Muñoz, P. A.; Told, D.; Kilian, P.; Büchner, J.; Jenko, F.: Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows. Physics of Plasmas 22 (8), 082110 (2015)
Ganse, U.; Kilian, P.; Spanier, F.; Vainio, R.: Fundamental and harmonic plasma emission in different plasma environments (Research Note). Astronomy and Astrophysics 564, A15 (2014)
Muñoz, P. A.; Kilian, P.; Büchner, J.: Instabilities of collisionless current sheets revisited: The role of anisotropic heating. Physics of Plasmas 21 (11), 112106 (2014)
Büchner, J.; Kilian, P.; Muñoz Sepúlveda, P. A.; Spanier, F.; Widmer, F.; Zhou, X.; Jain, N.: Kinetic Simulations of Electron Acceleration at Mercury. In: Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions, pp. 201 - 240 (Eds. Lühr, H.; Wicht, J.; Gilder, S. A.; Holschneider, M.). Springer, Cham (2018)
Muñoz, P. A.; Kilian, P.; Büchner, J.: PIC-code simulation of spontaneous instabilities of current sheets: anisotropic heating and guide field influence on magnetic reconnection. 40th COSPAR Scientific Assembly, Moscow, Russia (2014)
Analyzing the high spatial resolution solar Ca II H and K emission data obtained by the SUNRISE mission and building a model of other stars more active than the Sun
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.