.; MacDermott, J. A.; Matsuo, T.et al.; Pillinger, C. T.; Raulin, F.; Roll, R.; Thiemann, W.: The COSAC experiment on the lander of the ROSETTA mission. Advances in Space Research 23, pp. 333 - 340 (1999)
Szopa, C.; Sternberg, R.; Coscia, D.; Cottin, H.; Raulin, F.; Goesmann, F.; Rosenbauer, H.: Gaschromatography for in situ analysis of a cometary nucleus: charcterisation and optimisation of diphenyl/dimethylpolysiloxane stationary phases. Journal of Chromatography A 863, pp. 157 - 169 (1999)
Vago, J. L.; Coates, A. J.; Jaumann, R.; Korablev, O.; Ciarletti, V.; Mitrofanov, I.; Josset, J.-L.; Westall, F.; Sanctis, M. C. D.; Bibring, J.-P.et al.; Rull, F.; Goesmann, F.; Brinckerhoff, W.; Raulin, F.; Sefton-Nash, E.; Svedhem, H.; Kminek, G.; Rodionov, D.; Baglioni, P.: Searching for Traces of Life With the ExoMars Rover. In: From Habitability to Life on Mars, pp. 309 - 347 (Eds. Cabrol, N. A.; Grin, E. A.). Elsevier, Amsterdam (2018)
Goesmann, F.: The Electron Macroscope. In: Proceedings of the 37th ESLAB symposium, ``Tools and technologies for future planetary exploration'', Noordwijk, The Netherlands, 2-4 Dec. 2003, pp. 183 - 186. (2004)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.