Bourouaine, S.; Alexandrova, O.; Marsch, E.; Maksimovic, M.: On spectral breaks in the power spectra of magnetic fluctuations in fast solar wind between 0.3 and 0.9 AU. Astrophysical Journal 749, pp. 102 - 109 (2012)
Bourouaine, S.; Marsch, E.; Neubauer, F. M.: Temperature anisotropy and differential streaming of solar wind ions. Correlations with transverse fluctuations. Astronomy and Astrophysics 536, A39 (2011)
Bourouaine, S.; Marsch, E.; Neubauer Fritz, M.: On the Relative Speed and Temperature Ratio of Solar Wind Alpha Particles and Protons: Collisions Versus Wave Effects. Astrophysical Journal 728, pp. L3 - L7 (2011)
Marsch, E.; Bourouaine, S.: Velocity-space diffusion of solar wind protons in oblique waves and weak turbulence. Annales Geophysicae 29, pp. 2089 - 2099 (2011)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.