Combe, J.-P.; Raponi, A.; Tosi, F.; De Sanctis, M. C.; Carrozzo, F. G.; Zambon, F.; Ammannito, E.; Hughson, K. H.G.; Nathues, A.; Hoffmann, M.et al.; Platz, T.; Thangjam, G. S.; Schorghofer, N.; Schröder, S.; Byrne, S.; Landis, M. E.; Ruesch, O.; McCord, T. B.; Johnson, K. E.; Magar Singh, S.; Raymond, C. A.; Russell, C. T.: Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. Icarus 318, pp. 22 - 41 (2019)
Pieters, C. M.; Nathues, A.; Thangjam, G. S.; Hoffmann, M.; Platz, T.; Sanctis, M. C. D.; Ammannito, E.; Tosi, F.; Zambon, F.; Pasckert, J. H.et al.; Hiesinger, H.; Schröder, S. E.; Jaumann, R.; Matz, K.-D.; Castillo-Rogez, J. C.; Ruesch, O.; McFadden, L.A.; O’Brien, D. P.; Sykes, M.; Raymond, C. A.; Russell, C. T.: Geologic constraints on the origin of red organic-rich material on Ceres. Meteoritics and Planetary Science 53 (9), pp. 1983 - 1998 (2018)
Thangjam, G. S.; Nathues, A.; Platz, T.; Hoffmann, M.; Cloutis, E. A.; Mengel, K.; Izawa, M. R. M.; Applin, D. M.: Spectral properties and geology of bright and dark material on dwarf planet Ceres. Meteoritics and Planetary Science 53 (9), pp. 1961 - 1982 (2018)
Tosi, F.; Carrozzo, F. G.; Raponi, A.; De Sanctis, M. C.; Thangjam, G. S.; Zambon, F.; Ciarniello, M.; Nathues, A.; Capria, M. T.; Rognini, E.et al.; Ammannito, E.; Hoffmann, M.; Krohn, K.; Longobardo, A.; Palomba, E.; Pieters, C. M.; Stephan, K.; Raymond, C. A.; Russell, C. T.: Mineralogy and temperature of crater Haulani on Ceres. Meteoritics and Planetary Science 53 (9), pp. 1902 - 1924 (2018)
Lucchetti, A.; Pajola, M.; Fornasier, S.; Mottola, S.; Penasa, L.; Jorda, L.; Cremonese, G.; Feller, C.; Hasselmann, P. H.; Massironi, M.et al.; Ferrari, S.; Naletto, G.; Oklay, N.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Boudreault, S.; Deppo, V. D.; Debei, B. D. S.; Cecco, M. D.; Deller, J.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hoffmann, M.; Hviid, S. F.; Ip, W. H.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Forgia, F. L.; Lin, L. Z.; Moreno, J. J. L.; Marzari, F.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Tubiana, C.; Vincent, J. B.: Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/ChuryumovGerasimenko using OSIRIS images. Mon. Not. Roy. Astron. Soc. 469, 238L (2017)
Nathues, A.; Platz, T.; Hoffmann, M.; Thangjam, G.; Cloutis, E. A.; Applin, D. M.; Le Corre, L.; Reddy, V.; Mengel, K.; Protopapa, S.et al.; Takir, D.; Preusker, F.; Schmidt, B. E.; Russell, C. T.: Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice. Astronomical Journal 154 (3), 84 (2017)
Li, J.-Y.; Reddy, V.; Nathues, A.; Le Corre, L.; Izawa, M. R. M.; Cloutis, E. A.; Sykes, M. V.; Carsenty, U.; Castillo-Rogez, J. C.; Hoffmann, M.et al.; Jaumann, R.; Krohn, K.; Mottola, S.; Prettyman, T. H.; Schaefer, M.; Schenk, P.; Schroeder, S. E.; Williams, D. A.; Smith, D. E.; Zuber, M. T.; Konopliv, A. S.; Park, R. S.; Raymond, C. A.; Russell, C. T.: Surface Albedo and Spectral Variability of Ceres. Astrophysical Journal 817 (2), L22 (2016)
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L. A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.et al.; Williams, D. A.; Li, J.-Y.; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B. E.; Buczkowski, D. L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffmann, M.; Raymond, C. A.; Russell, C. T.: Cryovolcanism on Ceres. Science 353, aaf4286 (2016)
Russell, C. T.; Raymond, C. A.; Ammannito, E.; Buczkowski, D. L.; De Sanctis, M. C.; Hiesinger, H.; Jaumann, R.; Konopliv, A. S.; McSween, H. Y.; Nathues, A.et al.; Park, R. S.; Pieters, C. M.; Prettyman, T. H.; McCord, T. B.; McFadden, L. A.; Mottola, S.; Zuber, M. T.; Joy, S. P.; Polanskey, C.; Rayman, M. D.; Castillo-Rogez, J. C.; Chi, P. J.; Combe, J. P.; Ermakov, A.; Fu, R. R.; Hoffmann, M.; Jia, Y. D.; King, S. D.; Lawrence, D. J.; Li, J.-Y.; Marchi, S.; Preusker, F.; Roatsch, T.; Ruesch, O.; Schenk, P.; Villarreal, M. N.; Yamashita, N.: Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science 353, pp. 1008 - 1010 (2016)
Schäfer, T.; Nathues, A.; Mengel, K.; Izawa, M. R. M.; Cloutis, E. A.; Schäfer, M.; Hoffmann, M.: Spectral parameters for Dawn FC color data: Carbonaceous chondrites and aqueous alteration products as potential cerean analog materials. Icarus 265, pp. 149 - 160 (2016)
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The magnetic field in the solar atmosphere exceeds the geomagnetic field strength by four orders of magnitude. It greatly influences the processes of energy transport within the solar atmosphere, and dominates the morphology of the solar chromosphere and corona. Kinetic energy from convective motions in the Sun can be efficiently stored in magnetic fields and subsequently released - to heat the solar corona to several million degrees or to blast off coronal mass ejections.
The Solar Lower Atmosphere and Magnetism (SLAM) group covers many exciting subjects in solar physics, focussing on the development and testing of highly novel solar instrumentation, reduction and analysis of highest quality solar observations, or improving and developing advanced techniques for the analysis of solar observations.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.