Vasyliūnas, V. M.; Dessler, A. J.: The magnetic-anomaly model of the Jovian magnetosphere: A post-Voyager assessment. Journal Geophysical Research 86, pp. 8435 - 8446 (1981)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Bagenal, F.; McNutt Jr., R. L.; Ogilvie, K. W.; Scudder, J. D.; Sittler, E. C.; Vasyliūnas, V. M.et al.; Goertz, C. K.: Plasma observations near Jupiter: Initial results from Voyager 2. Science 206, pp. 972 - 976 (1979)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; McNutt, R. L.; Bagenal, F.; Scudder, J. D.; Sittler, E. C.; Siscoe, G. L.; Vasyliūnas, V. M.et al.; Goertz, C. K.; Yeates, C. M.: Plasma observations near Jupiter: Initial results from Voyager 1. Science 204, pp. 987 - 991 (1979)
Dessler, A. J.; Vasyliūnas, V. M.: The magnetic anomaly model of the Jovian magnetosphere: Predictions for Voyager. Geophysical Research Letters 6, pp. 37 - 40 (1979)
Gonzalez, W. D.; Parker, E. N.; Mozer, F. S.; Vasyliūnas, V. M.; Pritchett, P. L.; Karimabadi, H.; Cassak, P. A.; Scudder, J. D.; Yamada, M.; Kulsrud, R. M.et al.; Koga, D.: Fundamental Concepts Associated with Magnetic Reconnection. In: Magnetic Reconnection, Vol. 427, pp. 1 - 32 (Eds. W., G.; E., P.). Springer, Switzerland (2016)
Vasyliūnas, V. M.: Global aspects of magnetic reconnection and the Axford conjecture. In: Magnetic Reconnection: Concepts and Applications, pp. 13 - 17 (Eds. Gonzalez, W.; Parker, E.). Springer International Publishing, Switzerland (2016)
Vasyliūnas, V. M.: Magnetotail: Unsolved Fundamental Problem of Magnetospheric Physics. In: Magnetotails in the Solar System, Vol. 207, pp. 1 - 19 (Eds. A. Keiling, C. M. J.; Delamere, P. A.). John Wiley Sons, Hoboken, NJ, USA (2015)
Vasyliūnas, V. M.: Energy conversion in planetary magnetospheres. In: Heliophysics: Space Storms and Radiation: Causes and Effects, pp. 263 - 291 (Eds. Schrijver, C. J.; Siscoe, G. L.). Cambridge University Press, Cambridge, U.K. (2010)
Vasyliūnas, V. M.: Fundamentals of planetary magnetospheres. In: Heliophysics: Plasma Physics of the Local Cosmos (Eds. Schrijver, C. J.; Siscoe, G. L.). Cambridge University Press, Cambridge, U.K. (2009)
Song, P.; Vasyliūnas, V. M.; Ma, L.: A three-fluid model of solar wind-magnetosphere-ionosphere-thermosphere coupling. In: Multiscale Coupling of Sun-Earth Processes, pp. 447 - 456 (Eds. Lui, A. T. Y.; Kamide, Y.; Consolini, G.). Elsevier, Amsterdam, The Netherlands (2005)
Khurana, K. K.; Vasyliūnas, V. M.; Mauk, B. H.; Frank, L.; Paterson, B.; Kivelson, M. G.; Krupp, N.; Woch, J.; Lagg, A.; Kurth, B.: 24 - The configuration of Jupiter's magnetosphere. In: Jupiter: The Planet, Satellites and Magnetosphere, pp. 593 - 616 (Eds. Bagenal, F.; Dowling, T.; McKinnon, W.). Cambridge University Press (2004)
Krupp, N.; Vasyliūnas, V. M.; Woch, J.; Lagg, A.; Khurana, K. K.; Kivelson, M. G.; Mauk, B. H.; Roelof, E. C.; Williams, D. J.; Krimigis, S. M.et al.; Kurth, W. S.; Frank, L. A.; Paterson, W. R.: 25 - The Dynamics of the Jovian magnetosphere. In: Jupiter: The Planet, Satellites and Magnetosphere, pp. 617 - 638 (Eds. Bagenal, F.; Dowling, T.; McKinnon, W.). Cambridge University Press (2004)
Vasyliūnas, V. M.: Theoretical considerations on where a substorm begins. In: Substorms - 4, pp. 9 - 14 (Eds. Kokubun, S.; Kamide, Y.). Terra Scientific Publishing Company, Tokyo, Kluwer, Dordrecht (1998)
Vasyliūnas, V. M.: Electrodynamics of the ionosphere/magnetosphere/solar wind system at high latitudes. In: Electromagnetic Coupling in the Polar Clefts and Caps, pp. 1 - 9 (Eds. Sandholt, P. E.; Egeland, A.). Kluwer Academic Publishers, Dordrecht, The Netherlands (1989)
Vasyliūnas, V. M.: Plasma distribution and flow. In: Physics of the Jovian Magnetosphere, pp. 395 - 453 (Ed. Dessler, A. J.). Cambridge University Press, New York (1983)
Vasyliūnas, V. M.: Plasma sheet dynamics: Effects on, and feedback from, the polar ionosphere. In: Exploration of the Polar Upper Atmosphere, pp. 229 - 244 (Eds. Deehr, C. S.; Holtet, J. A.). D. Reidel Publishing Co., Dordrecht, Holland (1980)
Song, P.; Vasyliūnas, V. M.: Inductive‐dynamic coupling of the ionosphere with the thermosphere and the magnetosphere. In: Modeling the Ionosphere‐Thermosphere System, p. 201‐215 (Eds. Huba, J. D.; Schunk, R. W.; Khazanov, G. V.). American Geophysical Union, Washington, D.C. (2013)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.