Bhatia, T. S.; Panja, M.; Cameron, R. H.; Solanki, S. K.: 3D radiative MHD simulations of starspots: II. Large-scale structure. Astronomy and Astrophysics 693, p. A264 (2025)
Bekki, Y.; Cameron, R. H.; Gizon, L.: The Sun's differential rotation is controlled by high-latitude baroclinically unstable inertial modes. Science Advances 10, p. eadk5643 (2024)
Bhatia, T. S.; Cameron, R.; Peter, H.; Solanki, S.: Small-scale dynamo in cool stars. III. Changes in the photospheres of F3V to M0V stars. Astronomy and Astrophysics 681, p. A32 (2024)
Breu, C. A.; Peter, H.; Solanki, S. K.; Cameron, R.; De Moortel, I.: Non-thermal broadening of coronal lines in a 3D MHD loop model. Monthly Notices of the Royal Astronomical Society (2024)
Finley, A. J.; Brun, A. S.; Strugarek, A.; Cameron, R.: How well does surface magnetism represent deep Sun-like star dynamo action? Astronomy and Astrophysics 684, p. A92 (2024)
Bekki, Y.; Cameron, R. H.: Three-dimensional non-kinematic simulation of the post-emergence evolution of bipolar magnetic regions and the Babcock-Leighton dynamo of the Sun. Astronomy and Astrophysics 670, p. A101 (2023)
Weisshaar, E.; Cameron, R. H.; Schüssler, M.: No evidence for synchronization of the solar cycle by a "clock". Astronomy and Astrophysics 671, p. A87 (2023)
Baumgartner, C.; Birch, A. C.; Schunker, H.; Cameron, R. H.; Gizon, L.: Impact of spatially correlated fluctuations in sunspots on metrics related to magnetic twist. Astronomy and Astrophysics 664, p. A183 (2022)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Amplitudes of equatorial modes from a nonlinear rotating convection simulation. Astronomy and Astrophysics 666, p. A135 (2022)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Linear modes of the convection zone. Astronomy and Astrophysics 662, p. A16 (2022)
Bhatia, T. S.; Cameron, R. H.; Solanki, S. K.; Peter, H.; Przybylski, D.; Witzke, V.; Shapiro, A.: Small-scale dynamo in cool stars. I. Changes in stratification and near-surface convection for main-sequence spectral types. Astronomy and Astrophysics 663, p. A166 (2022)
Biswas, A.; Karak, B. B.; Cameron, R.: Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way. Physical Review Letters 129, p. 241102 (2022)
Gottschling, N.; Schunker, H.; Birch, A.; Cameron, R. H.; Gizon, L.: Testing solar surface flux transport models in the first days after active region emergence. Astronomy and Astrophysics 660, A6 (2022)
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".