Reinhold, T.; Shapiro, A.; Witzke, V.; Nèmec, N.-E.; Işık, E.; Solanki, S. K.: Where Have All the Solar-like Stars Gone? Rotation Period Detectability at Various Inclinations and Metallicities. The Astrophysical Journal Letters 908 (2), L21 (2021)
Sowmya, K.; Nèmec, N.-E.; Shapiro, A.; Isik, E.; Witzke, V.; Mints, A.; Krivova, N. A.; Solanki, S. K.: Predictions of Astrometric Jitter for Sun-like Stars. II. Dependence on Inclination, Metallicity, and Active-region Nesting. The Astrophysical Journal 919 (2), 94 (2021)
Shulyak, D.; Lara, L. M.; Rengel, M.; Nemec, N.-E.: Stellar impact on disequilibrium chemistry and observed spectra of hot Jupiter atmospheres. Astronomy and Astrophysics 639, A48 (2020)
Shulyak, D.; Rengel, M.; Lara, L.; Nèmec, N.-E.: Studying physics and chemistry in atmospheres of hot Jupiters from future ground-based and space facilities. Europlanet Science Congress 2020, online (2020)
Nemec, N.-E.; Güdel, M.; Lüftinger, T.; Johnstone, C. P.: The XUV Sun in Time. XXXth General Assembly of the International Astronomical Union, Vienna, Austria (2018)
The Uranian magnetic field is more expansive than previously thought, according to newly analyzed data from Voyager 2, making it easier to search for moons with oceans.
The Planetary Plasma Environments group (PPE) has a strong heritage in the exploration of planetary magnetospheres and space plasma interactions throughout the solar system. It has contributed instruments to several past missions that flew-by or orbited Jupiter (Galileo, Cassini, Ulysses). The PPE participates in the JUICE mission by contributing hardware and scientific expertise to the Particle Environment Package (PEP).