Jiang, J.; Cameron, R. H.; Schmitt, D.; Işık, E.: Modeling solar cycles 15 to 21 using a flux transport dynamo. Astronomy and Astrophysics 553, A128 (2013)
Jiang, J.; Cameron, R. H.; Schmitt, D.; Schüssler, M.: The solar magnetic field since 1700 I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astronomy and Astrophysics 528, A82 (2011)
Jiang, J.; Cameron, R. H.; Schmitt, D.; Schüssler, M.: The solar magnetic field since 1700 II. Physical reconstruction of total, polar and open flux. Astronomy and Astrophysics 528, A83 (2011)
Cameron, R. H.; Jiang, J.; Schmitt, D.; Schüssler, M.: Surface flux transport modeling for solar cycles 15-21: effects of cycle-dependent tilt angles of sunspot groups. Astrophysical Journal 719, pp. 264 - 270 (2010)
Jiang, J.; Işık, E.; Cameron, R. H.; Schmitt, D.; Schüssler, M.: The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophysical Journal 717, pp. 597 - 602 (2010)
The dwarf planet is a bizarre, cryovolcanic world. However, the organic deposits discovered on its surface so far are unlikely to originate from its interior.
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).